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Abstract
We present some operators for one-sided approximation of Riemann integrable
functions on [0, 1] by algebraic polynomials in Lp-spaces. The estimates for the error of
approximation are given with an explicit constant.
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1 Introduction
Let Lp[a,b] ( ≤ p < ∞) be the space of all real-valued Lebesgue measurable functions,
f : [a,b]→R, such that

‖f ‖p,[a,b] =
(∫ b

a

∣∣f (t)∣∣p dt)/p

<∞

and let C[, ] be the set of all continuous functions f : [, ] → R with the sup norm
‖f ‖∞ = sup{|f (t)| : x ∈ [, ]}. We simply write ‖f ‖p = ‖f ‖p,[,]. Let R[, ] be the set of all
Riemann integrable functions on [, ] (recall that Riemann integrable functions on [, ]
are bounded). As usual, we denote byW 

p[, ] the space of all absolutely continuous func-
tions f : [, ] → R such that f ′ ∈ Lp[, ]. We also denote by Pn the family of all algebraic
polynomials of degree not greater than n.
The local modulus of continuity of a function g : [, ] →R at a point x is defined by

ω(g,x, t) = sup
{∣∣g(v) – g(w)

∣∣ : v,w ∈ [x – t,x + t]∩ [, ]
}
, t ≥ .

For p ≥ , the average modulus of continuity is defined by

τ (g, t)p =
∥∥ω(g, ·, t)∥∥p.

This modulus is well defined whenever g is a bounded measurable function.
For a bounded function f ∈ Lp[, ] and n ∈ N, the best one-sided approximation is de-

fined by

Ẽn(f )p = inf
{‖P –Q‖p : P,Q ∈ Pn,Q(x)≤ f (x)≤ P(x),x ∈ [, ]

}
. ()
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It was shown in [], with �n = n– + n–
√
 – t, that there exists a constant C such that,

for any bounded measurable function f : [, ]→R,

Ẽn(f )p ≤ Cτ (f ,�n)p. ()

The analogous result for a trigonometric approximation was given in []. It is well known
that limt→+ τ (g, t) =  if and only if g ∈ R[, ] (see []). That is the reason why we only
consider Riemann integrable functions.
In this paper, we present some sequences of polynomial operators for one-sided Lp-

approximation which realize the rate of convergence given in (). Our construction also
provides a specific constant. We point out that a one-sided approximation cannot be re-
alized with polynomial linear operators.
Let us consider the step function

G(t) =

{
, if – ≤ t ≤ ,
, if  < t ≤ ,

()

and fix two sequences of polynomials {Pn} and {Qn} (Pn,Qn ∈ Pn) such that

Pn(t) ≤G(t) ≤Qn(t), t ∈ [–, ]

and

‖Qn – Pn‖,[–,] → , as n→ ∞. ()

The existence of such sequences of polynomials Pn and Qn satisfying () is well known
(see, for example, []). Probably, the first construction of the optimal solution for () is
due to Markoff or Stieltjes (cf. Szegö [, Section ., p.]).
Fix p ∈ [,∞). In [] we constructed a sequence of polynomial operators as follows. For

n ∈N, f ∈W 
p[, ], and x ∈ [, ], define

λn(f ,x) = f () +
∫ 


Pn(t – x)

(
f ′)

+(t)dt –
∫ 


Qn(t – x)

(
f ′)

–(t)dt ()

and

�n(f ,x) = f () +
∫ 


Qn(t – x)

(
f ′)

+(t)dt –
∫ 


Pn(t – x)

(
f ′)

–(t)dt, ()

where, as usual,

g+(x) =max
{
, g(x)

}
and g–(x) =max

{
,–g(x)

}
.

Also in [], it is proved that λn(f ),�n(f ) ∈ Pn,

λn(f ,x) ≤ f (x) ≤ �n(f ,x), x ∈ [, ] ()
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and

max
{∥∥f – λn(f )

∥∥
p,

∥∥f –�n(f )
∥∥
p

} ≤ αn
∥∥f ′∥∥

p, ()

where

αn = ‖Qn – Pn‖,[–,]. ()

For a function f ∈R[, ], h ∈ (, ) and x ∈ [, ], set

Lh(f ,x) =
∫ 



[
f
(
( – h)x + hs

)
–ω

(
f , ( – h)x + hs,h

)]
ds ()

and

Mh(f ,x) =
∫ 



[
f
(
( – h)x + hs

)
+ω

(
f , ( – h)x + hs,h

)]
ds. ()

It turns out (see Section ) that Lh(f ),Mh(f ) ∈ W 
p[, ], for p ≥ , and therefore we can

define

An,h(f ,x) = λn
(
Lh(f ),x

)
and Bn,h(f ,x) = �n

(
Mh(f ),x

)
, ()

where λn and �n are given by () and (), respectively. We will prove that

An,h(f ,x)≤ f (x)≤ Bn,h(f ,x), x ∈ [, ],

and present upper estimates for the error f –An,h(f ) and Bn,h(f ) – f in Lp[, ] in terms of
the average modulus of continuity.
In the last years, there has been interest in studying open problems related to one-sided

approximations (see [, –] and []).We point out that other operators for the one-sided
approximation have been constructed in [, ] and []. In particular, the operators pre-
sented in [] yield the non-optimal rate O(τ (f , /

√
n)) whereas the ones considered in

[, ] give the optimal rate, but without an explicit constant.
The paper is organized as follows. In Section we present some properties of the Steklov

type functions () and (). Finally, in Section  we consider an approximation by means
of the operators defined in ().

2 Properties of Steklov type functions
We start with the following auxiliary results.

Proposition  If f ∈ R[, ], h ∈ (, ), and the functions Lh(f ) and Mh(f ) are defined by
() and (), respectively, then the following assertions hold.

(i) The functions Lh(f ) andMh(f ) are absolutely continuous.Moreover, if
�(x) := Lh(f ,x) and �(x) :=Mh(f ,x), then

� ′
j (x) =

 – h
h

(
f
(
( – h)x + h

)
– f

(
( – h)x

))
+ (–)j

 – h
h

(
ω

(
f , ( – h)x + h,h

)
–ω

(
f , ( – h)x,h

))
, j = , . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/494


Adell et al. Journal of Inequalities and Applications 2014, 2014:494 Page 4 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/494

(ii) For each x ∈ [, ],

Lh(f ,x)≤ f (x)≤Mh(f ,x). ()

(iii) For ≤ p <∞ one has Lh(f )′,Mh(f )′ ∈ Lp[, ]

max
{∥∥f – Lh(f )

∥∥
p,

∥∥f –Mh(f )
∥∥
p

} ≤ 
( – h)/p

τ (f ,h)p, ()

∥∥Mh(f ) – Lh(f )
∥∥
p ≤ 

( – h)/p
τ (f ,h)p ()

and

max
{∥∥L′

h(f )
∥∥
p,

∥∥M′
h(f )

∥∥
p

} ≤ 
h
τ (f ,h)p. ()

Proof (i) Let g ∈ L[, ]. Then the function

H(x) =
∫ 


g
(
( – h)x + hs

)
ds,

is absolutely continuous with Radon-Nikodym derivative

H ′(x) =
 – h
h

(
g
(
( – h)x + h

)
– g

(
( – h)x

))
.

This, together with () and (), shows ().
(ii) Observe that

f (x) –Mh(f ,x) =

h

∫ h



(
f (x) – f

(
( – h)x + s

)
–ω

(
f , ( – h)x + s,h

))
ds≤ ,

as follows from the definition of ω. Similarly, Lh(f ,x)≤ f (x).
(iii) We present a proof for a fixed  < p < ∞ (the case p =  follows analogously). As

usual, take q such that /p + /q = . Using () and Hölder inequality, we obtain

(
h
∥∥Mh(f ) – f

∥∥
p

)p ≤ (
h
∥∥Mh(f ) – Lh(f )

∥∥
p

)p
= p

∫ 



(∫ h


ω

(
f , ( – h)x + s,h

)
ds

)p

dx

≤ php/q
∫ 



∫ h


ωp(f , ( – h)x + s,h

)
dsdx

=
php/q

 – h

∫ h



∫ –h+s

s
ωp(f , y,h)dyds

≤ php/q

 – h

∫ h



∫ 


ωp(f , y,h)dyds

=
ph+p/q

 – h
τ p(f ,h)p =

php

 – h
τ p(f ,h)p.

For ‖f – Lh(f )‖p the proof follows analogously.
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Finally, in order to estimate ‖Lh(f )′‖p and ‖Mh(f )′‖p, we use the representation of the
derivative given in (). Recall that the usual modulus of continuity for f ∈ Lp[, ] is de-
fined as follows:

ω(f ,h)p = sup
<t≤h

(∫ –t



∣∣f (x + t) – f (x)
∣∣p dx)/p

.

It can be proved (see the proof of Lemma  in []) that, for any f ∈R[, ],

ω(f ,h)p ≤ τ (f ,h)p.

Therefore(∫ 



∣∣f (( – h)x + h
)
– f

(
( – h)x

)∣∣p dx)/p

=
(


 – h

∫ –h



∣∣f (y + h) – f (y)
∣∣p dy)/p

≤ ω(f ,h)p
( – h)/p

≤ τ (f ,h)p
( – h)/p

. ()

On the other hand(∫ 



∣∣ω(
f , ( – h)x + h,h

)
–ω

(
f , ( – h)x,h

)∣∣p dx)/p

≤
(∫ 


ωp(f , ( – h)x + h,h

)
dx

)/p

+
(∫ 


ωp(f , ( – h)x,h

)
dx

)/p

≤ 
( – h)/p

[(∫ 

h
ωp(f , y,h)dy

)/p

+
(∫ –h


ωp(f , y,h)dy

)/p]
≤ 

( – h)/p
τ (f ,h)p. ()

From (), (), and (), we obtain (). The proof is complete. �

3 Approximation of Riemann integrable functions
Theorem  Fix p ∈ [,∞), n ∈ N, h ∈ (, ), and f ∈ R[, ]. Let An,h(f ) and Bn,h(f ) be as
in () and let αn be as in (). Then An,h(f ),Bn,h(f ) ∈ Pn,

An,h(f ,x)≤ f (x)≤ Bn,h(f ,x), x ∈ [, ],

max
{∥∥f –An,h(f )

∥∥
p,

∥∥f – Bn,h(f )
∥∥
p

} ≤
(


 – h

+
αn

h

)
τ (f ,h)p ()

and

∥∥Bn,h(f ) –An,h(f )
∥∥
p ≤

(


 – h
+
αn

h

)
τ (f ,h)p. ()

Proof Let Lh(f ) and Mh(f ) be as in () and (), respectively. We know that An,h(f ),
Bn,h(f ) ∈ Pn. Moreover, from () and () we have

An,h(f ) = λn
(
Lh(f )

) ≤ Lh(f ) ≤ f ≤Mh(f ) ≤ �n
(
Mh(f )

)
= Bn,h(f ).
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On the other hand, from (), (), and () one has

∥∥f –An,h(f )
∥∥
p ≤ ∥∥f – Lh(f )

∥∥
p +

∥∥Lh(f ) –An,h(f )
∥∥
p

≤ 
( – h)/p

τ (f ,h)p + αn
∥∥(Lhf )′∥∥p

≤
(


( – h)/p

+
αn

h

)
τ (f ,h)p

≤
(


 – h

+
αn

h

)
τ (f ,h)p.

The estimate for ‖f –Bn,h(f )‖p follows analogously. Finally, () follows immediately from
(). �

For n ∈N the Fejér-Korovkin kernel is defined by

Kn(t) =
 sin(π/(n + ))

n + 

(
cos((n + )t/)

cos(π/(n + )) – cos t

)

for t �=±π/(n + ) and Kn(t) = (n + )/ for t =±π/(n + ).
Let F :R →R be the π-periodic function such that

F(x) =

{
, if x ∈ [–π/,π/],
, if x ∈ [–π ,π ] \ [–π/,π/],

()

and, for x,u, t ∈ [–π ,π ], set

U(F ,x, t,u) = ω
(
F ,x + t, |u|) +ω

(
F ,x + u, |t|).

For n ∈N define

T–
n (x) =


π

∫ π

–π

(∫ π

–π

[
F(x + t) –U(F ,x, t,u)

]
Kn(t)dt

)
Kn(u)du

and

T+
n (x) =


π

∫ π

–π

(∫ π

–π

[
F(x + t) +U(F ,x, t,u)

]
Kn(t)dt

)
Kn(u)du.

The following result was proved in [].

Proposition  Let G be given by (). For n ∈N and x ∈ [–, ], define

Pn(x) = T–
n (arccosx) and Qn(x) = T+

n (arccosx).

Then Pn,Qn ∈ Pn,

Pn(x) ≤G(x)≤Qn(x), x ∈ [–, ]
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and

‖Qn – Pn‖,[–,] ≤ π

n + 
. ()

From Theorem  and Proposition  we can state our main results.

Theorem  Fix p ∈ [,∞). For n ∈ N, let Pn, Qn be the sequences of polynomials con-
structed as in Proposition . For f ∈R[, ] and n≥ , set

An(f ) = An, n
(f ), Bn(f ) = Bn, n

(f ),

where An,h and Bn,h are given by (). Then

An(f ),Bn(f ) ∈ Pn,

An(f ,x)≤ f (x)≤ Bn(f ,x), x ∈ [, ],

max
{∥∥f –An(f )

∥∥
p,

∥∥f –Bn(f )
∥∥
p

} ≤ 
(
 + π)τ(

f ,

n

)
p

()

and

∥∥Bn(f ) –An(f )
∥∥
p ≤ 

(
 + π)τ(

f ,

n

)
p
.

Proof The first two assertions follow fromProposition with h = /n. So, in order to prove
the theorem it remains to verify (). Taking into account () and (), we have αn ≤
π/(n + ). Then, from () with h = /n and n≥ , we obtain

max
{∥∥f –An(f )

∥∥
p,

∥∥f –Bn(f )
∥∥
p

} ≤
(

n
n – 

+
πn
n + 

)
τ

(
f ,


n

)
p

≤ 
(
 + π)τ(

f ,

n

)
p
.

This completes the proof. �

Finally, from Theorem  we have immediately the following.

Corollary  Fix p >  and n ∈N, n≥ . For any f ∈R[, ] we have

Ẽn(f )p ≤ 
(
 + π)τ(

f ,

n

)
p
,

where Ẽn(f )p is the best one-sided approximation defined in ().
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