On multivariate higher order Lyapunov-type inequalities

Tieguo Ji* and Jie Fan

"Correspondence: rosemary1976@163.com
College of Science, Hebei University of Engineering, Handan, 056038, P.R. China

Abstract

In this paper, by using the best Sobolev constant method, we obtain some new Lyapunov-type inequalities for a class of even-order partial differential equations; the results of this paper are new which generalize and improve some early results in the literature.

Keywords: Lyapunov-type inequality; even-order partial differential equations; Sobolev constant

1 Introduction

It is well known that the Lyapunov inequality for the second-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x(t)=0 \tag{1}
\end{equation*}
$$

states that if $q \in C[a, b], x(t)$ is a nonzero solution of (1) such that $x(a)=x(b)=0$, then the following inequality holds:

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a} \tag{2}
\end{equation*}
$$

and the constant 4 is sharp.
There have been many proofs and generalizations as well as improvements on this inequality. For example, the authors in [1-3] generalized the Lyapunov-type inequality to the partial differential equations or systems.

First let us recall some background and notations which are introduced in [1, 2].
Let A be a spherical shell $\subseteq \mathbb{R}^{N}$ for $N>1$, i.e. $A=B\left(0, R_{2}\right)-\overline{B\left(0, R_{1}\right)}$ for $0<R_{1}<R_{2}$, where $B(0, R)=\left\{x \in \mathbb{R}^{N}:\|x\|<R\right\}$ for $R>0$ and $\|\cdot\|$ is the Euclidean norm. Denote $S^{N-1}=\{x \in$ $\left.\mathbb{R}^{N}:\|x\|=1\right\}$, the unit sphere in \mathbb{R}^{N} with surface area

$$
\begin{equation*}
\omega_{N}=\frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \text {, i.e. } \int_{S^{N-1}} d \omega=\frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)}, \tag{3}
\end{equation*}
$$

where $\Gamma(\cdot)$ is the gamma function. Then every $x \in \mathbb{R}^{N}-\{0\}$ has a unique representation of the form $x=r \omega$, where $r=\|x\|>0$ and $\omega=\frac{x}{r} \in S^{N-1}$. Therefore, for any $f \in C(\bar{A})$, we

[^0]have
$$
\int_{A} f(x) d x=\int_{S^{N-1}}\left(\int_{R_{1}}^{R_{2}} f(r \omega) r^{N-1} d r\right) d \omega .
$$

In [1], Aktaş obtained the following results.
Theorem A Iff $\in C^{2 n}(\bar{A})$ is a nonzero solution of the following even-order partial differential equation:

$$
\begin{equation*}
\frac{\partial^{2 n} f(x)}{\partial r^{2 n}}+q(x) f(x)=0, \quad x \in A, \tag{4}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $q \in C(\bar{A})$, with the boundary conditions

$$
\begin{equation*}
\frac{\partial^{2 i} f}{\partial r^{2 i}}\left(\partial B\left(0, R_{1}\right)\right)=\frac{\partial^{2 i} f}{\partial r^{2 i}}\left(\partial B\left(0, R_{2}\right)\right)=0, \quad i=0,1,2, \ldots, n-1, \tag{5}
\end{equation*}
$$

then the following inequality holds:

$$
\begin{equation*}
\int_{A}|q(x)| d x>\frac{2^{3 n-1}}{\left(R_{2}-R_{1}\right)^{2 n-1}} \frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} R_{1}^{N-1} . \tag{6}
\end{equation*}
$$

Theorem B Iff $\in C^{2 n}(\bar{A})$ is a nonzero solution of (4) with the boundary conditions

$$
\begin{equation*}
\frac{\partial^{i} f}{\partial r^{i}}\left(\partial B\left(0, R_{1}\right)\right)=\frac{\partial^{i} f}{\partial r^{i}}\left(\partial B\left(0, R_{2}\right)\right)=0, \quad i=0,1,2, \ldots, n-1, \tag{7}
\end{equation*}
$$

then the following inequality holds:

$$
\begin{equation*}
\int_{A}|q(x)| d x>\frac{4^{2 n-1}(2 n-1)[(n-1)!]^{2}}{\left(R_{2}-R_{1}\right)^{2 n-1}} \frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} R_{1}^{N-1} . \tag{8}
\end{equation*}
$$

In this paper, we generalize Theorem A and Theorem B to a more general class of even order partial differential equations. Moreover, as we shall see by the end of this paper, Theorem 1 improves Theorem A significantly.

2 Main results

Let us consider the following even-order partial differential equation:

$$
\begin{equation*}
\frac{\partial^{2 n} y(x)}{\partial r^{2 n}}+\sum_{k=0}^{n} p_{k}(x) \frac{\partial^{k} y(x)}{\partial r^{k}}=0 \tag{9}
\end{equation*}
$$

where $y(x) \in C^{2 n}(\bar{A}), p_{k}(x) \in C(\bar{A}), k=0,1,2, \ldots, n$, and $x \in \mathbb{R}^{N}$.
The main results of this paper are the following theorems.

Theorem 1 If $y(x)$ is a nonzero solution of (9) satisfying boundary conditions (5), then the following inequality holds:

$$
\begin{align*}
1< & \sqrt{\frac{\left(2^{2 n}-1\right) \zeta(2 n)\left(R_{2}-R_{1}\right)^{2 n-1} \Gamma\left(\frac{N}{2}\right)}{2^{2 n} \pi^{2 n+\frac{N}{2}} R_{1}^{N-1}}\left(\int_{A} p_{n}^{2}(x) d x\right)^{\frac{1}{2}}} \\
& +\sum_{k=0}^{n-1} \frac{\left(R_{2}-R_{1}\right)^{2 n-k-1} \Gamma\left(\frac{N}{2}\right)}{(2 \pi)^{2 n-k} R_{1}^{N-1} \pi^{\frac{N}{2}}} \sqrt{\left(2^{2 n}-1\right)\left(2^{2(n-k)}-1\right) \zeta(2 n) \zeta(2(n-k))} \\
& \times \int_{A}\left|p_{k}(x)\right| d x, \tag{10}
\end{align*}
$$

where $\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}$ is the Riemann zeta function.
Theorem 2 If $y(x)$ is a nonzero solution of (9) satisfying boundary conditions (7), then the following inequality holds:

$$
\begin{align*}
1< & \frac{1}{(n-1)!2^{2 n-1}} \sqrt{\frac{\left(R_{2}-R_{1}\right)^{2 n-1} \Gamma\left(\frac{N}{2}\right)}{(2 n-1) R_{1}^{N-1} 2 \pi^{\frac{N}{2}}}}\left(\int_{A} p_{n}^{2}(x) d x\right)^{\frac{1}{2}} \\
& +\sum_{k=0}^{n-1} \frac{\left(R_{2}-R_{1}\right)^{2 n-k-1} \Gamma\left(\frac{N}{2}\right)}{\sqrt{(2 n-1)(2 n-2 k-1)}(n-1)!(n-k-1)!4^{2 n-k-1} R_{1}^{N-1} 2 \pi^{\frac{N}{2}}} \int_{A}\left|p_{k}(x)\right| d x . \tag{11}
\end{align*}
$$

3 Proofs of theorems

For the proofs of Theorem 1 and Theorem 2, let us consider first the following ordinary even-order linear ordinary differential equation:

$$
\begin{equation*}
x^{(2 n)}(t)+\sum_{k=0}^{n} p_{k}(t) x^{(k)}(t)=0, \tag{12}
\end{equation*}
$$

where $p_{k}(t) \in C[a, b], k=0,1,2, \ldots, n$.
Proposition 3 If (12) has a nonzero solution $x(t)$ satisfying the following boundary value conditions:

$$
x^{(2 i)}(a)=x^{(2 i)}(b)=0, \quad i=0,1,2, \ldots, n-1,
$$

then the following inequality holds:

$$
\begin{align*}
1< & \sqrt{\frac{\left(2^{2 n}-1\right) \zeta(2 n)(b-a)^{2 n-1}}{2^{2 n-1} \pi^{2 n}}}\left(\int_{a}^{b} p_{n}^{2}(t) d t\right)^{\frac{1}{2}} \\
& +\sum_{k=0}^{n-1} \frac{(b-a)^{2 n-k-1} \sqrt{\left(2^{2 n}-1\right)\left(2^{2 n-2 k}-1\right) \zeta(2 n) \zeta(2(n-k))}}{2^{2 n-k-1} \pi^{2 n-k}} \tag{14}
\end{align*} \int_{a}^{b}\left|p_{k}(t)\right| d t, ~ l
$$

where $\zeta(s)$ is the Riemann zeta function: $\zeta(s)=\sum_{k=1}^{+\infty} \frac{1}{k^{s}}, s>1$.
Proposition 4 If (12) has a nonzero solution $x(t)$ satisfying the following boundary value conditions:

$$
\begin{equation*}
x^{(i)}(a)=x^{(i)}(b)=0, \quad i=0,1,2, \ldots, n-1, \tag{15}
\end{equation*}
$$

then we have the following inequality:

$$
\begin{align*}
1< & \frac{1}{(n-1)!2^{2 n-1}} \sqrt{\frac{(b-a)^{2 n-1}}{(2 n-1)}}\left(\int_{a}^{b} p_{n}^{2}(t) d t\right)^{\frac{1}{2}} \\
& +\sum_{k=0}^{n-1} \frac{(b-a)^{2 n-k-1}}{(n-1)!(n-k-1)!4^{2 n-k-1} \sqrt{(2 n-1)(2 n-2 k-1)}} \int_{a}^{b}\left|p_{k}(t)\right| d t \tag{16}
\end{align*}
$$

In order to prove the above propositions, we need the following lemmas.

Lemma 5 ([4, Proposition 2.1]) Let $M \in \mathbb{N}$ and

$$
H_{C}=\left\{u \mid u^{(M)} \in L^{2}(a, b), u^{(2 k)}(a)=u^{(2 k)}(b)=0,0 \leq k \leq[(M-1) / 2]\right\} .
$$

Then there exists a positive constant C such that, for any $u \in H_{C}$, the Sobolev inequality

$$
\left(\sup _{a \leq t \leq b}|u(t)|\right)^{2} \leq C \int_{a}^{b}\left|u^{(M)}(t)\right|^{2} d t
$$

holds. Moreover, the best constant $C=C(M)$ is as follows:

$$
C(M)=\frac{\left(2^{2 M}-1\right) \zeta(2 M)(b-a)^{2 M-1}}{2^{2 M-1} \pi^{2 M}}
$$

Lemma 6 ([5, Theorem 1.2 and Corollary 1.3]) Let $M \in \mathbb{N}$ and

$$
H_{D}=\left\{u \mid u^{(M)} \in L^{2}(a, b), u^{(k)}(a)=u^{(k)}(b)=0,0 \leq k \leq M-1\right\} .
$$

Then there exists a positive constant D such that for any $u \in H_{D}$, the Sobolev inequality

$$
\left(\sup _{a \leq t \leq b}|u(t)|\right)^{2} \leq D \int_{a}^{b}\left|u^{(M)}(t)\right|^{2} d t
$$

holds. Moreover, the best constant $D=D(M)$ is as follows:

$$
\begin{equation*}
D(M)=\frac{(b-a)^{2 M-1}}{(2 M-1)[(M-1)!]^{2} 4^{2 M-1}} \tag{17}
\end{equation*}
$$

We give the first seven values of $\zeta(2 n), C(n)$, and $D(n)$ in Table 1.
Since the proof of Proposition 4 is similar to that of Proposition 3, we give only the proof of Proposition 3 below.

Table 1 The first seven values of $\zeta(2 n), C(n)$ and $D(n)$

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\zeta(2 n)$	$\frac{\pi^{2}}{6}$	$\frac{\pi^{4}}{90}$	$\frac{\pi^{6}}{945}$	$\frac{\pi^{8}}{9,450}$	$\frac{\pi^{10}}{93,555}$	$\frac{691 \pi \pi^{12}}{638,512,875}$	$\frac{2 \pi^{14}}{18,243,225}$
$C(n)$	$\frac{b-a}{4}$	$\frac{(b-a)^{3}}{48}$	$\frac{(b-a)^{5}}{480}$	$\frac{17(b-a)^{7}}{80,640}$	$\frac{31(b-a)^{9}}{1,451,520}$	$\frac{691(b-a)^{11}}{9,123,840}$	$\frac{\left(2^{14}-1\right)(b-a)^{13}}{2^{13} \times 18243,225}$
$D(n)$	$\frac{b-a}{4}$	$\frac{(b-a)^{3}}{192}$	$\frac{(b-a)^{5}}{20,480}$	$\frac{(b-a)^{7}}{4,128,768}$	$\frac{(b-a)^{9}}{1,358,954,496}$	$\frac{(b-a)^{11}}{664,377,753,600}$	$\frac{(b-a)^{13}}{13(6!)^{2} 4^{13}}$

Proof of Proposition 3 Multiplying both sides of (12) by $x(t)$ and integrating from a to b by parts and using the boundary value condition (13), we can obtain

$$
\int_{a}^{b} x^{(2 n)}(t) x(t) d t=(-1)^{n} \int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t=-\sum_{k=0}^{n} \int_{a}^{b} p_{k}(t) x^{(k)}(t) x(t) d t
$$

This yields

$$
\begin{align*}
\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t & \leq \sum_{k=0}^{n} \int_{a}^{b}\left|p_{k}(t)\right|\left|x^{(k)}(t) x(t)\right| d t \\
& =\int_{a}^{b}\left|p_{n}(t)\right|\left|x^{(n)}(t) x(t)\right| d t+\sum_{k=0}^{n-1} \int_{a}^{b}\left|p_{k}(t)\right|\left|x^{(k)}(t) x(t)\right| d t . \tag{18}
\end{align*}
$$

Now, by using Lemma 5 , we get for any $t \in[a, b], k=1,2, \ldots, n-1$,

$$
\begin{equation*}
|x(t)| \leq \sqrt{C(n)}\left(\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t\right)^{\frac{1}{2}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x^{(k)}(t)\right| \leq \sqrt{C(n-k)}\left(\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t\right)^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

Substituting (19) and (20) into (18), we obtain

$$
\begin{align*}
\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t \leq & \sqrt{C(n)} \int_{a}^{b}\left|p_{n}(t)\right|\left|x^{(n)}(t)\right| d t\left(\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t\right)^{\frac{1}{2}} \\
& +\sum_{k=0}^{n-1} \sqrt{C(n) C(n-k)} \int_{a}^{b}\left|p_{k}(t)\right| d t \int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t \tag{21}
\end{align*}
$$

Now by applying Hölder's inequality, we get

$$
\begin{equation*}
\int_{a}^{b}\left|p_{n}(t) x^{(n)}(t)\right| d t \leq\left(\int_{a}^{b} p_{n}^{2}(t) d t\right)^{\frac{1}{2}}\left(\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t\right)^{\frac{1}{2}} \tag{22}
\end{equation*}
$$

Substituting (22) into (21) and by using the fact that $x(t)$ is not a constant function, we obtain the following strict inequality:

$$
\begin{align*}
\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t< & \sqrt{C(n)}\left(\int_{a}^{b} p_{n}^{2}(t) d t\right)^{\frac{1}{2}} \int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t \\
& +\sum_{k=0}^{n-1} \sqrt{C(n) C(n-k)} \int_{a}^{b}\left|p_{k}(t)\right| d t \int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t . \tag{23}
\end{align*}
$$

Dividing both sides of (23) by $\int_{a}^{b}\left(x^{(n)}(t)\right)^{2} d t$, which can be proved to be positive by using the boundary value condition (13) and the assumption that $x(t) \not \equiv 0$, we obtain

$$
1<\sqrt{C(n)}\left(\int_{a}^{b} p_{n}^{2}(t) d t\right)^{\frac{1}{2}}+\sum_{k=0}^{n-1} \sqrt{C(n) C(n-k)} \int_{a}^{b}\left|p_{k}(t)\right| d t .
$$

This is equivalent to (14). Thus we finished the proof of Proposition 3.

Lemma 7 For any $f \in C(A)$, we have

$$
\begin{equation*}
\int_{A}|f(x)| d x \geq \frac{R_{1}^{N-1} 2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} \int_{R_{1}}^{R_{2}}|f(r \omega)| d r \tag{24}
\end{equation*}
$$

Proof Similar to the proofs given in [1] and [2], we have

$$
\int_{R_{1}}^{R_{2}}|f(r \omega)| d r=\int_{R_{1}}^{R_{2}} r^{1-N} r^{N-1}|f(r \omega)| d r \leq\left(\int_{R_{1}}^{R_{2}} r^{N-1}|f(r \omega)| d r\right) R_{1}^{1-N},
$$

which implies that

$$
\begin{aligned}
\int_{A}|f(x)| d x & =\int_{S^{N-1}}\left(\int_{R_{1}}^{R_{2}} r^{N-1}|f(r \omega)| d r\right) d \omega \\
& \geq \int_{S^{N-1}}\left(R_{1}^{N-1} \int_{R_{1}}^{R_{2}}|f(r \omega)| d r\right) d \omega \\
& =\left(\int_{R_{1}}^{R_{2}}|f(r \omega)| d r\right) \frac{R_{1}^{N-1} 2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} .
\end{aligned}
$$

Proof of Theorem 1 It follows from (14) and Lemma 7 that for any fixed $\omega \in S^{N-1}$, we have

$$
\begin{aligned}
1< & \sqrt{\frac{\left(2^{2 n}-1\right) \zeta(2 n)\left(R_{2}-R_{1}\right)^{2 n-1}}{2^{2 n-1} \pi^{2 n}}}\left(\int_{R_{1}}^{R_{2}} p_{n}^{2}(r \omega) d r\right)^{\frac{1}{2}} \\
& +\sum_{k=0}^{n-1} \frac{\left(R_{2}-R_{1}\right)^{2 n-k-1} \sqrt{\left(2^{2 n}-1\right)\left(2^{2 n-2 k}-1\right) \zeta(2 n) \zeta(2(n-k))}}{2^{2 n-k-1} \pi^{2 n-k}} \int_{a}^{b}\left|p_{k}(r \omega)\right| d r \\
\leq & \sqrt{\frac{\left(2^{2 n}-1\right) \zeta(2 n)\left(R_{2}-R_{1}\right)^{2 n-1} \Gamma\left(\frac{N}{2}\right)}{2^{2 n} \pi^{2 n+\frac{N}{2}} R_{1}^{N-1}}\left(\int_{A} p_{n}^{2}(x) d x\right)^{\frac{1}{2}}} \\
& +\sum_{k=0}^{n-1} \frac{\left(R_{2}-R_{1}\right)^{2 n-k-1} \Gamma\left(\frac{N}{2}\right)}{(2 \pi)^{2 n-k} R_{1}^{N-1} \pi^{\frac{N}{2}}} \sqrt{\left(2^{2 n}-1\right)\left(2^{2(n-k)}-1\right) \zeta(2 n) \zeta(2(n-k))} \int_{A}\left|p_{k}(x)\right| d x,
\end{aligned}
$$

which is (10). This finishes the proof of Theorem 1.

The proof of Theorem 2 is similar to that of Theorem 1, so we omit it for simplicity.
Let us compare Theorem 1 and Theorem 2 with Theorem A and Theorem B. It is evident that Theorem 2 is a natural generalization of Theorem B. If we let $p_{n}(x)=p_{n-1}(x)=\cdots=$

Table 2 The first eight values of δ_{n}

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
δ_{n}	1	1.50	1.42	2.32	2.86	3.53	4.35	5.37

$p_{1}(x) \equiv 0, p_{0}(x)=q(x), \forall x \in A$, then (10) reduces to the following inequality:

$$
\begin{equation*}
\int_{A}|q(x)| d x>\frac{2^{2 n-1} \pi^{2 n}}{\left(2^{2 n}-1\right) \zeta(2 n)\left(R_{2}-R_{1}\right)^{2 n-1}} \frac{2 \pi^{\frac{N}{2}}}{\Gamma\left(\frac{N}{2}\right)} R_{1}^{N-1} \tag{25}
\end{equation*}
$$

Let us compare the right sides of inequalities (6) and (25): if we denote $\delta_{n}=\frac{2^{2 n-1} \pi^{2 n}}{\left(2^{2 n}-1\right) \zeta(2 n) 2^{3 n-1}}$, then we have

$$
\delta_{n}=\frac{\pi^{2 n}}{2^{n}\left(2^{2 n}-1\right) \zeta(2 n)}>\frac{\pi^{2 n}}{2^{3 n} \zeta(2 n)}=\left(\frac{\pi^{2}}{8}\right)^{n} \frac{1}{\zeta(2 n)} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

since $\zeta(2 n) \rightarrow 1$ as $n \rightarrow \infty$. Table 2 gives the first eight values of δ_{n}.
From Table 2 we see that δ_{n} increases very quickly, so Theorem 1 improves Theorem A significantly even in the special case of (4).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions and comments on the original manuscript.
Received: 30 September 2014 Accepted: 1 December 2014 Published: 12 Dec 2014

References

1. Aktaş, MF: On the multivariate Lyapunov inequalities. Appl. Math. Comput. 232, 784-786 (2014)
2. Anastassiou, GA: Multivariate Lyapunov inequalities. Appl. Math. Lett. 24, 2167-2171 (2011)
3. Canada, A, Montero, JA, Villegas, S: Laypunov inequalities for partial differential equations. J. Funct. Anal. 237, 176-193 (2006)
4. Watanabe, K, Yamagishi, H, Kametaka, Y: Riemann zeta function and Lyapunov-type inequalities for certain higher order differential equations. Appl. Math. Comput. 218, 3950-3953 (2011)
5. Watanabe, K, Kametaka, Y, Yamagishi, H, Nagai, A, Takemura, K: The best constant of Sobolev inequality corresponding to clamped boundary value problem. Bound. Value Probl. 2011, Article ID 875057 (2011). doi:10.1155/2011/875057
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: ©2014 Ji and Fan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: 10.1186/1029-242X-2014-503

 Cite this article as: Ji and Fan: On multivariate higher order Lyapunov-type inequalities. Journal of Inequalities and Applications 2014, 2014:503

