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Abstract
This article aims to discuss Heinz inequalities involving unitarily invariant norms. We
use a similar method to (Feng in J. Inequal. Appl. 2012:18, 2012; Wang in J. Inequal.
Appl. 2013:424, 2013) and we get different refinements of the Heinz inequalities for
matrices. Our results are better than some given in (Kittaneh in Integral Equ. Oper.
Theory 68:519-527, 2010) and they are different from (Feng in J. Inequal. Appl.
2012:18, 2012; Wang in J. Inequal. Appl. 2013:424, 2013).
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1 Introduction
IfA,B,X are operators on a complex separableHilbert space such thatA andB are positive,
then for every unitarily invariant norm ‖| · ‖|, the function f (v) = ‖|AvXB–v +A–vXBv‖| is
convex on the interval [, ], attains itsminimum at v = 

 , and attains itsmaximum at v = 
and v = . Moreover, f (v) = f ( – v) for  ≤ v≤ . From [] we know that for every unitarily
invariant norm, we have the Heinz inequalities


∥∥∣∣A 

XB


∥∥∣∣ ≤ ∥∥∣∣AvXB–v +A–vXBv∥∥∣∣ ≤ ‖|AX +XB‖|. ()

In [], Feng used the following inequalities to get refinements of ():

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t)dt ≤ 



(
f (a) + f

(
a + b


)
+ f (b)

)
≤ f (a) + f (b)


,

where f is a real-valued function which is convex on the interval [a,b]. With a similar
method, Wang [] got some new refinements of ().
In this paper, we use a similar method to [, ] and we get different refinements of ().
When we consider ‖|T‖|, we are implicitly assuming that the operator T belongs to the

norm ideal associated with ‖| ·‖|. Our results are better than those in [] and different from
[, ].

2 Main results
From page  of [], we know the following Hermite-Hadamard integral inequality for
convex functions.
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Lemma  (Hermite-Hadamard integral inequality) Let f be a real-valued function which
is convex on the interval [a,b]. Then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t)dt ≤ f (a) + f (b)


.

We will use the following lemma.

Lemma  Let f be a real-valued function which is convex on the interval [a,b]. Then

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t)dt ≤ 



(
f (a) + f

(
a + b


)
+ f (b)

)
≤ f (a) + f (b)


.

Proof Using the previous lemma, we can easily verify the inequality




(
f (a) + f

(
a + b


)
+ f (b)

)
≤ f (a) + f (b)


.

Next, we will prove the following inequality:


b – a

∫ b

a
f (t)dt ≤ 



(
f (a) + f

(
a + b


)
+ f (b)

)
.

From the previous lemma, we have


b – a

∫ b

a
f (t)dt =


b – a

(∫ a+b


a
f (t)dt +

∫ b

a+b


f (t)dt
)

≤ 
b – a

( f (a) + f ( a+b )


· b – a


+
f ( a+b ) + f (b)


· b – a



)

=



(
f (a) + f

(
a + b


)
+ f (b)

)

=



(
f (a) + f

(
a + b


)
+ f (b)

)

≤ 


(
f (a) + f

(
a + b


)
+

(
f (a) + f (b)

)
+ f (b)

)

=



(
f (a) + f

(
a + b


)
+ f (b)

)
. �

Applying the previous lemma to the function f (v) = ‖|AvXB–v+A–vXBv‖| on the interval
[μ,  – μ] when  ≤ μ ≤ 

 , and on the interval [ – μ,μ] when 
 ≤ μ ≤ , we obtain a

refinement of the first inequality in ().

Theorem  Let A, B, X be operators such that A, B are positive. Then for  ≤ μ ≤  and
for every unitarily invariant norm, we have


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

| – μ|
∣∣∣∣
∫ –μ

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
∣∣∣∣

≤ 


(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. ()
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Proof First assume that  ≤ μ ≤ 
 . Then it follows by the previous lemma that

f
(
 –μ +μ



)
≤ 

 – μ

∫ –μ

μ

f (t)dt

≤ 


(
f (μ) + f

(
 –μ +μ



)
+ f ( –μ)

)

≤ f (μ) + f ( –μ)


,

and so

f
(



)
≤ 

 – μ

∫ –μ

μ

f (t)dt

≤ 


(
f (μ) + f

(



))

≤ f (μ).

Thus,


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

 – μ

∫ –μ

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv

≤ 


(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. ()

Now, assume that 
 ≤ μ ≤ . Then by applying () to  –μ, it follows that


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

μ – 

∫ μ

–μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv

≤ 


(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. ()

Since

lim
μ→ 




| – μ|

∣∣∣∣
∫ –μ

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
∣∣∣∣

= lim
μ→ 






(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

= 
∥∥∣∣A 

XB


∥∥∣∣,

the inequalities in () follow by combining () and (). �

Applying the previous lemma to the function f (v) = ‖|AvXB–v + A–vXBv‖| on the in-
terval [μ,  ] when  ≤ μ ≤ 

 , and on the interval [  ,μ] when

 ≤ μ ≤ , we obtain the

following.
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Theorem  Let A, B, X be operators such that A, B are positive. Then for  ≤ μ ≤  and
for every unitarily invariant norm, we have

∥∥∣∣A μ+
 XB

–μ
 +A

–μ
 XB

μ+


∥∥∣∣

≤ 
| – μ|

∣∣∣∣
∫ 



μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
∣∣∣∣

≤ 

(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A μ+

 XB
–μ
 +A

–μ
 XB

μ+


∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ 

(∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣). ()

The inequality () and the first inequality in () yield the following refinement of the first
inequality in ().

Corollary  Let A, B, X be operators such that A, B are positive. Then for  ≤ μ ≤  and
for every unitarily invariant norm, we have


∥∥∣∣A 

XB


∥∥∣∣

≤ ∥∥∣∣A μ+
 XB

–μ
 +A

–μ
 XB

μ+


∥∥∣∣

≤ 
| – μ|

∣∣∣∣
∫ 



μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
∣∣∣∣

≤ 

(

∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A μ+

 XB
–μ
 +A

–μ
 XB

μ+


∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ 

(∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣)

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. ()

Applying the previous lemma to the function f (v) = ‖|AvXB–v+A–vXBv‖| on the interval
[,μ] when ≤ μ ≤ 

 , and on the interval [μ, ] when 
 ≤ μ ≤ , we obtain the following

theorem.

Theorem  Let A, B, X be operators such that A, B are positive. Then
() for  ≤ μ ≤ 

 and for every unitarily norm,

∥∥∣∣Aμ
 XB–μ

 +A– μ
 XB

μ

∥∥∣∣

≤ 
μ

∫ μ



∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
≤ 


(
‖|AX +XB‖| + 

∥∥∣∣Aμ
 XB–μ

 +A– μ
 XB

μ

∥∥∣∣ + 

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣)

≤ 

(‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣); ()

() for 
 ≤ μ ≤  and for every unitarily norm,

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
≤ 

 –μ

∫ 

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
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≤ 

(
‖|AX +XB‖| + 

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣ + 
∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣)

≤ 

(‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣). ()

Since the function f (v) = ‖|AvXB–v + A–vXBv‖| is decreasing on the interval [,  ] and
increasing on the interval [  , ], and using the inequalities () and (), we obtain the re-
finement of the second inequality in ().

Corollary  Let A, B, X be operators such that A, B are positive. Then for  ≤ μ ≤  and
for every unitarily invariant norm, we have the following.
() For  ≤ μ ≤ 

 and for every unitarily norm,

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣

≤ ∥∥∣∣Aμ
 XB–μ

 +A–μ
 XB

μ

∥∥∣∣

≤ 
μ

∫ μ



∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
≤ 


(
‖|AX +XB‖| + 

∥∥∣∣Aμ
 XB–μ

 +A– μ
 XB

μ

∥∥∣∣ + 

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣)

≤ 

(‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣)

≤ ‖|AX +XB‖|. ()

() For 
 ≤ μ ≤  and for every unitarily norm,

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣

≤ ∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
≤ 

 –μ

∫ 

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv

≤ 

(
‖|AX +XB‖| + 

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣ + 
∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣)

≤ 

(‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣)

≤ ‖|AX +XB‖|. ()

It should be noticed that in the inequalities () to (), we have

lim
μ→


μ

∫ μ



∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv

≤ lim
μ→


 –μ

∫ 

μ

∥∥∣∣AvXB–v +A–vXBv∥∥∣∣dv
= ‖|AX +XB‖|.
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