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Abstract
In this paper, by using the best Sobolev constant method, we obtain some new
Lyapunov-type inequalities for a class of even-order partial differential equations; the
results of this paper are new which generalize and improve some early results in the
literature.
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1 Introduction
It is well known that the Lyapunov inequality for the second-order linear differential equa-
tion

x′′(t) + q(t)x(t) =  ()

states that if q ∈ C[a,b], x(t) is a nonzero solution of () such that x(a) = x(b) = , then the
following inequality holds:

∫ b

a

∣∣q(t)∣∣dt > 
b – a

()

and the constant  is sharp.
There have been many proofs and generalizations as well as improvements on this in-

equality. For example, the authors in [–] generalized the Lyapunov-type inequality to
the partial differential equations or systems.
First let us recall some background and notations which are introduced in [, ].
LetA be a spherical shell⊆ R

N forN > , i.e. A = B(,R)–B(,R) for  < R < R, where
B(,R) = {x ∈ R

N : ‖x‖ < R} for R >  and ‖ · ‖ is the Euclidean norm. Denote SN– = {x ∈
R

N : ‖x‖ = }, the unit sphere in R
N with surface area

ωN =
π N



�(N )
, i.e.

∫
SN–

dω =
π N



�(N )
, ()

where �(·) is the gamma function. Then every x ∈ R
N – {} has a unique representation

of the form x = rω, where r = ‖x‖ >  and ω = x
r ∈ SN–. Therefore, for any f ∈ C(A), we
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have

∫
A
f (x)dx =

∫
SN–

(∫ R

R
f (rω)rN– dr

)
dω.

In [], Aktaş obtained the following results.

Theorem A If f ∈ Cn(A) is a nonzero solution of the following even-order partial differ-
ential equation:

∂nf (x)
∂rn

+ q(x)f (x) = , x ∈ A, ()

where n ∈N and q ∈ C(A), with the boundary conditions

∂if
∂ri

(
∂B(,R)

)
=

∂if
∂ri

(
∂B(,R)

)
= , i = , , , . . . ,n – , ()

then the following inequality holds:

∫
A

∣∣q(x)∣∣dx > n–

(R – R)n–
π N



�(N )
RN–
 . ()

Theorem B If f ∈ Cn(A) is a nonzero solution of () with the boundary conditions

∂ if
∂ri

(
∂B(,R)

)
=

∂ if
∂ri

(
∂B(,R)

)
= , i = , , , . . . ,n – , ()

then the following inequality holds:

∫
A

∣∣q(x)∣∣dx > n–(n – )[(n – )!]

(R – R)n–
π N



�(N )
RN–
 . ()

In this paper, we generalize Theorem A and Theorem B to a more general class of even
order partial differential equations. Moreover, as we shall see by the end of this paper,
Theorem  improves Theorem A significantly.

2 Main results
Let us consider the following even-order partial differential equation:

∂ny(x)
∂rn

+
n∑

k=

pk(x)
∂ky(x)
∂rk

= , ()

where y(x) ∈ Cn(A), pk(x) ∈ C(A), k = , , , . . . ,n, and x ∈R
N .

The main results of this paper are the following theorems.

Theorem  If y(x) is a nonzero solution of () satisfying boundary conditions (), then the
following inequality holds:
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 <

√√√√ (n – )ζ (n)(R – R)n–�(N )

nπn+N
 RN–



(∫
A
pn(x)dx

) 


+
n–∑
k=

(R – R)n–k–�(N )

(π )n–kRN–
 π

N


√(
n – 

)(
(n–k) – 

)
ζ (n)ζ

(
(n – k)

)

×
∫
A

∣∣pk(x)∣∣dx, ()

where ζ (s) =
∑+∞

n=

ns is the Riemann zeta function.

Theorem  If y(x) is a nonzero solution of () satisfying boundary conditions (), then the
following inequality holds:

 <


(n – )!n–

√√√√ (R – R)n–�(N )

(n – )RN–
 π N



(∫
A
pn(x)dx

) 


+
n–∑
k=

(R – R)n–k–�(N )√
(n – )(n – k – )(n – )!(n – k – )!n–k–RN–

 π N


∫
A

∣∣pk(x)∣∣dx. ()

3 Proofs of theorems
For the proofs of Theorem  and Theorem , let us consider first the following ordinary
even-order linear ordinary differential equation:

x(n)(t) +
n∑

k=

pk(t)x(k)(t) = , ()

where pk(t) ∈ C[a,b], k = , , , . . . ,n.

Proposition  If () has a nonzero solution x(t) satisfying the following boundary value
conditions:

x(i)(a) = x(i)(b) = , i = , , , . . . ,n – , ()

then the following inequality holds:

 <
√
(n – )ζ (n)(b – a)n–

n–πn

(∫ b

a
pn(t)dt

) 


+
n–∑
k=

(b – a)n–k–
√
(n – )(n–k – )ζ (n)ζ ((n – k))

n–k–πn–k

∫ b

a

∣∣pk(t)∣∣dt, ()

where ζ (s) is the Riemann zeta function: ζ (s) =
∑+∞

k=

ks , s > .

Proposition  If () has a nonzero solution x(t) satisfying the following boundary value
conditions:

x(i)(a) = x(i)(b) = , i = , , , . . . ,n – , ()
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then we have the following inequality:

 <


(n – )!n–

√
(b – a)n–

(n – )

(∫ b

a
pn(t)dt

) 


+
n–∑
k=

(b – a)n–k–

(n – )!(n – k – )!n–k–
√
(n – )(n – k – )

∫ b

a

∣∣pk(t)∣∣dt. ()

In order to prove the above propositions, we need the following lemmas.

Lemma  ([, Proposition .]) Let M ∈N and

HC =
{
u|u(M) ∈ L(a,b),u(k)(a) = u(k)(b) = , ≤ k ≤ [

(M – )/
]}
.

Then there exists a positive constant C such that, for any u ∈HC , the Sobolev inequality

(
sup
a≤t≤b

∣∣u(t)∣∣) ≤ C
∫ b

a

∣∣u(M)(t)
∣∣ dt

holds.Moreover, the best constant C = C(M) is as follows:

C(M) =
(M – )ζ (M)(b – a)M–

M–πM .

Lemma  ([, Theorem . and Corollary .]) Let M ∈N and

HD =
{
u|u(M) ∈ L(a,b),u(k)(a) = u(k)(b) = ,  ≤ k ≤M – 

}
.

Then there exists a positive constant D such that for any u ∈HD, the Sobolev inequality

(
sup
a≤t≤b

∣∣u(t)∣∣) ≤D
∫ b

a

∣∣u(M)(t)
∣∣ dt

holds.Moreover, the best constant D =D(M) is as follows:

D(M) =
(b – a)M–

(M – )[(M – )!]M– . ()

We give the first seven values of ζ (n), C(n), and D(n) in Table .
Since the proof of Proposition  is similar to that of Proposition , we give only the proof

of Proposition  below.

Table 1 The first seven values of ζ (2n), C(n) and D(n)

n 1 2 3 4 5 6 7

ζ (2n) π2
6

π4
90

π6
945

π8
9,450

π10
93,555

691π12
638,512,875

2π14
18,243,225

C(n) b–a
4

(b–a)3
48

(b–a)5
480

17(b–a)7
80,640

31(b–a)9
1,451,520

691(b–a)11
9,123,840

(214–1)(b–a)13

213×18,243,225

D(n) b–a
4

(b–a)3
192

(b–a)5
20,480

(b–a)7
4,128,768

(b–a)9
1,358,954,496

(b–a)11
664,377,753,600

(b–a)13

13(6!)2413
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Proof of Proposition  Multiplying both sides of () by x(t) and integrating from a to b by
parts and using the boundary value condition (), we can obtain

∫ b

a
x(n)(t)x(t)dt = (–)n

∫ b

a

(
x(n)(t)

) dt = –
n∑

k=

∫ b

a
pk(t)x(k)(t)x(t)dt.

This yields

∫ b

a

(
x(n)(t)

) dt ≤
n∑

k=

∫ b

a

∣∣pk(t)∣∣∣∣x(k)(t)x(t)∣∣dt

=
∫ b

a

∣∣pn(t)∣∣∣∣x(n)(t)x(t)∣∣dt + n–∑
k=

∫ b

a

∣∣pk(t)∣∣∣∣x(k)(t)x(t)∣∣dt. ()

Now, by using Lemma , we get for any t ∈ [a,b], k = , , . . . ,n – ,

∣∣x(t)∣∣ ≤ √
C(n)

(∫ b

a

(
x(n)(t)

) dt) 


()

and

∣∣x(k)(t)∣∣ ≤ √
C(n – k)

(∫ b

a

(
x(n)(t)

) dt) 

. ()

Substituting () and () into (), we obtain

∫ b

a

(
x(n)(t)

) dt ≤ √
C(n)

∫ b

a

∣∣pn(t)∣∣∣∣x(n)(t)∣∣dt
(∫ b

a

(
x(n)(t)

) dt) 


+
n–∑
k=

√
C(n)C(n – k)

∫ b

a

∣∣pk(t)∣∣dt
∫ b

a

(
x(n)(t)

) dt. ()

Now by applying Hölder’s inequality, we get

∫ b

a

∣∣pn(t)x(n)(t)∣∣dt ≤
(∫ b

a
pn(t)dt

) 

(∫ b

a

(
x(n)(t)

) dt) 

. ()

Substituting () into () and by using the fact that x(t) is not a constant function, we
obtain the following strict inequality:

∫ b

a

(
x(n)(t)

) dt < √
C(n)

(∫ b

a
pn(t)dt

) 

∫ b

a

(
x(n)(t)

) dt
+

n–∑
k=

√
C(n)C(n – k)

∫ b

a

∣∣pk(t)∣∣dt
∫ b

a

(
x(n)(t)

) dt. ()
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Dividing both sides of () by
∫ b
a (x

(n)(t)) dt, which can be proved to be positive by using
the boundary value condition () and the assumption that x(t) 	≡ , we obtain

 <
√
C(n)

(∫ b

a
pn(t)dt

) 

+

n–∑
k=

√
C(n)C(n – k)

∫ b

a

∣∣pk(t)∣∣dt.

This is equivalent to (). Thus we finished the proof of Proposition . �

Lemma  For any f ∈ C(A), we have

∫
A

∣∣f (x)∣∣dx ≥ RN–
 π N



�(N )

∫ R

R

∣∣f (rω)∣∣dr. ()

Proof Similar to the proofs given in [] and [], we have

∫ R

R

∣∣f (rω)∣∣dr = ∫ R

R
r–NrN–∣∣f (rω)∣∣dr ≤

(∫ R

R
rN–∣∣f (rω)∣∣dr)R–N

 ,

which implies that

∫
A

∣∣f (x)∣∣dx = ∫
SN–

(∫ R

R
rN–∣∣f (rω)∣∣dr)dω

≥
∫
SN–

(
RN–


∫ R

R

∣∣f (rω)∣∣dr)dω

=
(∫ R

R

∣∣f (rω)∣∣dr)RN–
 π N



�(N )
. �

Proof of Theorem  It follows from () and Lemma  that for any fixed ω ∈ SN–, we have

 <
√
(n – )ζ (n)(R – R)n–

n–πn

(∫ R

R
pn(rω)dr

) 


+
n–∑
k=

(R – R)n–k–
√
(n – )(n–k – )ζ (n)ζ ((n – k))

n–k–πn–k

∫ b

a

∣∣pk(rω)∣∣dr

≤
√√√√ (n – )ζ (n)(R – R)n–�(N )

nπn+N
 RN–



(∫
A
pn(x)dx

) 


+
n–∑
k=

(R – R)n–k–�(N )

(π )n–kRN–
 π

N


√(
n – 

)(
(n–k) – 

)
ζ (n)ζ

(
(n – k)

)∫
A

∣∣pk(x)∣∣dx,

which is (). This finishes the proof of Theorem . �

The proof of Theorem  is similar to that of Theorem , so we omit it for simplicity.
Let us compare Theorem  andTheoremwith TheoremA andTheoremB. It is evident

that Theorem  is a natural generalization of Theorem B. If we let pn(x) = pn–(x) = · · · =

http://www.journalofinequalitiesandapplications.com/content/2014/1/503
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Table 2 The first eight values of δn

n 1 2 3 4 5 6 7 8

δn 1 1.50 1.42 2.32 2.86 3.53 4.35 5.37

p(x)≡ , p(x) = q(x), ∀x ∈ A, then () reduces to the following inequality:

∫
A

∣∣q(x)∣∣dx > n–πn

(n – )ζ (n)(R – R)n–
π N



�(N )
RN–
 . ()

Let us compare the right sides of inequalities () and (): if we denote δn = n–πn

(n–)ζ (n)n– ,
then we have

δn =
πn

n(n – )ζ (n)
>

πn

nζ (n)
=

(
π



)n 
ζ (n)

→ ∞, as n→ ∞,

since ζ (n)→  as n→ ∞. Table  gives the first eight values of δn.
From Table  we see that δn increases very quickly, so Theorem  improves Theorem A

significantly even in the special case of ().
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1. Aktaş, MF: On the multivariate Lyapunov inequalities. Appl. Math. Comput. 232, 784-786 (2014)
2. Anastassiou, GA: Multivariate Lyapunov inequalities. Appl. Math. Lett. 24, 2167-2171 (2011)
3. Canada, A, Montero, JA, Villegas, S: Laypunov inequalities for partial differential equations. J. Funct. Anal. 237, 176-193

(2006)
4. Watanabe, K, Yamagishi, H, Kametaka, Y: Riemann zeta function and Lyapunov-type inequalities for certain higher

order differential equations. Appl. Math. Comput. 218, 3950-3953 (2011)
5. Watanabe, K, Kametaka, Y, Yamagishi, H, Nagai, A, Takemura, K: The best constant of Sobolev inequality corresponding

to clamped boundary value problem. Bound. Value Probl. 2011, Article ID 875057 (2011). doi:10.1155/2011/875057

10.1186/1029-242X-2014-503
Cite this article as: Ji and Fan: Onmultivariate higher order Lyapunov-type inequalities. Journal of Inequalities and
Applications 2014, 2014:503

http://www.journalofinequalitiesandapplications.com/content/2014/1/503
http://dx.doi.org/10.1155/2011/875057

	On multivariate higher order Lyapunov-type inequalities
	Abstract
	Keywords

	Introduction
	Main results
	Proofs of theorems
	Competing interests
	Authors' contributions
	Acknowledgements
	References


