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Abstract
A matrix with zero diagonal is called a Euclidean distance matrix when the matrix
values are measurements of distances between points in a Euclidean space. Because
of data errors such a matrix may not be exactly Euclidean and it is desirable in many
applications to find the best Euclidean matrix which approximates the non-Euclidean
matrix. In this paper the problem is formulated as a smooth unconstrained
minimization problem, for which rapid convergence can be obtained. Comparative
numerical results are reported.
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1 Introduction
Symmetric matrices with non-negative off-diagonal elements and zero diagonal elements
arise as data in many experimental sciences. This occurs when the values are measure-
ments of squared distances between points in a Euclidean space (e.g. atoms, stars, cities).
Such a matrix is referred to as a Euclidean distance matrix. Because of data errors such
a matrix may not be exactly Euclidean and it is desirable to find the best Euclidean ma-
trix which approximates the non-Euclidean matrix. The aim of this paper is to study a
newmethod for solving the Euclidean distance matrix problem and compare it with other
older methods [].
An important application arises in the conformation of molecular structures from nu-

clearmagnetic resonance data (see [] and []). Here a Euclidean distancematrix is used to
represent the squares of distances between the atoms of amolecular structure. An attempt
to determine such a structure by nuclear magnetic resonance experiments gives rise to a
distance matrix F which, because of data errors, may not be Euclidean. There are many
other applications in subjects as diverse as archeology, cartography, genetics, geography,
and multivariate analysis. Pertinent references are given by Al-Homidan [, ].
Characterization theorems for the Euclidean distance matrix have been given in many

forms. In Section  we show a very important characterization which brings out the un-
derlying structure and is readily applicable to the algorithms that follow.
This paper addresses a non-smooth optimization problem in which some matrix, de-

fined in terms of the problem variables, has to be positive semidefinite. One way to handle
this problem is to impose a functional constraint in which the least eigenvalue of the ma-
trix is non-negative. However, if there are multiple eigenvalues at the solution, which is
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usually the case, such a constraint is non-smooth, and this non-smoothness cannot be
modeled by a convex polyhedral composite function. An important factor is the determi-
nation of the multiplicity of the zero eigenvalues, or alternatively the rank of the matrix
at the solution. If this rank is known it is usually possible to solve the problem by conven-
tional techniques.
Glunt et al. [] formulate the Euclidean distance matrix problem as a constrained least

distance problem in which the constraint is the intersection of two convex sets. The
Dykstra-Han alternating projection algorithm can then be used to solve the problem.
This method is globally convergent but the rate of convergence is very slow. However,
the method does have the capability to determine the correct rank of the solution matrix.
Recently, there has been much interest in the interior point methods applied to prob-

lems with semidefinite matrix constraints (e.g. the survey papers [] and [] and the refer-
ences therein). Semidefinite programming optimizes a linear function subject to a positive
semidefinite matrix. It is a convex programming problem since the objective and con-
straints are convex. In this paper, we deal with a problem that is a little different since the
objective is quadratic; also an additional rank constraint is added which makes the prob-
lem non-convex and harder to solve. Here, we use a different approach from the interior
point methods. If the correct rank of the solution matrix is known, it is shown in Sec-
tion  how to formulate the problem as a smooth unconstrained minimization problem,
for which rapid convergence can be obtained by for example the BFGS method. We give
expressions for the objective function and its first derivatives.
In [] a hybrid method is studied between a projection method and a quasi-Newton

method; a similar study can be performed as regards all its features. Finally, in Section ,
numerical comparisons are carried out.

2 The Euclidean distancematrix problem
In this section the definition of the Euclidean distance matrix is given, and the relation-
ship between points and distances is summarized. A characterization theorem for the Eu-
clidean distancematrix is proved in a concise way that brings out the underlying structure
and is readily applicable to the algorithms that follow.
It is necessary to distinguish between distancematrices that are obtained in practice and

those that can be derived exactly from n vectors in an affine subspace.

Definition . Amatrix F ∈R
n×n is called a distance matrix iff it is symmetric, the diag-

onal elements are zero

fii = , i = , . . . ,n,

and the off-diagonal entries are non-negative

fij ≥ , ∀i �= j.

Definition . A matrix D ∈ R
n×n is called a Euclidean distance matrix iff there exist n

vectors x, . . . ,xn in an affine subspace of dimension R
r (r ≤ n – ) such that

dij = ‖xi – xj‖, ∀i, j. (.)
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The Euclidean distance problem can now be stated as follows: Given a distance matrix
F ∈R

n×n, find the Euclidean distance matrix D ∈R
n×n that minimizes

‖F –D‖F , (.)

where ‖ · ‖F denotes the Frobenius norm.
The theorem is essentially due to Schoenberg [].

Theorem . The distance matrix D ∈ R
n×n is a Euclidean distance matrix if and only if

the (n – )× (n – ) symmetric matrix A defined by

aij =


[ds + dt – dst] (≤ i, j ≤ n – ) (.)

is positive semidefinite, where s = i + , t = j + , and D is irreducibly embeddable in R
r

(r < n) where r = rank(A).Moreover, consider the spectral decomposition

A =U�UT . (.)

Let �r be the matrix of non-zero eigenvalues in � and define X by

X =Ur , then A = X�rXT , (.)

where �r ∈ R
r×r is a diagonal matrix and Ur ∈R

(n–)×r .

3 Themethod
In this section we consider a different approach to the Euclidean distance matrix problem
(.). The main idea is to replace (.) by a smooth unconstrained optimization problem
in order to use superlinearly convergent quasi-Newtonmethods. To do this it is necessary
to estimate the rank r as this piece of information is not generally known. Once a value of r
is chosen, the problem (.) is solved by the BFGS method. We give the relevant formulas
for the derivatives. At the end of the section we discuss details of the initialization and
implementation.
If the rank r is known, it is possible to express (.) as a smooth unconstrained opti-

mization problem in the following way. The unknowns in the problem are chosen to be
the elements of the matrix X and �r introduced in (.). We take X to have r columns and
�r a diagonal matrix as shown below. This gives us an unconstrained optimization prob-
lem in r(n – ) – r(r+)

 unknowns. We therefore parametrize X and �r in the following
way:

A = X�rXT , where X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

  
x  
... x 
...

... xr+,r
...

...
...

xm xm xmr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,�r =

⎡
⎢⎢⎣

λ
. . .

λr

⎤
⎥⎥⎦ . (.)
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The objective function φ(X) is readily calculated by first forming D from X and �r as
indicated by (.), after which φ is given by φ(X,�r) = ‖D – F‖F . When s = t, then dst = ,
using (.) we get aii = 

 [ds + ds – ] = ds, then the elements of the matrix D take the
form

ds = aii =
i–∑
k=

xikλk + λi if i = , . . . , r, s = i + ,

ds = aii =
r∑

k=

xikλk if i = r + , . . . ,n – ,

dst = aij =
i–∑
k=

xikxjkλk + xij + λi if i≤ r or j ≤ r,

dst = aij =
r∑

k=

xikxjkλk if i > r and j > r,

where t = j + . Hence

φ =
n∑

s,t=

(dij – fij) = 
n∑
s=

(ds – fs) + 
n∑

s,t=
s<t

(dst – fst)

= 
r∑
i=

[ i–∑
k=

xikλk + λi – fs

]

+ 
n–∑
i=r+

[ r∑
k=

xikλk – fs

]

+ 
r∑

i,j=
i<j

[ i–∑
k=

xikλk + λi +
j–∑
k=

xkjλk + λj – 
i–∑
k=

xikxkjλk + xijλi – fst

]

+ 
r∑
i=

n–∑
j=r+

[ i–∑
k=

xikλk + λi +
r∑

k=

xkjλk – 
i–∑
k=

xikxkjλk + xijλi – fst

]

+ 
n–∑

i,j=r+
i<j

[ r∑
k=

xikλk +
r∑

k=

xkjλk – 
r∑

k=

xikxkjλk – fst

]

. (.)

Our chosen method to minimize φ(X) is the BFGS quasi-Newton method (see for ex-
ample []). This requires expressions for the first partial derivatives of φ, which are given
from (.) by

∂φ

∂λi
= 

{


i∑
l=

n–∑
k=l+i

(dk+l – fk+l)xik + 
n–∑
k=i+

(dk+i+ – fk+i+)
(
 + xik – xik

)

+ 
r∑

l=i+

n–∑
k=l

(dk+l – fk+l)
(
xil– + xik – 

)
xi,l–xik)

}
, (.)
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for all i = , . . . , r. For j = , . . . , r, and i = j + , . . . ,n – :

∂φ

∂xij
= 

i–∑
k=

(dj+k+ – fj+k+)(xijλj) + 
n–∑
k=i

(dj+k+ – fj+k+)(xijλj – xkjλj). (.)

The BFGS method also requires the Hessian approximation to be initialized. Where nec-
essary, we do this using a unit matrix.
Some care has to be taken when choosing the initial value of the matrix X and �r , in

particular the rankmust be r. If not, theminimizationmethodmay not be able to increase
the rank ofX. An extreme case occurs when the initial matrixX =  and�r =  are chosen,
and F �= . It can be seen from (.) and (.) that the components of the gradient vector
are all zero, so that X =  and �r =  are stationary points, but not minimizers. A gradient
method will usually terminate in this situation and so fail to find the solution.
A reliable method for initializing X and �r =  is to use the construction suggested by

(.) and (.). Thus we define the elements of A by those of F by

aij =


(fij – fi – fj), i≥ , j ≥ . (.)

The first row and column of A are zero and are ignored. We then find the spectral de-
composition U�UT of the nontrivial part of A. Finally the nontrivial part of X and �r

in (.) is initialized to the matrix �/
r UT

r where �r = diag(σi), i = , . . . , r is composed of
the r largest eigenvalues in �, and the columns of Ur are the corresponding eigenvectors.
When �r is positive definite, this procedure ensures that A has the correct rank r. Other-
wise the process must be modified in some way, for example by ensuring that the diagonal
elements in �r lie above a positive threshold.
An advantage of this method is that it allows the spatial dimensions to be chosen by the

user. This is useful when the rank is already known. For example if the entries in F are
derived from distances between cities then the dimension will be no higher than r = .
Likewise, if the entries are derived from distances between atoms in a molecule or stars in
space, then the maximum dimension is r = .
In general, however, the rank is not known, for example the atoms in a molecule may

turn out to be collinear or coplanar.We therefore must consider an algorithm in which we
are prepared to revise our estimate of r. A simple strategy is to repeat the entire method
for different values of r. If r∗ denotes the correct value of r which solves (.), then it is
observed that the BFGSmethod converges rapidly if r ≤ r∗, and that it exhibits superlinear
convergence. On the other hand if r > r∗ then slow convergence is observed. One reason
is that there are more variables in the problem. Also redundancy in the parameter space
may have an effect. Thus it makes sense to start with a small value of r, and increase it by
one until the solution is recognized. One way to recognize termination is whenD(r) agrees
sufficiently well with D(r+), where D(r) denotes the Euclidean distance matrix obtained by
minimizing φ when �r in (.) has r diagonal elements. Numerical experience is reported
in [] for solving various test problems by other methods which will be compared with
this method.
An obvious alternative to using the BFGS method is to evaluate the Hessian matrix of

second derivatives of φ(X) and use Newton’s method. This would likely reduce the num-
ber of iterations required. However, there is also the disadvantage of increased complex-
ity, and increased housekeeping at each iteration. Moreover, it is possible that the Hessian
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has some negative eigenvalues so amodified form of Newton’s method would be required.
A simple example serves to illustrate the possibility of a negative eigenvalue. Take n = ,
r = , and let F =

[  –
– 

]
, X = [], and �r = [λ]. Then φ = ( – λ

 ). This has global mini-
mizers at λ = ±, a local maximizer at λ = , and the Hessian is negative for all λ such
that λ

 < .
This method has entirely different features, some good, some bad, which suggests that a

combination of both thismethod and a projectionmethod []might be successful. Projec-
tion methods are globally convergent and hence potentially reliable, but the rate of con-
vergence is first order or slower, which can be very inefficient. Quasi-Newton methods
are reliable and locally superlinearly convergent, but they require that the correct rank r∗

is known. Therefore hybrid methods should be established along the lines of [], in which
the projection algorithm is used sparingly as a way of establishing the correct rank, while
the BFGS method is used to provide rapid convergence.

4 Numerical results
In this section, we compare three methods, our method, the hybrid method in [] and
the unconstrained method of the same reference. The algorithms have been tested on
randomly generated distance matrices F with values distributed between – and . All
calculationswere performedwithMathlab . Figure  compares the line searches andCPU
time of the three methods. The termination criterion for both methods is ‖D(k) –D(k–)‖ <
–. All methods converge to essentially the same values.
In Figure , the upper figure shows that the number of line searches for our method is

slightly lower than the unconstrained method and higher than the hybrid method. How-
ever, in the lower figure it is clear that our method is much faster and this because our
method has r(r+)

 less CPU time. A hybrid method uses much less line searches from both

Figure 1 Comparing the line searches and CPU time of the three methods for the Euclidean distance
matrix problem.
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methods, however, it consumes much more time than our method because it uses a pro-
jection method as a start. This makes our method more efficient and faster.
The housekeeping associated with each line search is O(n). Also, if care is taken, it is

possible to calculate φ(X) and∇φ(X) inO(n) operations. The initial value r() is tabulated,
and r is increased by one until the solution is found. The total number of line searches is
tabulated, and in this figure, it is found that fewer line searches are required as r increases.
Also the initial value r() =  is rather arbitrary: a smaller value of r() would have given an
even larger number of line searches.
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