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Abstract
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1 Introduction
A robust fractional optimization problem is to optimize an objective fractional function
over the constrained set defined by functions with data uncertainty.
To get the ε-solution (approximate solution), many authors have established ε-opti-

mality conditions and ε-duality theorems for several kinds of optimization problems [–].
Especially, Lee and Lee [] gave an ε-duality theorems for a convex semidefinite optimiza-
tion problem with conic constraints. Also, they [] established optimality theorems and
duality theorems for ε-solutions for convex optimization problems with uncertainty data.
In [–], many authors have treated fractional programming problems in the absence

of data uncertainty. Recently, many authors have studied robust optimization problems [,
–]. Very recently, Jeyakumar and Li [] established duality theorems for a fractional
programming problem in the face of data uncertainty via robust optimization.
The purpose of the paper is to extend the ε-optimality theorems and ε-duality theorems

in [] to fractional optimization problems with uncertainty data.
Consider the following standard form of fractional programming problem with a geo-

metric constraint set:

(FP) min
f (x)
g(x)

s.t. hi(x)� , i = , . . . ,m,

x ∈ C,

where f ,hi : Rn → R, i = , . . . ,m, are convex functions, C is a closed convex cone of Rn,
and g :Rn →R is a concave function such that, for any x ∈ C, f (x)�  and g(x) > .
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The fractional programming problem (FP) in the face of data uncertainty in the con-
straints can be captured by the problem:

(UFP) min max
(u,v)∈U×V

f (x,u)
g(x, v)

s.t. hi(x,wi)� , i = , . . . ,m,

x ∈ C,

where f : Rn × R
p → R, hi : Rn × R

q → R, f (·,u) and hi(·,wi) are convex, and g : Rn ×
R

p →R, g(·, v) is concave, and u ∈R
p, v ∈R

p, andwi ∈R
q are uncertain parameters which

belong to the convex and compact uncertainty sets U ⊂ R
p, V ⊂ R

p, and Wi ⊂ R
q, i =

, . . . ,m, respectively.
We study ε-optimality theorems and ε-duality theorems for the uncertain fractional

programming model problem (UFP) by examining its robust (worst-case) counterpart
[]:

(RFP) min max
(u,v)∈U×V

f (x,u)
g(x, v)

s.t. hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m,

x ∈ C.

Clearly, A := {x ∈ C | hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m} is a feasible set of (RFP).
Let ε � . Then x̄ is called an ε-solution of (RFP) if, for any x ∈ A,

max
(u,v)∈U×V

f (x,u)
g(x, v)

� max
(u,v)∈U×V

f (x̄,u)
g(x̄, v)

– ε.

Using the parametric approach, we transform the problem (RFP) into the robust non-
fractional convex optimization problem (RNCP)r with a parametric r ∈R+:

(RNCP)r min max
u∈U

f (x,u) – rmin
v∈V

g(x, v)

s.t. hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m,

x ∈ C.

Let ε � . Then x̄ is called an ε-solution of (RNCP)r if, for any x ∈ A,

max
u∈U

f (x,u) – rmin
v∈V

g(x, v)�max
u∈U

f (x̄,u) – rmin
v∈V

g(x̄, v) – ε.

In this paper, we consider ε-solutions for (RFP), and we establish optimality theo-
rems and duality theorems for ε-solutions for the robust fractional optimization problem.
Moreover, we give an example for our duality theorems.

2 Preliminaries
Let us first recall some notation and preliminary results whichwill be used throughout this
paper.Rn denotes the Euclidean space with dimension n. The nonnegative orthant ofRn is
denoted byRn

+ and is defined byRn
+ := {(x, . . . ,xn) ∈R

n : xi ≥ }.We say the setA is convex

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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whenever μa + ( – μ)a ∈ A for all μ ∈ [, ], a,a ∈ A. A function f : Rn → R ∪ {+∞}
is said to be convex if, for all μ ∈ [, ],

f
(
( –μ)x +μy

) ≤ ( –μ)f (x) +μf (y)

for all x, y ∈ R
n. The function f is said to be concave whenever –f is convex. Let g :Rn →

R∪ {+∞} be a convex function. The subdifferential of g at a ∈ dom g is defined by

∂g(a) :=
{
v ∈R

n | g(x)� g(a) + 〈v,x – a〉∀x ∈ dom g
}
,

where 〈·, ·〉 is the inner product on R
n and dom g := {x ∈ R

n : g(x) < +∞}. Let ε � . Then
the ε-subdifferential of g at a ∈ dom g is defined by

∂εg(a) :=
{
v ∈R

n | g(x)� g(a) + 〈v,x – a〉 – ε∀x ∈ dom g
}
.

The function f is said to be proper if f (x) > –∞ for all x ∈ R
n. We say f is a lower semi-

continuous function if lim infy→x f (y)� f (x) for all x ∈R
n. As usual, for any proper convex

function g on R
n, its conjugate function g∗ : Rn → R ∪ {+∞} is defined, for any x∗ ∈ R

n,
by g∗(x∗) = sup{〈x∗,x〉– g(x)|x ∈R

n}. The epigraph of a function g :Rn →R∪ {+∞}, epi g ,
is defined by epi g = {(x, r) ∈R

n ×R | g(x)� r}. We denote the convex hull of a subset A of
R

n by coA, and denote the closure of the set A by clA. Let C be a closed convex set in R
n

and x ∈ C. Then the normal cone NC(x) to C at x is defined by

NC(x) =
{
v ∈R

n | 〈v, y – x〉� , for all y ∈ C
}
,

and we let ε � , then the ε-normal cone Nε
C(x) to C at x is defined by

Nε
C(x) =

{
v ∈R

n | 〈v, y – x〉� ε, for all y ∈ C
}
.

When C is a closed convex cone inR
n, we denoteNC() by C∗ and call it the negative dual

cone of C.

Proposition . [] Let f :Rn →R be a convex function and let δC be the indicator func-
tionwith respect to a closed convex subset C ofRn, that is, δC(x) =  if x ∈ C, and δC(x) = +∞
if x /∈ C. Let ε � . Then

∂ε(f + δC)(x̄) =
⋃

ε�,ε�
ε+ε=ε

{
∂ε f (x̄) + ∂εδC(x̄)

}
.

Proposition . [, ] If f : Rn → R ∪ {+∞} is a proper lower semicontinuous convex
function and if a ∈ dom f := {x ∈R

n | f (x) < +∞}, then

epi f ∗ =
⋃
ε�

{(
v, 〈v,a〉 + ε – f (a)

) | v ∈ ∂ε f (a)
}
.

Proposition . [] Let f : Rn → R be a convex function and g : Rn → R ∪ {+∞} be a
proper lower semicontinuous convex function. Then

epi(f + g)∗ = epi f ∗ + epi g∗.

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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Moreover, if f , g :Rn → R ∪ {+∞} are proper lower semicontinuous convex functions, and
if dom f ∩ dom g �= ∅, then

epi(f + g)∗ = cl
(
epi f ∗ + epi g∗).

Proposition . [, ] Let hi :Rn →R∪ {+∞}, i ∈ I (where I is an arbitrary index set),
be a proper lower semicontinuous convex function. Suppose that there exists x ∈ R

n such
that supi∈I hi(x) < +∞. Then

epi
(
sup
i∈I

hi
)∗

= cl

(
co

⋃
i∈I

epih∗
i

)
.

Proposition . [] Let hi :Rn →R∪{+∞}, i = , . . . ,m, be proper lower semicontinuous
convex functions. Let ε � . If

⋃m
i= ridomhi �= ∅, where ridomhi is the relative interior of

domhi, then for all x ∈ ⋃n
i= domhi,

∂ε

( m∑
i=

h

)
(x) =

⋃{ m∑
i=

∂εihi(x)
∣∣∣∣ εi � , i = , . . . ,m,

m∑
i=

εi = ε

}
.

Proposition . [] Let hi :Rn ×R
q →R, i = , . . . ,m, be continuous functions such that,

for all wi ∈ R
q, hi(·,wi) is a convex function and let C be a closed convex cone of Rn. Sup-

pose that each Wi, i = , . . . ,m, is compact and convex, and there exists x ∈ C such that
hi(x,wi) < , for all wi ∈Wi, i = , . . . ,m. Then

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

is closed.

Proposition . [] Let hi : Rn ×R
q → R, i = , . . . ,m, be continuous functions and let C

be a closed convex cone of Rn. Suppose that each Wi ⊆ R
q, i = , . . . ,m, is convex, for all

wi ∈R
q, hi(·,wi) is a convex function, and, for each x ∈R

n, hi(x, ·) is concave onWi. Then

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

is convex.

Now we give the following relation between the ε-solutions of (RFP) and (RNCP)r̄ .

Lemma . Let x̄ ∈ A and let ε � . If max(u,v)∈U×V
f (x̄,u)
g(x̄,v) – ε � , then the following state-

ments are equivalent:
(i) x̄ is an ε-solution of (RFP);
(ii) x̄ is an ε̄-solution of (RNCP)r̄ , where r̄ =max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε and

ε̄ = εminv∈V g(x̄, v).
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Proof (⇒) Let x̄ ∈ A be an ε-solution of (RFP). Then for any x ∈ A, max(u,v)∈U×V
f (x,u)
g(x,v) �

max(u,v)∈U×V
f (x̄,u)
g(x̄,v) – ε. Put r̄ =max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε and ε̄ = εminv∈V g(x̄, v). Then we have,

for any x ∈ A,maxu∈U f (x,u) –minv∈V r̄g(x, v)� . Sincemaxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) –
εminv∈V g(x̄, v) = , for any x ∈ A,

max
u∈U

f (x,u) – r̄min
v∈V

g(x, v)�max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) – εmin
v∈V

g(x̄, v)

=max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) – ε̄.

Hence x̄ is an ε̄-solution of (RNCP)r̄ .
(⇐) Let x̄ ∈ A be an ε̄-solution of (RNCP)r̄ . Then for any x ∈ A, maxu∈U f (x,u) –

r̄minv∈V g(x, v)� maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) – ε̄. Since maxu∈U f (x̄,u) – r̄minv∈V g(x̄,
v) – εminv∈V g(x̄, v) = , for any x ∈ A, maxu∈U f (x,u) – r̄minv∈V g(x, v) � . So, we have
max(u,v)∈U×V

f (x,u)
g(x,v) � r̄. Since r̄ =max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε,

max
(u,v)∈U×V

f (x,u)
g(x, v)

� max
(u,v)∈U×V

f (x̄,u)
g(x̄, v)

– ε.

Hence x̄ is an ε-solution of (RFP). �

3 ε-Optimality theorems
In this section, we establish ε-optimality theorems for ε-solutions for the robust fractional
optimization problem.
Now we give the following lemma which is the robust version of Farkas lemma for non-

fractional convex functions.

Lemma . Let f : Rn × R
p → R and hi : Rn × R

q → R, i = , . . . ,m, be functions such
that, for any u ∈ U , f (·,u) and, for each wi ∈ Wi, hi(·,wi) are convex functions, and, for
any x ∈R

n, f (x, ·) is concave function. Let g :Rn ×R
q →R be a function such that, for any

v ∈ V , g(·, v) is a concave function, and, for all x ∈ R, g(x, ·) is a convex function. Let U ⊂R
p,

V ⊂ R
p, and Wi ⊂ R

q, i = , . . . ,m be convex and compact sets. Let r �  and let C be a
closed convex cone ofRn.Assume that A := {x ∈ C | hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m} �= ∅.
Then the following statements are equivalent:

(i) {x ∈ C | hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m} ⊆ {x ∈R
n |

maxu∈U f (x,u) – rminv∈V g(x, v)� };
(ii) there exist ū ∈ U and v̄ ∈ V such that

{
x ∈ C | hi(x,wi)� ,∀wi ∈Wi, i = , . . . ,m

} ⊆ {
x ∈ R

n | f (x, ū) – rg(x, v̄)� 
}
;

(iii)

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗ +

⋃
v∈V

epi
(
–rg(·, v))∗

+ cl co

( ⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
;

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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(iv)

(, ) ∈ epi
(
max
u∈U

f (·,u)
)∗

+ epi
(
–rmin

v∈V
g(·, v)

)∗

+ cl co

( ⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
.

Proof Let D := {x ∈ R
n | hi(x,wi) � ,∀wi ∈ Wi, i = , . . . ,m}. Then A = C ∩ D. We will

prove that epi δ∗
A = cl co(

⋃
wi∈Wi ,λi� epi(

∑m
i=λihi(·,wi))∗ +C∗ ×R+). For any x ∈R

n,

δA(x) = δC(x) + δD(x) and δD(x) = sup
wi∈Wi ,λi�

m∑
i=

λihi(x,wi).

Thus, by Propositions . and ., we have

epi δ∗
A = epi(δD + δC)∗ = cl

(
epi δ∗

D + epi δ∗
C
)

= cl

(
epi

(
sup

wi∈Wi ,λi�

m∑
i=

λihi(·,wi)

)∗
+ epi δ∗

C

)

= cl

(
cl co

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+ epi δ∗

C

)

= cl co

( ⋃
wi∈Wi , λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
.

[(i) ⇔ (iv)] Now we assume that the statement (iv) holds. Then, by Proposition ., the
statement (iv) is equivalent to

(, ) ∈ epi
(
max
u∈U

f (·,u)
)∗

+ epi
(
–rmin

v∈V
g(·, v)

)∗
+ epi δ∗

A

= epi
(
max
u∈U

f (·,u) – rmin
v∈V

g(·, v) + δA

)∗
.

Equivalently, by definition of epigraph of (maxu∈U f (·,u) – rminv∈V g(·, v) + δA)∗,

(
max
u∈U

f (·,u) – rmin
v∈V

g(·, v) + δA

)∗
()� .

From the definition of a conjugate function, for any x ∈R
n,

(
max
u∈U

f (·,u) – rmin
v∈V

g(·, v) + δA

)
(x)� .

It is equivalent to the statement that, for any x ∈ A,

max
u∈U

f (x,u) – rmin
v∈V

g(x, v)� .

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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[(ii) ⇔ (iii)] Now we assume that the statement (iii) holds. Then the statement (iii) is
equivalent to

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗ +

⋃
v∈V

epi
(
–rg(·, v))∗ + epi δ∗

A.

It means that there exist ū ∈ U and v̄ ∈ V such that

(, ) ∈ epi
(
f (·, ū) – rg(·, v̄) + δA

)∗.

It is equivalent to the statement that there exist ū ∈ U and v̄ ∈ V such that

(
f (·, ū) – rg(·, v̄) + δA

)∗()� .

From the definition of a conjugate function, there exist ū ∈ U and v̄ ∈ V such that, for any
x ∈R

n,

(
f (·, ū) – rg(·, v̄) + δA

)
(x)� .

It means that there exist ū ∈ U and v̄ ∈ V such that, for any x ∈ A,

f (x, ū) – rg(x, v̄)� .

[(iii) ⇔ (iv)] To get the desired result, it suffices to show that

⋃
u∈U

epi
(
f (·,u))∗ = epi

(
max
u∈U

f (·,u)
)∗
, ()

⋃
v∈V

epi
(
–rg(·, v))∗ = epi

(
–rmin

v∈V
g(·, v)

)∗
. ()

By Proposition ., epi(maxu∈U f (·,u))∗ = cl co
⋃

u∈U epi(f (·,u))∗. Let (z,α), (z,α) ∈⋃
u∈U epi(f (·,u))∗ and let μ ∈ [, ]. Then there exist u,u ∈ U such that (z,α) ∈

epi(f (·,u))∗ and (z,α) ∈ epi(f (·,u))∗, that is, (f (·,u))∗(z) � α and (f (·,u))∗(z) � α.
Using the definition of a conjugate function, we have, for all x ∈R

n,

〈z,x〉 – f (x,u)� α and 〈z,x〉 – f (x,u)� α. ()

Since, for all x ∈ R
n, f (x, ·) is concave, we have f (x,μu + ( – μ)u) � μf (x,u) + ( –

μ)f (x,u), i.e.,

–f
(
x,μu + ( –μ)u

)
� –μf (x,u) – ( –μ)f (x,u). ()

So, from () and (), we have, for all x ∈R
n,

〈
μz + ( –μ)z,x

〉
– f

(
x,μu + ( –μ)u

)
� μα + ( –μ)α,

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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and so (f (·,μu + ( –μ)u))∗(μz + ( –μ)z)� μα + ( –μ)α. Hence, we have

(
μz + ( –μ)z,μα + ( –μ)α

) ∈ epi
(
f
(·,μu + ( –μ)u

))∗.

So,
⋃

u∈U epi(f (·,u))∗ is convex.
Now we show that

⋃
u∈U epi(f (·,u))∗ is closed. Let

(zn,αn) ∈
⋃
u∈U

epi
(
f (·,u))∗

with (zn,αn) → (z∗,α∗) as n → ∞. Then there exists un ∈ U such that (f (·,un))∗(zn)� αn.
Since U is compact, we may assume that un → u∗ ∈ U as n→ ∞. So, for each x ∈R

n,

〈zn,x〉 – f (x,un)� αn.

Since, for all x ∈R
n, f (x, ·) is concave, f (x, ·) is continuous. Passing to the limit as n → ∞,

we get, for each x ∈R
n, 〈z∗,x〉 – f (x,u∗)� α∗. Hence, we have

(
z∗,α∗) ∈ epi

(
f
(·,u∗))∗.

So,
⋃

u∈U epi(f (·,u))∗ is closed. Thus, () holds.
Moreover, since, for all x ∈ R

n, g(x, ·) is convex and r � , for all x ∈ R
n, –rg(x, ·) is

concave. So, similarly, we can prove that () holds. �

Remark . Using convex-concave minimax theorem (Corollary .. in []), we can
prove that the statement (i) in Lemma . is equivalent to the statement (ii) in Lemma ..

Remark . From proving in Lemma . that the statement (i) is equivalent to the state-
ment (iv), we see that we can prove the equivalent relation without the assumptions that,
for all x ∈R

n, f (x, ·), and g(x, ·) are concave and convex, respectively.

From Lemmas . and ., we can get the following theorem.

Theorem . Let f : Rn × R
p → R and hi : Rn × R

q → R, i = , . . . ,m, be functions such
that, for any u ∈ U , f (·,u), and, for each wi ∈ Wi, hi(·,wi) are convex functions, and, for
any x ∈ R

n, f (x, ·) is concave function. Let g : Rn × R
p → R be a function such that, for

any v ∈ V , g(·, v) is a concave function, and, for all x ∈ R
n, g(x, ·) is a convex function. Let

U ⊂ R
p, V ⊂ R

p, and Wi ⊂ R
q, i = , . . . ,m. Let x̄ ∈ A and let r̄ = max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε.

Suppose that
⋃

wi∈Wi ,λi� epi(
∑m

i= λihi(·,wi))∗ + C∗ × R+ is closed and convex. Then the
following statements are equivalent:

(i) x̄ is an ε-solution of (RFP);
(ii) There exist ū ∈ U , v̄ ∈ V , w̄i ∈Wi, and λ̄i � , i = , . . . ,m such that, for any x ∈ C,

f (x, ū) – r̄g(x, v̄) +
m∑
i=

λ̄ihi(x, w̄i)� .

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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Proof (⇒) Let x̄ be an ε-solution of (RFP). Then, by Lemma ., equivalently, x̄ is an
ε̄-solution of (RNCP)r̄ , where r̄ = max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε and ε̄ = εminv∈V g(x̄, v), that

is, for any x ∈ A, maxu∈U f (x,u) – r̄minv∈V g(x, v) � maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) –
εminv∈V g(x̄, v). Since maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) – εminv∈V g(x̄, v) = , we have A ⊆
{x ∈ C |maxu∈U f (x,u) – r̄minv∈V g(x, v)� }. Then, by Lemma ., we have

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗ +

⋃
v∈V

epi
(
–r̄g(·, v))∗

+ cl co

( ⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
.

Moreover, by assumption,

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗+

⋃
v∈V

epi
(
–r̄g(·, v))∗+

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗×R+.

So, there exist ū ∈ U , v̄ ∈ V , w̄i ∈Wi, and λ̄i � , i = , . . . ,m such that

(, ) ∈ epi
(
f (·, ū))∗ + epi

(
–r̄g(·, v̄))∗ + epi

( m∑
i=

λ̄ihi(·, w̄i)

)∗
+C∗ ×R+.

Then there exist s ∈ R
n, η � , t ∈ R

n, μ � , zi ∈ R
n, ρi � , i = , . . . ,m, c∗ ∈ C∗, and

γ ∈R+ such that

(, ) =
(
s,

(
f (·, ū))∗(s) + η

)
+

(
t,

(
–r̄g(·, v̄))∗(t) +μ

)
+

m∑
i=

(
zi,

(
λ̄ihi(·, w̄i)

)∗(zi) + ρi
)
+

(
c∗,γ

)
.

So,  = s+ t+
∑m

i= zi+c∗ and  = (f (·, ū))∗(s)+η+(–r̄g(·, v̄))∗(t)+μ+
∑m

i=((λ̄ihi(·, w̄i))∗(zi)+
ρi) + γ . Hence, for any x ∈R

n,

–

〈 m∑
i=

zi,x

〉
–

〈
c∗,x

〉
– f (x, ū) –

(
–r̄g(x, v̄)

)
= 〈s,x〉 + 〈t,x〉 – f (x, ū) –

(
–r̄g(x, v̄)

)
�

(
f (·, ū))∗(s) +

(
–r̄g(·, v))∗(t)

= –η –μ –
m∑
i=

((
λ̄ihi(·, w̄i)

)∗(zi) + ρi
)
– γ . ()

Since η � , μ� , ρi � , i = , . . . ,m, and c∗ ∈ C∗, from (), for any x ∈ C,

�
〈 m∑

i=

zi,x

〉
+

〈
c∗,x

〉
+ f (x, ū) +

(
–r̄g(x, v̄)

)
– η –μ

–
m∑
i=

(
λ̄ihi(·, w̄)

)∗(zi) –
m∑
i=

λ̄iρi – γ

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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�
〈 m∑

i=

zi,x

〉
+ f (x, ū) – r̄g(x, v̄) –

m∑
i=

(
λ̄ihi(·, w̄i)

)∗(zi)

� f (x, ū) – r̄g(x, v̄) +
m∑
i=

(
λ̄ihi(x, w̄i)

)
.

(⇐) Suppose that there exist ū ∈ U , v̄ ∈ V , w̄i ∈ Wi, and λ̄i � , i = , . . . ,m, such that,
for any x ∈ C,

f (x, ū) – r̄g(x, v̄) +
m∑
i=

λ̄ihi(x, w̄i)� . ()

Since r̄ =max(u,v)∈U×V
f (x̄,u)
g(x̄,v) –ε, we havemaxu∈U f (x̄,u)– r̄minv∈V g(x̄, v)–εminv∈V g(x̄, v) =

. So, from (), we have, for any x ∈ A,

max
u∈U

f (x,u) – r̄min
v∈V

g(x, v)�max
u∈U

f (x,u) – r̄min
v∈V

g(x, v) +
m∑
i=

λ̄ihi(x, w̄i)

� f (x, ū) – r̄g(x, v̄) +
m∑
i=

λ̄ihi(x, w̄i)

� 

=max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) – εmin
v∈V

g(x̄, v).

Hence, for any x ∈ A, maxu∈U f (x,u) – r̄minv∈V g(x, v)�maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) –
εminv∈V g(x̄, v). It means that x̄ is an ε̄-solution of (RNCP)r̄ . Thus, by Lemma ., x̄ is an
ε-solution of (RFP). �

Using Remark . and Lemmas . and ., we can obtain the following characterization
of an ε-solution for (RFP).

Theorem . (ε-Optimality theorem) Let f : Rn × R
p → R and hi : Rn × R

q → R, i =
, . . . ,m, be functions such that, for any u ∈ U , f (·,u), and, for each wi ∈ Wi, hi(·,wi) are
convex functions. Let g : Rn × R

p → R be a function such that, for any v ∈ V , g(·, v) is a
concave function. Let U ⊂ R

p, V ⊂ R
p, and Wi ⊂ R

q, i = , . . . ,m. Let x̄ ∈ A and let ε � .
Let r̄ = max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε. If max(u,v)∈U×V

f (x̄,u)
g(x̄,v) < ε, then x̄ is an ε-solution of (RFP). If

max(u,v)∈U×V
f (x̄,u)
g(x̄,v) � ε and

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

is closed and convex, then the following statements are equivalent:
(i) x̄ is an ε-solution of (RFP);

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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(ii) there exist w̄i ∈Wi and λ̄i � , i = , . . . ,m, ε � , ε � , and εi � , i = , . . . ,m + 
such that

 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄) + ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄)

+
m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +N εm+

C (x̄), ()

max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) = εmin
v∈V

g(x̄, v) and ()

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x̄, v) =
m∑
i=

λ̄ihi(x̄, w̄i). ()

Proof [(i) ⇒ (ii)] We assume that x̄ is an ε-solution of (RFP). Then, by Lemma ., x̄
is an ε̄-solution of (RNCP)r̄ , where r̄ = max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε and ε̄ = εminv∈V g(x̄, v),

that is, for any x ∈ A, maxu∈U f (x,u) – r̄minv∈V g(x, v)�maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) –
εminv∈V g(x̄, v). Since maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) – εminv∈V g(x̄, v) = , we have A ⊆
{x ∈ C |maxu∈U f (x,u) – r̄minv∈V g(x, v)� }. By Lemma .,

(, ) ∈ epi
(
max
u∈U

f (·,u)
)∗

+ epi
(
–r̄min

v∈V
g(·, v)

)∗

+ cl co

( ⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
.

By assumption,

(, ) ∈ epi
(
max
u∈U

f (·,u)
)∗

+ epi
(
–r̄min

v∈V
g(·, v)

)∗

+
⋃

wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+.

So, there exist w̄i ∈Wi and λ̄i � , i = , . . . ,m, such that

(, ) ∈ epi
(
max
u∈U

f (·,u)
)∗

+ epi
(
–r̄min

v∈V
g(·, v)

)∗
+ epi

( m∑
i=

λ̄ihi(·, w̄i)

)∗
+ epi δ∗

C .

By Proposition ., we obtain

(, ) ∈
⋃

ε�

{(
ξ 
,

〈
ξ 
, x̄

〉
+ ε –max

u∈U
f (x̄,u)

) ∣∣ ξ 
 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄)

}

+
⋃

ε�

{(
ξ 
 ,

〈
ξ 
 , x̄

〉
+ ε + r̄min

v∈V
g(x̄, v)

) ∣∣ ξ 
 ∈ ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄)

}

+
⋃

ε∗�

{(
ξ ∗,

〈
ξ ∗, x̄

〉
+ ε∗ –

m∑
i=

λ̄ihi(x̄, w̄i)

) ∣∣∣∣ ξ ∗ ∈ ∂ε∗

( m∑
i=

λ̄ihi(·, w̄i)

)
(x̄)

}

+
⋃

εm+�

{(
ξm+, 〈ξm+, x̄〉 + εm+ – δC(x̄)

) | ξm+ ∈ ∂εm+δC(x̄)
}
.
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So, there exist ξ̄ 
 ∈ ∂ε

(maxu∈U f (·,u))(x̄), ξ̄ 
 ∈ ∂ε

(–r̄minv∈V g(·, v))(x̄), ξ̄ ∗ ∈ ∂ε∗ (
∑m

i= λ̄ihi(·,
w̄i))(x̄), ξ̄m+ ∈ ∂εm+δC(x̄), ε � , ε � , ε∗ � , and εm+ �  such that

 = ξ̄ 
 + ξ̄ 

 + ξ̄ ∗ + ξ̄m+ and

ε + ε + ε∗ + εm+ =max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) +
m∑
i=

λ̄ihi(x̄, w̄i).

By Proposition ., there exist ξ̄ 
 ∈ ∂ε

(maxu∈U f (·,u))(x̄), ξ̄ 
 ∈ ∂ε

(–r̄minv∈V g(·, v))(x̄), ξ̄i ∈
∂εi (λ̄ihi(·, w̄i))(x̄), ξ̄m+ ∈ ∂εm+δC(x̄), ε � , ε � , εi � , i = , . . . ,m, and εm+ �  such
that

 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄) + ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄)

+
m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +Nεm+

C (x̄) and

ε + ε +
m+∑
i=

εi =max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) +
m∑
i=

λ̄ihi(x̄, w̄i).

()

Since r̄ =max(u,v)∈U×V
f (x̄,u)
g(x̄,v) – ε,

max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) – εmin
v∈V

g(x̄, v) = . ()

So, () holds, and so, from () and (), we have

 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄) + ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄)

+
m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +Nεm+

C (x̄) and

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x̄, v) =
m∑
i=

λ̄ihi(x̄, w̄i).

Thus the conditions () and () hold.
[(ii) ⇒ (i)] Taking account of the converse of the process for proving (i) ⇒ (ii), we can

easily check that the statement (ii) ⇒ (i) holds. �

If for all x ∈ R
n, f (x, ·) is concave, and, for all x ∈ R, g(x, ·) is convex, then using Lem-

mas . and ., we can obtain the following characterization of an ε-solution for (RFP).

Theorem . (ε-Optimality theorem) Let f : Rn × R
p → R and hi : Rn × R

q → R, i =
, . . . ,m, be functions such that, for any u ∈ U , f (·,u), and, for each wi ∈ Wi, hi(·,wi) are
convex functions, and, for all x ∈ R

n, f (x, ·) is concave function. Let g : Rn × R
p → R be a

function such that, for any v ∈ V , g(·, v) is a concave function, and, for all x ∈ R, g(x, ·) is a
convex function. Let U ⊂ R

p, V ⊂ R
p, and Wi ⊂ R

q, i = , . . . ,m. Let x̄ ∈ A and let ε � .
Let r̄ = max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε. If max(u,v)∈U×V

f (x̄,u)
g(x̄,v) < ε, then x̄ is an ε-solution of (RFP). If

http://www.journalofinequalitiesandapplications.com/content/2014/1/501
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max(u,v)∈U×V
f (x̄,u)
g(x̄,v) � ε and

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

is closed and convex, then the following statements are equivalent:
(i) x̄ is an ε-solution of (RFP);
(ii) there exist ū ∈ U , v̄ ∈ V , w̄i ∈Wi, λ̄i � , i = , . . . ,m, ε � , ε � , and εi � ,

i = , . . . ,m +  such that

 ∈ ∂ε

(
f (·, ū))(x̄) + ∂ε

(
–r̄g(·, v̄))(x̄) + m∑

i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +N εm+

C (x̄), ()

max
u∈U

f (x̄,u) –min
v∈V

r̄g(x̄, v) = εmin
v∈V

g(x̄, v) and ()

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x̄, v)�
m∑
i=

λ̄ihi(x̄, w̄i). ()

Proof [(i) ⇒ (ii)] Let x̄ be an ε-solution of (RFP). Then, by Lemma ., x̄ is an ε̄-solution
of (RNCP)r̄ , where r̄ =max(u,v)∈U×V

f (x̄,u)
g(x̄,v) – ε and ε̄ = εminv∈V g(x̄, v), that is, for any x ∈ A,

maxu∈U f (x,u) – r̄minv∈V g(x, v)�maxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) – εminv∈V g(x̄, v). Since
maxu∈U f (x̄,u)– r̄minv∈V g(x̄, v)–εminv∈V g(x̄, v) = , we haveA ⊆ {x ∈ C |maxu∈U f (x,u)–
r̄minv∈V g(x, v)� }. By Lemma .,

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗ +

⋃
v∈V

epi
(
–r̄g(·, v))∗

+ cl co

( ⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗ ×R+

)
.

By assumption,

(, ) ∈
⋃
u∈U

epi
(
f (·,u))∗+

⋃
v∈V

epi
(
–r̄g(·, v))∗+

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λihi(·,wi)

)∗
+C∗×R+.

Since C∗ ×R+ = epi δ∗
C , there exist ū ∈ U , v̄ ∈ V , w̄i ∈Wi, and λ̄i � , i = , . . . ,m, such that

(, ) ∈ epi
(
f (·, ū))∗ + epi

(
–r̄g(·, v̄))∗ + epi

( m∑
i=

λ̄ihi(·, w̄i)

)∗
+ epi δ∗

C .

By Proposition ., we obtain

(, ) ∈
⋃

ε�

{(
ξ 
,

〈
ξ 
, x̄

〉
+ ε – f (x̄, ū)

) | ξ 
 ∈ ∂ε

(
f (·, ū))(x̄)}

+
⋃

ε�

{(
ξ 
 ,

〈
ξ 
 , x̄

〉
+ ε + r̄g(x̄, v̄)

) | ξ 
 ∈ ∂ε

(
–r̄g(·, v̄))(x̄)}
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+
⋃

ε∗�

{(
ξ ∗,

〈
ξ ∗, x̄

〉
+ ε∗ –

m∑
i=

λ̄ihi(x̄, w̄i)

) ∣∣∣∣ ξ ∗ ∈ ∂ε∗

( m∑
i=

λ̄ihi(·, w̄i)

)
(x̄)

}

+
⋃

εm+�

{(
ξm+, 〈ξm+, x̄〉 + εm+ – δC(x̄)

) | ξm+ ∈ ∂εm+δC(x̄)
}
.

So, there exist ξ̄ 
 ∈ ∂ε

(f (·, ū))(x̄), ξ̄ 
 ∈ ∂ε

(–r̄g(·, v̄))(x̄), ξ̄∗ ∈ ∂ε∗ (
∑m

i= λ̄ihi(·, w̄i))(x̄), ξ̄m+ ∈
∂εm+δC(x̄), ε � , ε � , ε∗ � , and εm+ �  such that

 = ξ̄ 
 + ξ̄ 

 + ξ̄ ∗ + ξ̄m+ and ε + ε + ε∗ + εm+ = f (x̄, ū) – r̄g(x̄, v̄) +
m∑
i=

λ̄ihi(x̄, w̄i).

By Proposition ., there exist ξ̄ 
 ∈ ∂ε

(f (·, ū))(x̄), ξ̄ 
 ∈ ∂ε

(–r̄g(·, v̄))(x̄), ξ̄i ∈ ∂εi (λ̄ihi(·,
w̄i))(x̄), ξ̄m+ ∈ ∂εm+δC(x̄), ε � , ε � , εi � , i = , . . . ,m, and εm+ �  such that

 ∈ ∂ε

(
f (·, ū))(x̄) + ∂ε

(
–r̄g(·, v̄))(x̄)

+
m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +Nεm+

C (x̄) and

ε + ε +
m+∑
i=

εi = f (x̄, ū) – r̄g(x̄, v̄) +
m∑
i=

λ̄ihi(x̄, w̄i).

()

Since r̄ =max(u,v)∈U×V
f (x̄,u)
g(x̄,v) – ε, we havemaxu∈U f (x̄,u) – r̄minv∈V g(x̄, v) = εminv∈V g(x̄, v).

So, we have

f (x̄, ū) – r̄g(x̄, v̄)�max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) = εmin
v∈V

g(x̄, v). ()

So, the condition () holds. Also, from () and (), we have

 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄) + ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄)

+
m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +Nεm+

C (x̄) and

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x̄, v)�
m∑
i=

λ̄ihi(x̄, w̄i).

Consequently, the conditions () and () hold.
[(ii) ⇒ (i)] Taking account of the converse of the process for proving (i) ⇒ (ii), we can

easily check that the statement (ii) ⇒ (i) holds. �

Remark . Assume that f :Rn ×R
p → R and g :Rn ×R

p → R are functions such that,
for all x ∈ R

n, f (x, ·), and g(x, ·) are concave and convex, respectively. Then we know that
Theorem . is equivalent to Theorem . from Lemma ., immediately.
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4 ε-Duality theorems
Following the approach in [], we formulate a dual problem (RFD) for (RFP) as follows:

(RFD) max r

s.t.  ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x) + ∂ε

(
–rmin

v∈V
g(·, v)

)
(x)

+
m∑
i=

∂εi

(
λihi(·,wi)

)
(x) +N εm+

C (x),

max
u∈U

f (x,u) – rmin
v∈V

g(x, v)� εmin
v∈V

g(x, v),

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x, v)�
m∑
i=

λihi(x,wi),

r � ,wi ∈Wi,λi � , i = , . . . ,m,

ε � , ε � , εi � , i = , . . . ,m + .

Clearly,

F :=

{
(x,w,λ, r)

∣∣∣∣  ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x) + ∂ε

(
–rmin

v∈V
g(·, v)

)
(x)

+
m∑
i=

∂εi

(
λihi(·,wi)

)
(x) +Nε

R+
(x),max

u∈U
f (x,u) – rmin

v∈V
g(x, v)� εg(x, v),

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x, v)�
m∑
i=

λihi(x,wi),

r � ,wi ∈Wi,λi � , ε � , ε � , εi � , i = , . . . ,m, εm+ � 

}

is the feasible set of (RFD).
Let ε � . Then (x̄, w̄, λ̄, r̄) is called an ε-solution of (RFD) if, for any (y,w,λ, r) ∈ F , r̄ �

r – ε.
When ε = , maxu∈U f (x,u) = f (x), minv∈V g(x, v) = g(x), and hi(x,wi) = hi(x), i = , . . . ,m,

(RFP) becomes (FP), and (RFD) collapses to the Mond-Weir type dual problem (FD) for
(FP) as follows []:

(FD) max r

s.t.  ∈ ∂f (x) + ∂(–rg)(x) +
m∑
i=

∂λihi(x) +NC(x),

f (x) – rg(x)� ,λihi(x)� ,

r � ,λi � , i = , . . . ,m.

Now, we prove ε-weak and ε-strong duality theorems which hold between (RFP) and
(RFD).
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Theorem . (ε-Weak duality theorem) For any feasible x of (RFP) and any feasible
(y,w,λ, r) of (RFD),

max
(u,v)∈U×V

f (x,u)
g(x, v)

� r – ε.

Proof Let x and (y,w,λ, r) be feasible solutions of (RFP) and (RFD), respectively. Then
there exist ξ̄ 

 ∈ ∂ε
(maxu∈U f (·,u))(y), ξ̄ 

 ∈ ∂ε
(–rminv∈V g(·, v))(y), ξ̄i ∈ ∂εi (λihi(·,wi))(y),

ξ̄m+ ∈Nεm+
C (y), ε � , ε � , εi � , i = , . . . ,m, and εm+ �  such that

ξ̄ 
 + ξ̄ 

 +
m+∑
i=

ξ̄i = , max
u∈U

f (y,u) – rmin
v∈V

g(y, v)� εmin
v∈V

g(y, v) and

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(y, v)�
m∑
i=

λihi(y,wi).

Thus, we have

max
u∈U

f (x,u) – rmin
v∈V

g(x, v) + εmin
v∈V

g(x, v)

�max
u∈U

f (y,u) – rmin
v∈V

g(y, v) +
〈
ξ̄ 
 + ξ̄ 

 ,x – y
〉
– ε – ε + εmin

v∈V
g(x, v)

=max
u∈U

f (y,u) – rmin
v∈V

g(y, v) –

〈m+∑
i=

ξ̄i,x – y

〉
– ε – ε + εmin

v∈V
g(x, v)

�max
u∈U

f (y,u) – rmin
v∈V

g(y, v) +
m∑
i=

λihi(y,wi) –
m∑
i=

λihi(x,wi) – ε – ε –
m+∑
i=

εi

+ εmin
v∈V

g(x, v)

�max
u∈U

f (y,u) – rmin
v∈V

g(y, v) +
m∑
i=

λihi(y,wi) – ε – ε –
m+∑
i=

εi

�max
u∈U

f (y,u) – rmin
v∈V

g(y, v) – εmin
v∈V

g(y, v)

� .

Hence, we have max(u,v)∈U×V
f (x,u)
g(x,v) � r – ε. �

Theorem . (ε-Strong duality theorem) Suppose that

⋃
wi∈Wi ,λi�

epi

( m∑
i=

λigi(·,wi)

)∗
+C∗ ×R+

is closed. If x̄ is an ε-solution of (RFP)andmax(u,v)∈U×V
f (x̄,u)
g(x̄,v) –ε � , then there exist w̄ ∈R

q,
λ̄ ∈R

m
+ , and r̄ ∈R+ such that (x̄, w̄, λ̄, r̄) is a ε-solution of (RFD).

Proof Let x̄ ∈ A be an ε-solution of (RFP). Let r̄ = max(u,v)∈U×V
f (x̄,u)
g(x̄,v) . Then, by Theo-

rem ., there exist w̄i ∈ Wi, λ̄i � , ε � , ε � , εi � , i = , . . . ,m, and εm+ such
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that

 ∈ ∂ε

(
max
u∈U

f (·,u)
)
(x̄) + ∂ε

(
–r̄min

v∈V
g(·, v)

)
(x̄) +

m∑
i=

∂εi

(
λ̄ihi(·, w̄i)

)
(x̄) +N εm+

C (x̄),

max
u∈U

f (x̄,u) – r̄min
v∈V

g(x̄, v) = εmin
v∈V

g(x̄, v) and

ε + ε +
m+∑
i=

εi – εmin
v∈V

g(x̄, v) =
m∑
i=

λ̄ihi(x̄, w̄i).

So, (x̄, w̄, λ̄, r̄) is a feasible solution of (RFD). For any feasible (y,u, v,w,λ, v) of (RFD), it
follows from Theorem . (ε-weak duality theorem) that

r̄ = max
(u,v)∈U×V

f (x̄,u)
g(x̄, v)

– ε � r – ε – ε = r – ε.

Thus (x̄, w̄, λ̄, r̄) is a ε-solution of (RFD). �

Remark . Using the optimality conditions of Theorem ., robust fractional dual prob-
lem (RFD) for a robust fractional problem (RFP) in the convex constraint functions with
uncertainty is formulated. However, when we formulated the dual problem using opti-
mality condition in Theorem ., we could not know whether ε-weak duality theorem is
established, or not. It is an open question.

Now we give an example illustrating our duality theorems.

Example . Consider the following fractional programming problem with uncertainty:

(RFP) min max
(u,v)∈U×V

ux + 
vx + 

s.t. wx – � ,w ∈ [, ],

x ∈R+,

where U = [, ] and V = [, ].
Now we transform the problem (RFP) into the robust non-fractional convex optimiza-

tion problem (RNCP)r with a parametric r ∈ R+:

(RNCP)r min max
u∈[,]

(ux + ) – r min
v∈[,]

(vx + )

s.t. wx – � ,w ∈ [, ],

x ∈ R+.

Let f (x,u) = ux + , g(x, v) = vx + , h(x,w) = –wx – , and ε ∈ [, 
 ]. Then A := {x ∈

R | � x� 
 } is the set of all robust feasible solutions of (RFP) and Ā := {x ∈ R | � x�

ε
–ε } is the set of all ε-solutions of (RFP). Let F := {(y,w,λ, r) |  ∈ ∂ε

(maxu∈U f (·,u))(y)+
∂ε

(–rminv∈V g(·, v))(y) + ∂ε (λh(·,w))(y) + Nε
R+
(x),maxu∈U f (y,u) – rminv∈V g(y, v) �
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εminv∈V g(y, v), ε +ε +ε +ε –εminv∈V g(y, v)� λh(y,w), r � ,w ∈ [, ],λ � , ε �
, ε � , ε � , ε � }. Then we formulate a dual problem (RFD) for (RFP) as follows:

(RFD) max r

s.t. (y,w,λ, r) ∈ F .

Then F is the set of all robust feasible solutions of (RFD).
Now we calculate the set F = Ã∪ B̃.

Ã :=
{
(,w,λ, r)

∣∣  ∈ ∂ε

(
max
u∈U

f (·,u)
)
()

+ ∂ε

(
–rmin

v∈V
g(·, v)

)
() + ∂ε

(
λh(·,w)

)
()

+N ε
R+
(),max

u∈U
f (,u) – rmin

v∈V
g(, v)� εmin

v∈V
g(, v), ε + ε + ε + ε – εmin

v∈V
g(, v)

� λh(,w), r � ,u ∈ [, ],λ � , ε � , ε � , ε � , ε � 
}

=
{
(,w,λ, r) |  ∈ {} + {–r} + {λw} + (–∞, ],  – r � ε, ε + ε + ε + ε

– ε � –λ, r � ,w ∈ [, ],λ � , ε � , ε � , ε � , ε � 
}

=
{
(,w,λ, r)

∣∣∣ r �  + λw, r �
 – ε


, ε + ε + ε + ε – ε � –λ, r � ,

w ∈ [, ],λ � , ε � , ε � , ε � , ε � 
}
,

B̃ :=
{
(y,w,λ, r)

∣∣  ∈ ∂ε

(
max
u∈U

f (·,u)
)
(y) + ∂ε

(
–rmin

v∈V
g(·, v)

)
(y) + ∂ε

(
λh(·,w)

)
(y)

+Nε
R+
(y),max

u∈U
f (y,u) – rmin

v∈V
g(y, v)� εmin

v∈V
g(y, v), ε + ε + ε + ε – εmin

v∈V
g(y, v)

� λh(y,w), y > , r � ,w ∈ [, ],λ � , ε � , ε � , ε � , ε � 
}

=
{
(y,w,λ, r)

∣∣∣  ∈ {} + {–r} + {λw} +
[
–

ε

y
, 

]
, y +  – r(y + )� ε(y + ),

y > , ε + ε + ε + ε – ε(y + )� λ(wy – ), r � ,w ∈ [, ],λ � ,

ε � , ε � , ε � , ε � 
}

=
{
(y,w,λ, r)

∣∣∣  ∈
[
 – r + λw –

ε

y
,  – r + λw

]
, y +  – r(y + )�

ε(y + ), ε + ε + ε + ε – ε(y + )� λ(wy – ), y > , r � ,w ∈ [, ],

λ � , ε � , ε � , ε � , ε � 
}
.

We can check for any x ∈ A and any (y,w,λ, r) ∈ F ,

max
(u,v)∈U×V

f (x,u)
g(x, v)

� r – ε,
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that is, ε-weak duality holds. Indeed, let x ∈ A and (y,w,λ, r) ∈ Ã be fixed. Then

max
u∈[,]

f (x,u) – r min
v∈[,]

g(x, v) + ε min
v∈[,]

g(x, v)

= x +  – r(x + ) + ε(x + )

= ( – r)x +  – r + ε(x + )

� –λwx + ε + ε(x + )

� –λ + ε + ε(x + )

� –λ + ε + ε + ε + ε + λ + ε(x + )

� .

Moreover, let x ∈ A and (y,u, v,w,λ, r) ∈ B̃ be fixed.

max
u∈[,]

f (x,u) – r min
v∈[,]

g(x, v) + ε min
v∈[,]

g(x, v)

= x +  – r(x + ) + ε(x + )

= y +  – r(y + ) + ( – r)(x – y) + ε(x + ).

If x – y� , then

max
u∈[,]

f (x,u) – r min
v∈[,]

g(x, v) + ε min
v∈[,]

g(x, v)

= y +  – r(y + ) + ( – r)(x – y) + ε(x + )

� y +  – r(y + ) – λw(x – y) + ε(x + )

� y +  – r(y + ) + λwy – λwx + ε(x + )

� ε(y + ) + λwy – λ + ε(x + )

� ε + ε + ε + ε + λ – λ + ε(x + )

� .

If x – y < , then

max
u∈[,]

f (x,u) – r min
v∈[,]

g(x, v) + ε min
v∈[,]

g(x, v)

= y +  – r(y + ) + ( – r)(x – y) + ε(x + )

� y +  – r(y + ) +
(
–λw +

ε

y

)
(x – y) + ε(x + )

� y +  – r(y + ) + λwy – ε – λwx +
ε

y
x + ε(x + )

� ε(y + ) + λwy – ε – λ +
ε

y
x + ε(x + )

� ε + ε + ε + ε + λ – ε – λ +
ε

y
x + ε(x + )

� .
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Let ε = 
 . Then x̄ ∈ Ā := {x ∈ R |  � x � 

 } is the set of all ε-solutions of (RFP) and

 � r̄ � 

 .
If x̄ = , then r̄ = 

 . When ε = 
 , we can calculate the set Ã as follows:

Ã :=
{
(,w,λ, r)

∣∣∣ � r � 

, � λ �



,w ∈ [, ]

}
.

Let w̄ = , λ̄ = 
 . Then (, ,  ,


 ) ∈ Ã. So, we have

r̄ = max
(u,v)∈U×V

f (x̄,u)
g(x̄, v)

– ε =


=


– ε � r – ε.

Hence, (, ,  ,

 ) is a ε-solution of (RFD). So, ε-strong duality holds. If  < x̄� 

 , then

 < r̄ � 

 . When ε = 
 , we can calculate the set B̃ as follows:

B̃ :=
{
(y,w,λ, r)

∣∣∣ y > ,  + λw –
ε

y
� r � y + 

(y + )
, ε –



(y + )�

λ(wy – ), r � ,u ∈ [, ], v ∈ [, ],w ∈ [, ], ε � 
}
.

Let w̄ = , λ̄ = , and ε = x̄+
 . Then (x̄, , , x̄+

(x̄+) ) ∈ B̃. So, we have

r̄ = max
(u,v)∈U×V

f (x̄,u)
g(x̄, v)

– ε =
x̄ + 
(x̄ + )

� r � r – ε.

Hence, (x̄, , , x̄+
(x̄+) ) is a ε-solution of (RFD). So, ε-strong duality holds.
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