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Abstract
In this paper, we introduce and study a triple hierarchical variational inequality (THVI)
with constraints of minimization and equilibrium problems. More precisely, let Fix(T )
be the fixed point set of a nonexpansive mapping, let MEP(Θ ,ϕ) be the solution set
of a mixed equilibrium problem (MEP), and let Γ be the solution set of a
minimization problem (MP) for a convex and continuously Frechet differential
functional in Hilbert spaces. We want to find a solution x∗ ∈ Fix(T )∩MEP(Θ ,ϕ)∩ Γ of
a variational inequality with a variational inequality constraint over the intersection of
Fix(T ), MEP(Θ ,ϕ), and Γ . We propose a hybrid iterative algorithm with regularization
to compute approximate solutions of the THVI, and we present the convergence
analysis of the proposed iterative algorithm.
MSC: 49J40; 47J20; 47H10; 65K05; 47H09

Keywords: triple hierarchical variational inequality; minimization problem; mixed
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1 Introduction
LetH be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ over the real scalar fieldR.
Let C be a nonempty closed convex subset of H , and PC be the metric projection of H
onto C. Let T : C → C be a self-mapping on C. Denote by Fix(T) the set of fixed points
of T . We say that T is L-Lipschitzian if there exists a constant L≥  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C.

When L =  or  ≤ L < , we call T a nonexpansive or a contractivemapping, respectively.
We say that a mapping A : C →H is α-inverse strongly monotone if there exists a constant
α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C,

and that A is η-strongly monotone (resp. monotone) if there exists a constant η >  (resp.
η = ) such that

〈Ax –Ay,x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C.
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It is known that T is nonexpansive if and only if I – T is 
 -inverse strongly monotone.

Moreover, L-Lipschitz continuous mappings are 
L -inversely strong monotone (see, e.g.,

[]).
Let f : C → R be a convex and continuously Frechet differentiable functional. Consider

the minimization problem (MP):

min
x∈C f (x) (.)

(assuming the existence ofminimizers).We denote by Γ �= ∅ the set ofminimizers of prob-
lem (.). The gradient-projection algorithm (GPA) generates a sequence {xn} determined
by the gradient ∇f and the metric projection PC :

xn+ := PC
(
xn – λ∇f (xn)

)
, ∀n≥ . (.)

The convergence of algorithm (.) depends on ∇f . It is known that if ∇f is η-strongly
monotone and L-Lipschitz continuous, then for  < λ < η

L , the operator

S := PC(I – λ∇f )

is a contraction. Hence, the sequence {xn} defined by the GPA (.) converges in norm to
the unique solution of (.). If the gradient ∇f is only assumed to be Lipschitz continuous,
then {xn} can only be weakly convergent when H is infinite-dimensional (a counterexam-
ple to the norm convergence of {xn} is given by Xu [, Section ]).
The regularization, in particular the traditional Tikhonov regularization, is usually used

to solve ill-posed optimization problems. Consider the regularizedminimization problem

min
x∈C fα(x) := f (x) +

α


‖x‖,

where α >  is the regularization parameter, and again f is convex with Lipschitz continu-
ous gradient ∇f . While a regularizationmethod provides the possible strong convergence
to the minimum-norm solution, its disadvantage is the implicity. Hence explicit iterative
methods seem to be attractive. See, e.g., Xu [, ].
On the other hand, for a given mapping A : C →H , we consider the variational inequal-

ity problem (VIP) of finding x∗ ∈ C such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted byVI(C,A). It is well known that when A is mono-
tone,

x ∈VI(C,A) ⇔ x = PC(x – λAx), ∀λ > .

Variational inequality theory has been studied quite extensively and has emerged as an
important tool in several branches of pure and applied sciences; see, e.g., [, –] and the
references therein.
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When C is the fixed point set Fix(T) of a nonexpansive mapping T and A = I – S, VIP
(.) becomes the variational inequality problem of finding x∗ ∈ Fix(T) such that

〈
(I – S)x∗,x – x∗〉 ≥ , ∀x ∈ Fix(T). (.)

This problem, introduced by Moudafi and Maingé [, ], is called the hierarchical fixed
point problem. It is clear that if S has fixed points, then they are solutions of VIP (.). If S
is contractive, the solution set of VIP (.) is a singleton and it is well known as a viscosity
problem. This was previously introduced by Moudafi [] and also developed by Xu [].
In this case, solving VIP (.) is equivalent to finding a fixed point of the nonexpansive
mapping PFix(T)S, where PFix(T) is the metric projection onto the closed and convex set
Fix(T). Yao et al. [] introduced a two-step algorithm to solve VIP (.).
Let Θ : C × C → R be a bifunction and ϕ : C → R be a function. Consider the mixed

equilibrium problem (MEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C, (.)

which was studied by Ceng and Yao []. The solution set of MEP (.) is denoted by
MEP(Θ ,ϕ). The MEP (.) is very general in the sense that it includes, as special cases,
fixed point problems, optimization problems, variational inequality problems, minimax
problems, Nash equilibrium problems in noncooperative games and others; see, e.g.,
[–].
Recently, Iiduka [, ] considered a variational inequality with a variational inequal-

ity constraint over the set of fixed points of a nonexpansive mapping. Since this problem
has a triple structure in contrast with bilevel programming problems or hierarchical con-
strained optimization problems or hierarchical fixed point problems, it is referred to as a
triple hierarchical constrained optimization problem (THCOP). He presented some ex-
amples of THCOP and developed iterative algorithms to find the solution of such a prob-
lem. Since the original problem is a variational inequality, in this paper, we call it a triple
hierarchical variational inequality (THVI). Ceng et al. introduced and considered some
THVI in []. A nice survey article on THVI is []. See also [–].
Extending the works done in [], we introduce and study in this paper the following

triple hierarchical variational inequality with constraints ofminimization and equilibrium
problems.

The problem to study
Let C be a nonempty closed convex subset of a real Hilbert space H . Let f : C → R be
convex and continuously Frechet differentiable with Γ being the set of its minimizers.
Let T : C → C and S : H → H be both nonexpansive. Let V : H → H be ρ-contractive,
and F : C → H be κ-Lipschitzian and η-strongly monotone with constants ρ ∈ [, ) and
κ ,η > . Suppose  < μ < η/κ and  < γ ≤ τ where τ =  –

√
 –μ(η –μκ).

Let Ξ denote the solution set of the following hierarchical variational inequality (HVI):
find z∗ ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ such that

〈
(μF – γ S)z∗, z – z∗〉 ≥ , ∀z ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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where the solution set Ξ is assumed to be nonempty. Consider the following triple hier-
archical variational inequality (THVI).
Find x∗ ∈ Ξ such that

〈
(μF – γV )x∗,x – x∗〉 ≥ , ∀x ∈ Ξ . (.)

Based on the iterative schemes provided by Xu [] and the two-step iterative scheme
provided byYao et al. [], by virtue of the viscosity approximationmethod, hybrid steepest-
descent method and the regularization method, we propose the following hybrid iterative
algorithm with regularization:

⎧⎪⎨⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
yn = θnγ Sxn + (I – θnμF)PC(un – λ∇fαn (un)),
xn+ = βnγVyn + (I – βnμF)TPC(un – λ∇fαn (un)), ∀n≥ .

Here,  < λ < /L, {rn}, {αn} ⊂ (, +∞), and {βn}, {θn} ⊂ (, ). It is shown that under ap-
propriate assumptions, the two iterative sequences {xn} and {yn} converge strongly to the
unique solution of the THVI (.).

2 Preliminaries
Let K be a nonempty closed convex subset of a real Hilbert spaceH . We write xn ⇀ x and
xn → x to indicate that the sequence {xn} converges weakly and strongly to x, respectively.
The weak ω-limit set of the sequence {xn} is denoted by

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

The metric (or nearest point) projection from H onto K is the mapping PK : H → K
which assigns to each point x ∈H the unique point PKx ∈ K satisfying the property

‖x – PKx‖ = inf
y∈K ‖x – y‖ =: d(x,K ).

Proposition . For given x ∈H and z ∈ K :
(i) z = PKx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ K ;
(ii) z = PKx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ K ;
(iii) 〈PKx – PKy,x – y〉 ≥ ‖PKx – PKy‖, ∀y ∈H .

Hence, PK is nonexpansive and monotone.

Definition . A mapping T :H → H is said to be firmly nonexpansive if T – I is non-
expansive, or equivalently,

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H .

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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where S :H → H is nonexpansive. Projections are firmly nonexpansive. We call T an av-
eraged mapping if T can be expressed as a proper convex combination of the identity map
I and a nonexpansive mapping. In particular, firmly nonexpansive mappings are averaged.

Proposition . (see []) Let T :H →H be a given mapping.
(i) T is nonexpansive if and only if the complement I – T is 

 -inverse strongly
monotone.

(ii) If T is ν-inverse strongly monotone, then so is γT for all γ > .
(iii) T is averaged if and only if the complement I – T is ν-inverse strongly monotone for

some ν > /. Indeed, for α ∈ (, ), T is α-averaged if and only if I – T is 
α -inverse

strongly monotone.

Proposition . (see [, ]) Let S,T ,V :H →H .
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composition of finitely many averaged mappings is averaged. In particular, if T

is α-averaged and T is α-averaged, where α,α ∈ (, ), then TT is
(α + α – αα)-averaged.

(v) If the mappings T, . . . ,TN are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · · TN ).

For solving the equilibrium problem for a bifunction Θ : C×C →R, let us consider the
following conditions:
(A) Θ(x,x) =  for all x ∈ C;
(A) Θ is monotone, that is, Θ(x, y) +Θ(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ Θ(tz + ( – t)x, y) ≤ Θ(x, y);
(A) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous;
(A) for each y ∈ C, x �→ Θ(x, y) is weakly upper semicontinuous;
(B) for each x ∈H and r > , there exist a bounded subset Dx ⊆ C and yx ∈ C such that

for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H
and Θ : C × C → R be a bifunction satisfying (A)-(A). Let r >  and x ∈ H . Then there
exists z ∈ C such that

Θ(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let Θ : C × C → R be a bifunction satisfying (A)-(A) and ϕ : C → R be a proper lower
semicontinuous and convex function. For r >  and x ∈H , define a mapping Tr :H → C as
follows:

Trx :=
{
z ∈ C :Θ(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
for all x ∈ H . Assume that either (B) or (B) holds. Then Tr is a single-valued firmly non-
expansive map on H , and Fix(Tr) =MEP(Θ ,ϕ) is closed and convex.

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – sn)an + sntn + εn, ∀n≥ .

Here,  < sn ≤ ,  ≤ εn, and tn ∈R for all n = , , , . . . , such that
(i)

∑∞
n= sn = +∞;

(ii) either lim supn→∞ tn ≤  or
∑∞

n= sn|tn| < +∞;
(iii)

∑∞
n= εn < +∞.

Then limn→∞ an = .

Lemma . (Demiclosedness principle; see []) Let C be a nonempty closed convex subset
of a real Hilbert space H and let T : C → C be a nonexpansive mapping with Fix(T) �= ∅.
If {xn} is a sequence in C converging weakly to x and if {(I – T)xn} converges strongly to y,
then (I – T)x = y; in particular, if y = , then x ∈ Fix(T).

Lemma . (see []) Let S : H → H be a nonexpansive mapping and V : H → H be a
ρ-contraction with ρ ∈ [, ), respectively.

(i) I – S ismonotone, i.e.,

〈
(I – S)x – (I – S)y,x – y

〉 ≥ , ∀x, y ∈H .

(ii) I –V is ( – ρ)-strongly monotone, i.e.,

〈
(I –V )x – (I –V )y,x – y

〉 ≥ ( – ρ)‖x – y‖, ∀x, y ∈H .

Lemma . ([]) Let H be a real Hilbert space. Then, for all x, y ∈H and λ ∈ [, ],

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖.

Lemma . We have the following inequality in an inner product space X:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Notations Let λ be a number in (, ] and let μ,κ ,η > . Let F : C →H be κ-Lipschitzian
and η-strongly monotone. Associated with a nonexpansive mapping T : C → C, we define
the mapping Tλ : C →H by

Tλx := (I – λμF)Tx, ∀x ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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Lemma . (see [, Lemma .]) The map Tλ is a contraction provided μ < η/κ, that
is,

∥∥Tλx – Tλy
∥∥ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ]. In particular, if T = I the identity mapping, then

∥∥(I – λμF)x – (I – λμF)y
∥∥ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ C.

A set-valued mapping T̃ :H → H is calledmonotone if 〈x – y, f – g〉 ≥  for all x, y ∈H ,
f ∈ T̃x and g ∈ T̃y. A monotone set-valued mapping T̃ : H → H is called maximal if its
graph Gph(T̃) is not properly contained in the graph of any other monotone set-valued
mapping. It is known that a monotone set-valued mapping T̃ :H → H is maximal if and
only if for (x, f ) ∈H ×H , 〈x – y, f – g〉 ≥  for every (y, g) ∈Gph(T̃) implies that f ∈ T̃x.
Let A : C → H be a monotone and Lipschitz continuous mapping and let NCv be the

normal cone to C at v ∈ C, namely

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
.

Define

T̃v =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C.

Lemma . (see []) Let A : C →H be a monotone mapping.
(i) T̃ is maximal monotone;
(ii) v ∈ T̃– ⇔ v ∈VI(C,A).

3 Main results
Let us consider the following three-step iterative scheme with regularization:⎧⎪⎨⎪⎩

Θ(un, y) + ϕ(y) – ϕ(un) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = θnγ Sxn + (I – θnμF)PC(un – λ∇fαn (un)),
xn+ = βnγVyn + (I – βnμF)TPC(un – λ∇fαn (un)), ∀n = , , , . . . .

(.)

Here,
• V :H →H is a ρ-contraction;
• S :H →H and T : C → C are nonexpansive mappings;
• F : C →H is a κ-Lipschitzian and η-strongly monotone mapping;
• Θ : C ×C →R and ϕ : C →R are real-valued functions;
• ∇f : C → H is L-Lipschitz continuous with  < λ < 

L ;
• {rn} and {αn} are sequences in (, +∞) with

∑∞
n= αn < +∞ and lim infn→∞ rn > ;

• {βn} and {θn} are sequences in (, );
•  < μ < η/κ and  < γ ≤ τ , where τ =  –

√
 –μ(η –μκ).

Theorem . Suppose that Θ : C×C →R satisfies (A)-(A) and that (B) or (B) holds.
Let {xn} be the bounded sequence generated from any given x ∈ C by (.). Assume that

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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(H)
∑∞

n= βn = +∞, limn→∞ 
βn

| – θn–
θn

| = ;
(H) limn→∞ 

βn
| 
θn

– 
θn–

| =  and limn→∞ 
θn

| – βn–
βn

| = ;

(H) limn→∞ θn = , limn→∞ αn+βn
θn

= , and limn→∞
θn
βn

= ;
(H) limn→∞ |αn–αn–|

βnθn
=  and limn→∞ |rn–rn–|

βnθn
= .

Then we have the following:
(i) limn→∞ ‖xn+–xn‖

θn
= ;

(ii) ωw(xn) ⊂ Fix(T)∩MEP(Θ ,ϕ)∩ Γ ;
(iii) ωw(xn) ⊂ Ξ if ‖xn – yn‖ = o(θn) held in addition, i.e., limn→∞ ‖xn–yn‖

θn
= .

Proof First, let us show that PC(I – λ∇fα) is ξ -averaged for each λ ∈ (, 
α+L ), where

ξ =
 + λ(α + L)


∈ (, ).

The Lipschitz condition implies that the gradient ∇f is 
L -inverse strongly monotone

[], that is,

〈∇f (x) –∇f (y),x – y
〉 ≥ 

L
∥∥∇f (x) –∇f (y)

∥∥.

Observe that

(α + L)
〈∇fα(x) –∇fα(y),x – y

〉
= (α + L)

[
α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉
+ αL‖x – y‖ + L

〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+

∥∥∇f (x) –∇f (y)
∥∥

=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥

=
∥∥∇fα(x) –∇fα(y)

∥∥.

Hence, ∇fα = αI + ∇f is 
α+L -inverse strongly monotone. Thus, λ∇fα is 

λ(α+L) -inverse
strongly monotone by Proposition .(ii). By Proposition .(iii) the complement I –λ∇fα
is λ(α+L)

 -averaged. Noting that PC is 
 -averaged and utilizing Proposition .(iv), we know

that for each λ ∈ (, 
α+L ), the map PC(I – λ∇fα) is ξ -averaged with

ξ =


+

λ(α + L)


–



· λ(α + L)


=
 + λ(α + L)


∈ (, ).

In particular, PC(I – λ∇fα) is nonexpansive. Furthermore, for λ ∈ (, L ), utilizing the fact
that limn→∞ 

αn+L = 
L , we may assume

 < λ <


αn + L
, ∀n≥ .

Consequently, for each integer n≥ , PC(I – λ∇fαn ) is ξn-averaged with

ξn =


+

λ(αn + L)


–



· λ(αn + L)


=
 + λ(αn + L)


∈ (, ).

This immediately implies that PC(I – λ∇fαn ) is nonexpansive for all n≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/490
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We divide the proof into several steps.
Step . limn→∞ ‖xn+–xn‖

θn
= .

For simplicity, put ũn = PC(un – λ∇fαn (un)). Then yn = θnγ Sxn + (I – θnμF)ũn and xn+ =
βnγVyn + (I – βnμF)Tũn for every n≥ . We observe that

‖ũn – ũn–‖ ≤ ∥∥PC(I – λ∇fαn )un – PC(I – λ∇fαn )un–
∥∥

+
∥∥PC(I – λ∇fαn )un– – PC(I – λ∇fαn– )un–

∥∥
≤ ‖un – un–‖ +

∥∥PC(I – λ∇fαn )un– – PC(I – λ∇fαn– )un–
∥∥

≤ ‖un – un–‖ +
∥∥(I – λ∇fαn )un– – (I – λ∇fαn– )un–

∥∥
= ‖un – un–‖ +

∥∥λ∇fαn (un–) – λ∇fαn– (un–)
∥∥

= ‖un – un–‖ + λ|αn – αn–|‖un–‖, ∀n≥ . (.)

Moreover, from (.) we have{
yn = θnγ Sxn + (I – θnμF)ũn,
yn– = θn–γ Sxn– + (I – θn–μF)ũn–, ∀n≥ .

Thus

yn – yn– = θn(γ Sxn – γ Sxn–) + (θn – θn–)(γ Sxn– –μFũn–)

+ (I – θnμF)ũn – (I – θnμF)ũn–.

Utilizing Lemma . from (.) we deduce that

‖yn – yn–‖ ≤ θn‖γ Sxn – γ Sxn–‖ + |θn – θn–|‖γ Sxn– –μFũn–‖
+

∥∥(I – θnμF)ũn – (I – θnμF)ũn–
∥∥

≤ θnγ ‖xn – xn–‖ + |θn – θn–|‖γ Sxn– –μFũn–‖
+ ( – θnτ )‖ũn – ũn–‖

≤ θnγ ‖xn – xn–‖ + |θn – θn–|‖γ Sxn– –μFũn–‖
+ ( – θnτ )

(‖un – un–‖ + λ|αn – αn–|‖un–‖
)
, (.)

where τ =  –
√
 –μ(η –μκ). Taking into consideration that un = Trnxn and un– =

Trn–xn–, we have

Θ(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C (.)

and

Θ(un–, y) + ϕ(y) – ϕ(un–) +


rn–
〈y – un–,un– – xn–〉 ≥ , ∀y ∈ C. (.)

Putting y = un– in (.) and y = un in (.), we obtain

Θ(un,un–) + ϕ(un–) – ϕ(un) +

rn

〈un– – un,un – xn〉 ≥ , ∀y ∈ C
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and

Θ(un–,un) + ϕ(un) – ϕ(un–) +


rn–
〈un – un–,un– – xn–〉 ≥ , ∀y ∈ C.

Adding the last two inequalities, by (A) we get〈
un – un–,

un– – xn–
rn–

–
un – xn

rn

〉
≥ ,

and hence〈
un – un–,un– – un + un – xn– –

rn–
rn

(un – xn)
〉
≥ .

Since lim infn→∞ rn > , we may assume, without loss of generality, that there exists a pos-
itive number c such that rn ≥ c >  for all n≥ . Thus we have

‖un – un–‖ ≤
〈
un – un–,xn – xn– +

(
 –

rn–
rn

)
(un – xn)

〉
≤ ‖un – un–‖

[
‖xn – xn–‖ +

∣∣∣∣ – rn–
rn

∣∣∣∣‖un – xn‖
]
,

and hence

‖un – un–‖ ≤ ‖xn – xn–‖ +
∣∣∣∣ – rn–

rn

∣∣∣∣‖un – xn‖

≤ ‖xn – xn–‖ + M

c
|rn – rn–|. (.)

Here,M = sup{‖un – xn‖ : n≥ } < +∞.
Substituting (.) into (.) we derive

‖yn – yn–‖ ≤ θnγ ‖xn – xn–‖ + |θn – θn–|‖γ Sxn– –μFũn–‖

+ ( – θnτ )
(

‖xn – xn–‖ + M

c
|rn – rn–| + λ|αn – αn–|‖un–‖

)
≤ (

 – θn(τ – γ )
)‖xn – xn–‖ + |θn – θn–|‖γ Sxn– –μFũn–‖

+
M

c
|rn – rn–| + λ|αn – αn–|‖un–‖

≤ ‖xn – xn–‖ +M
(|θn – θn–| + |rn – rn–| + |αn – αn–|

)
. (.)

Here, ‖γ Sxn –μFũn‖ + M
c + λ‖un‖ ≤M for someM ≥ .

On the other hand, from (.) we have{
xn+ = βnγVyn + (I – βnμF)Tũn,
xn = βn–γVyn– + (I – βn–μF)Tũn–, ∀n≥ .

Simple calculations show that

xn+ – xn = (I – βnμF)Tũn – (I – βnμF)Tũn–

+ (βn – βn–)(γVyn– –μFTũn–) + βn(γVyn – γVyn–).
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Utilizing Lemma . from (.), (.), and (.) we deduce that

‖xn+ – xn‖
≤ ∥∥(I – βnμF)Tũn – (I – βnμF)Tũn–

∥∥ + |βn – βn–|‖γVyn– –μFTũn–‖
+ βn‖γVyn – γVyn–‖

≤ ( – βnτ )‖ũn – ũn–‖ + |βn – βn–|‖γVyn– –μFTũn–‖ + βnγρ‖yn – yn–‖
≤ ( – βnτ )

(‖un – un–‖ + λ|αn – αn–|‖un–‖
)
+ |βn – βn–|‖γVyn– –μFTũn–‖

+ βnγρ‖yn – yn–‖

≤ ( – βnτ )
(

‖xn – xn–‖ + M

c
|rn – rn–| + λ|αn – αn–|‖un–‖

)
+ |βn – βn–|‖γVyn– –μFTũn–‖ + βnγρ

[‖xn – xn–‖ +M
(|θn – θn–|

+ |rn – rn–| + |αn – αn–|
)]

≤ ( – βnτ )
[‖xn – xn–‖ +M

(|rn – rn–| + |αn – αn–|
)]

+ |βn – βn–|‖γVyn– –μFTũn–‖
+ βnγρ

[‖xn – xn–‖ +M
(|θn – θn–| + |rn – rn–| + |αn – αn–|

)]
≤ ( – βnτ )‖xn – xn–‖ + ( – βnτ )M

(|rn – rn–| + |αn – αn–|
)

+ |βn – βn–|‖γVyn– –μFTũn–‖
+ βnγρ‖xn – xn–‖ + βnτM

(|θn – θn–| + |rn – rn–| + |αn – αn–|
)

≤ (
 – βn(τ – γρ)

)‖xn – xn–‖ + |βn – βn–|‖γVyn– –μFTũn–‖
+M

(|θn – θn–| + |rn – rn–| + |αn – αn–|
)

≤ (
 – βn(τ – γρ)

)‖xn – xn–‖ +M
(|αn – αn–| + |βn – βn–|

+ |θn – θn–| + |rn – rn–|
)
,

whereM + ‖γVyn –μFTũn‖ ≤M, ∀n≥  for someM ≥ . Therefore,

‖xn+ – xn‖
θn

≤ (
 – βn(τ – γρ)

)‖xn – xn–‖
θn

+M
( |αn – αn–|

θn
+

|βn – βn–|
θn

+
|θn – θn–|

θn
+

|rn – rn–|
θn

)
=

(
 – (τ – γρ)βn

)‖xn – xn–‖
θn–

+
(
 – (τ – γρ)βn

)‖xn – xn–‖
(


θn

–


θn–

)
+M

( |αn – αn–|
θn

+
|βn – βn–|

θn
+

|θn – θn–|
θn

+
|rn – rn–|

θn

)
≤ (

 – (τ – γρ)βn
)‖xn – xn–‖

θn–
+ (τ – γρ)βn · 

τ – γρ

{
‖xn – xn–‖ 

βn

∣∣∣∣ θn –


θn–

∣∣∣∣
+M

( |αn – αn–|
βnθn

+
|βn – βn–|

βnθn
+

|θn – θn–|
βnθn

+
|rn – rn–|

βnθn

)}
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≤ (
 – (τ – γρ)βn

)‖xn – xn–‖
θn–

+ (τ – γρ)βn · M̃
τ – γρ

{

βn

∣∣∣∣ θn –


θn–

∣∣∣∣
+

|αn – αn–|
βnθn

+

θn

∣∣∣∣ – βn–

βn

∣∣∣∣ + 
βn

∣∣∣∣ – θn–

θn

∣∣∣∣ + |rn – rn–|
βnθn

}
, (.)

whereM + ‖xn – xn–‖ ≤ M̃, ∀n≥  for some M̃ ≥ . From (H), (H), and (H), it follows
that

∑∞
n=(τ – γρ)βn = +∞ and

lim
n→∞

M̃
τ – γρ

{

βn

∣∣∣∣ θn –


θn–

∣∣∣∣ + |αn – αn–|
βnθn

+

θn

∣∣∣∣ – βn–

βn

∣∣∣∣
+


βn

∣∣∣∣ – θn–

θn

∣∣∣∣ + |rn – rn–|
βnθn

}
= .

Applying Lemma . to (.), we immediately conclude that

lim
n→∞

‖xn+ – xn‖
θn

= .

In particular, from (H) it follows that

lim
n→∞‖xn+ – xn‖ = .

Step . limn→∞ ‖xn – un‖ =  and limn→∞ ‖yn – ũn‖ = .
By the firm nonexpansivity of Trn , if v ∈ MEP(Θ ,ϕ) = Fix(Trn ), we have

‖un – v‖ = ‖Trnxn – Trnv‖

≤ 〈Trnxn – Trnv,xn – v〉

=


{‖un – v‖ + ‖xn – v‖ – ∥∥Trnxn – Trnv – (xn – v)

∥∥}.
This immediately yields

‖un – v‖ ≤ ‖xn – v‖ – ‖xn – un‖. (.)

Let p ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ . We have

‖ũn – p‖ =
∥∥PC(I – λ∇fαn )un – PC(I – λ∇f )p

∥∥
≤ ∥∥PC(I – λ∇fαn )un – PC(I – λ∇fαn )p

∥∥
+

∥∥PC(I – λ∇fαn )p – PC(I – λ∇f )p
∥∥

≤ ‖un – p‖ + ∥∥PC(I – λ∇fαn )p – PC(I – λ∇f )p
∥∥

≤ ‖un – p‖ + λαn‖p‖. (.)

Note that

yn – p = θnγ Sxn – θnμFp + (I – θnμF)ũn – (I – θnμF)p

= θn(γ Sxn –μFp) + ( – θn)(ũn – p) + θn
[
(I –μF)ũn – (I –μF)p

]
= θn

(
γ Sxn + (I –μF)ũn – p

)
+ ( – θn)(ũn – p).
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Hence we have

yn – ũn = θn
(
γ Sxn + (I –μF)ũn – ũn

)
.

By Lemmas . and ., we have from (.) and (.) that

‖yn – p‖

=
∥∥θn

(
γ Sxn + (I –μF)ũn – p

)
+ ( – θn)(ũn – p)

∥∥

= θn
∥∥γ Sxn + (I –μF)ũn – p

∥∥ + ( – θn)‖ũn – p‖

– θn( – θn)
∥∥γ Sxn + (I –μF)ũn – ũn

∥∥

= θn
∥∥γ Sxn + (I –μF)ũn – p

∥∥ + ( – θn)‖ũn – p‖ –  – θn

θn
‖yn – ũn‖

≤ θn
∥∥γ Sxn + (I –μF)ũn – p

∥∥ + ‖ũn – p‖ –  – θn

θn
‖yn – ũn‖. (.)

Furthermore, utilizing Lemmas . and . we have from (.) and (.) that

‖xn+ – p‖

=
∥∥βnγVyn – βnμFTp + (I – βnμF)Tũn – (I – βnμF)Tp

∥∥

≤ (‖βnγVyn – βnμFTp‖ +
∥∥(I – βnμF)Tũn – (I – βnμF)Tp

∥∥)
≤ (

βn‖γVyn –μFp‖ + ( – βnτ )‖ũn – p‖)
≤ βn


τ

‖γVyn –μFp‖ + ( – βnτ )‖ũn – p‖

≤ βn

τ

[‖γVyn – γVp‖ + 〈γVp –μFp,γVyn –μFp〉] + ( – βnτ )‖ũn – p‖

≤ βn
γ ρ

τ
‖yn – p‖ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖ + ( – βnτ )‖ũn – p‖

≤ βn
γ ρ

τ

[
θn

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + ‖ũn – p‖ –  – θn

θn
‖yn – ũn‖

]
+ βn


τ

‖γVp –μFp‖‖γVyn –μFp‖ + ( – βnτ )‖ũn – p‖

=
(
 – βn

(
τ –

γ ρ

τ

))
‖ũn – p‖ + βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

–
βnγ

ρ( – θn)
τθn

‖yn – ũn‖ + βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ‖ũn – p‖ + βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

–
βnγ

ρ( – θn)
τθn

‖yn – ũn‖ + βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ (‖un – p‖ + λαn‖p‖
) + βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

–
βnγ

ρ( – θn)
τθn

‖yn – ũn‖ + βn

τ

‖γVp –μFp‖‖γVyn –μFp‖
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≤ ‖un – p‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ –

βnγ
ρ( – θn)
τθn

‖yn – ũn‖

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ‖xn – p‖ – ‖xn – un‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ –

βnγ
ρ( – θn)
τθn

‖yn – ũn‖

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖. (.)

It turns out therefore that

‖xn – un‖ + βnγ
ρ( – θn)
τθn

‖yn – ũn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖.

Then it is clear that

‖xn – un‖ ≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖.

Since αn → , βn → , θn → , and ‖xn+ – xn‖ → , we conclude that

lim
n→∞‖xn – un‖ = .

Furthermore,

βnγ
ρ( – θn)
τθn

‖yn – ũn‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + λαn‖p‖
(
‖un – p‖ + λαn‖p‖

)
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖.
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This yields

γ ρ( – θn)
τ

‖yn – ũn‖

≤ (‖xn – p‖ + ‖xn+ – p‖) θn

βn
‖xn – xn+‖ + αnθn

βn
λ‖p‖(‖un – p‖ + λαn‖p‖

)
+ θ

n
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + θn


τ

‖γVp –μFp‖‖γVyn –μFp‖.

Since ‖xn+–xn‖
θn

→ , αn+βn
θn

→ , and θn
βn

→  as n→ ∞, we have

lim
n→∞

θn

βn
‖xn – xn+‖ = lim

n→∞
‖xn – xn+‖

θn
· θ

n
βn

= 

and

lim
n→∞

αnθn

βn
= lim

n→∞
αn

θn
· θ

n
βn

= .

Therefore, from the last inequality we have

lim
n→∞‖yn – ũn‖ = .

Step . limn→∞ ‖un – ũn‖ =  and limn→∞ ‖xn – yn‖ = .
Let p ∈ Fix(T)∩ Fix(Γ )∩ Ξ . Utilizing Lemmas . and . we have from (.) that

‖xn+ – p‖

≤ ‖ũn – p‖ + βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

–
βnγ

ρ( – θn)
τθn

‖yn – ũn‖ + βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ∥∥PC(I – λ∇fαn )un – PC(I – λ∇f )p
∥∥ + βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ∥∥(I – λ∇f )un – (I – λ∇f )p – λαnun
∥∥ + βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ∥∥(I – λ∇f )un – (I – λ∇f )p
∥∥ – λαn

〈
un, (I – λ∇fαn )un – (I – λ∇f )p

〉
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ‖un – p‖ + λ

(
λ –


L

)∥∥∇f (un) –∇f (p)
∥∥

+ λαn‖un‖
∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖
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≤ ‖xn – p‖ + λ

(
λ –


L

)∥∥∇f (un) –∇f (p)
∥∥

+ λαn‖un‖
∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖.

Hence,

λ

(

L
– λ

)∥∥∇f (un) –∇f (p)
∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖ + λαn‖un‖
∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + λαn‖un‖
∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ + βn


τ

‖γVp –μFp‖‖γVyn –μFp‖.

Since αn → , βn → , θn → , and ‖xn+ – xn‖ → , it follows from  < λ < 
L that

limn→∞ ‖∇f (un) –∇f (p)‖ = , and hence

lim
n→∞

∥∥∇fαn (un) –∇f (p)
∥∥ = .

Furthermore, from the firm nonexpansiveness of PC we obtain

‖ũn – p‖ =
∥∥PC(I – λ∇fαn )un – PC(I – λ∇f )p

∥∥

≤ 〈
(I – λ∇fαn )un – (I – λ∇f )p, ũn – p

〉
=



{∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥ + ‖ũn – p‖

–
∥∥(I – λ∇fαn )un – (I – λ∇f )p – (ũn – p)

∥∥}
≤ 


{‖un – p‖ + λ

∥∥∇fαn (un) –∇f (p)
∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ ‖ũn – p‖ – ‖un – ũn‖ + λ

〈
un – ũn,∇fαn (un) –∇f (p)

〉
– λ∥∥∇fαn (un) –∇f (p)

∥∥}.
Consequently,

‖ũn – p‖

≤ ‖un – p‖ – ‖un – ũn‖ + λ
∥∥∇fαn (un) –∇f (p)

∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p
∥∥

+ λ
〈
un – ũn,∇fαn (un) –∇f (p)

〉
– λ∥∥∇fαn (un) –∇f (p)

∥∥.

Thus, from (.) we have

‖xn+ – p‖

≤ ‖ũn – p‖ + βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥
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–
βnγ

ρ( – θn)
τθn

‖yn – ũn‖ + βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ‖un – p‖ – ‖un – ũn‖ + λ
∥∥∇fαn (un) –∇f (p)

∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p
∥∥

+ λ
〈
un – ũn,∇fαn (un) –∇f (p)

〉
– λ∥∥∇fαn (un) –∇f (p)

∥∥

+ βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥ –

βnγ
ρ( – θn)
τθn

‖yn – ũn‖

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ ‖xn – p‖ – ‖un – ũn‖ + λ
∥∥∇fαn (un) –∇f (p)

∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p
∥∥

+ λ‖un – ũn‖
∥∥∇fαn (un) –∇f (p)

∥∥ + βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖.

This implies that

‖un – ũn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + λ
∥∥∇fαn (un) –∇f (p)

∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p
∥∥

+ λ‖un – ũn‖
∥∥∇fαn (un) –∇f (p)

∥∥ + βnθn
γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖
+ λ

∥∥∇fαn (un) –∇f (p)
∥∥∥∥(I – λ∇fαn )un – (I – λ∇f )p

∥∥
+ λ‖un – ũn‖

∥∥∇fαn (un) –∇f (p)
∥∥ + βnθn

γ ρ

τ

∥∥γ Sxn + (I –μF)ũn – p
∥∥

+ βn

τ

‖γVp –μFp‖‖γVyn –μFp‖.

Since θn → , βn → , ‖xn – xn+‖ → , and ‖∇fαn (un) –∇f (p)‖ → , it follows that

lim
n→∞‖un – ũn‖ = .

This, together with ‖xn – un‖ →  and ‖yn – ũn‖ →  (due to Step ), implies that

‖xn – yn‖ ≤ ‖xn – un‖ + ‖un – ũn‖ + ‖ũn – yn‖ →  as n→ ∞,

and thus

lim
n→∞‖xn – yn‖ = .

Step .ωw(xn)⊂ Fix(T)∩MEP(Θ ,ϕ)∩Γ ; moreover, if ‖xn–yn‖ = o(θn) in addition, then
ωw(xn) ⊂ Ξ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/490


Ceng et al. Journal of Inequalities and Applications 2014, 2014:490 Page 18 of 26
http://www.journalofinequalitiesandapplications.com/content/2014/1/490

Let p∗ ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ p∗. Since

xn+ – ũn = βnγ Syn + (I – βnμF)Tũn – ũn

= βn(γ Syn –μFTũn) + Tũn – ũn,

we have

‖Tũn – ũn‖ =
∥∥xn+ – ũn – βn(γ Syn –μFTũn)

∥∥
≤ ‖xn+ – ũn‖ + βn‖γ Syn –μFTũn‖
≤ ‖xn+ – xn‖ + ‖xn – un‖ + ‖un – ũn‖ + βn‖γ Syn –μFTũn‖.

Hence from ‖xn+ – xn‖ → , ‖xn – un‖ → , ‖un – ũn‖ → , and βn → , we get

lim
n→∞‖Tũn – ũn‖ = .

Since ‖xn –un‖ →  and ‖un – ũn‖ → , we have ũni ⇀ p∗. Utilizing Lemma . we derive
p∗ ∈ Fix(T).
Let us show that p∗ ∈MEP(Θ ,ϕ). As a matter of fact, since un = Trnxn, for any y ∈ C we

have

Θ(un, y) + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ .

It follows from (A) that

ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ Θ(y,un).

Replacing n by ni, we have

ϕ(y) – ϕ(uni ) +

rni

〈y – uni ,uni – xni〉 ≥ Θ(y,uni ).

Since uni–xni
rni

→  and uni ⇀ p∗, it follows from (A) that

 ≥ –ϕ(y) + ϕ
(
p∗) +Θ

(
y,p∗), ∀y ∈ C.

Put zt = ty + ( – t)p∗ for all t ∈ (, ] and y ∈ C. We have zt ∈ C and

 ≥ –ϕ(zt) + ϕ
(
p∗) +Θ

(
zt ,p∗). (.)

Utilizing (A), (A), and (.), we have

 = Θ(zt , zt) + ϕ(zt) – ϕ(zt)

≤ tΘ(zt , y) + ( – t)Θ
(
zt ,p∗) + tϕ(y) + ( – t)ϕ

(
p∗) – ϕ(zt)

≤ t
(
Θ(zt , y) + ϕ(y) – ϕ(zt)

)
+ ( – t)

(
Θ

(
zt ,p∗) + ϕ

(
p∗) – ϕ(zt)

)
≤ t

(
Θ(zt , y) + ϕ(y) – ϕ(zt)

)
,
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and hence

 ≤ Θ(zt , y) + ϕ(y) – ϕ(zt). (.)

Letting t →  in (.) and utilizing (A), we get, for each y ∈ C,

 ≤ Θ
(
p∗, y

)
+ ϕ(y) – ϕ

(
p∗).

Hence, p∗ ∈MEP(Θ ,ϕ).
Let us show that p∗ ∈ Γ . From ‖xn–un‖ →  and ‖un – ũn‖ → , we know that uni ⇀ p∗

and ũni ⇀ p∗. Define

T̃v =

{
∇f (v) +NCv, if v ∈ C,
∅, if v /∈ C,

where

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
.

Then T̃ is maximal monotone and  ∈ T̃v if and only if v ∈ VI(C,∇f ); see [] for more
details. Let (v,w) ∈Gph(T̃). Then we have

w ∈ T̃v =∇f (v) +NCv

and hence,

w –∇f (v) ∈NCv.

Therefore,

〈
v – u,w –∇f (v)

〉 ≥ , ∀u ∈ C.

On the other hand, from

ũn = PC
(
un – λ∇fαn (un)

)
and v ∈ C,

we have

〈
un – λ∇fαn (un) – ũn, ũn – v

〉 ≥ ,

and hence〈
v – ũn,

ũn – un
λ

+∇fαn (un)
〉
≥ .

Therefore, from

w –∇f (v) ∈NC(v) and ũni ∈ C,
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we have

〈v – ũni ,w〉 ≥ 〈
v – ũni ,∇f (v)

〉
≥ 〈

v – ũni ,∇f (v)
〉
–

〈
v – ũni ,

ũni – uni
λ

+∇fαni (uni )
〉

=
〈
v – ũni ,∇f (v)

〉
–

〈
v – ũni ,

ũni – uni
λ

+∇f (uni )
〉
– αni〈v – ũni ,uni〉

=
〈
v – ũni ,∇f (v) –∇f (ũni )

〉
+

〈
v – ũni ,∇f (ũni ) –∇f (uni )

〉
–

〈
v – ũni ,

ũni – uni
λ

〉
– αni〈v – ũni ,uni〉

≥ 〈
v – ũni ,∇f (ũni ) –∇f (uni )

〉
–

〈
v – ũni ,

ũni – uni
λ

〉
– αni〈v – ũni ,uni〉.

Hence, we obtain

〈
v – p∗,w

〉 ≥  as i→ ∞.

Since T̃ is maximal monotone, we have p∗ ∈ T̃–, and hence, p∗ ∈VI(C,∇f ), which leads
to p∗ ∈ Γ . Consequently, p∗ ∈ Fix(T)∩MEP(Θ ,ϕ)∩Γ . This shows thatωw(xn) ⊂ Fix(T)∩
MEP(Θ ,ϕ)∩ Γ .
Utilizing Lemmas . and ., we have for every p ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ ,

‖yn – p‖

=
∥∥θnγ Sxn + (I –μF)ũn – p

∥∥

=
∥∥θn(γ Sp –μFp) + θn(γ Sxn – γ Sp) + (I – θnμF)ũn – (I – θnμF)p

∥∥

≤ ∥∥θn(γ Sxn – γ Sp) + (I – θnμF)ũn – (I – θnμF)p
∥∥ + θn〈γ Sp –μFp, yn – p〉

≤ [∥∥θn(γ Sxn – γ Sp)
∥∥ +

∥∥(I – θnμF)ũn – (I – θnμF)p
∥∥] + θn〈γ Sp –μFp, yn – p〉

≤ [
θnγ ‖xn – p‖ + ( – θnτ )‖ũn – p‖] + θn〈γ Sp –μFp, yn – p〉

≤ [
θnγ ‖xn – p‖ + ( – θnτ )

(‖un – p‖ + λαn‖p‖
)] + θn〈γ Sp –μFp, yn – p〉

≤ [
θnγ ‖xn – p‖ + ( – θnτ )

(‖xn – p‖ + λαn‖p‖
)] + θn〈γ Sp –μFp, yn – p〉

≤ [(
 – θn(τ – γ )

)‖xn – p‖ + λαn‖p‖
] + θn〈γ Sp –μFp, yn – p〉

≤ (‖xn – p‖ + λαn‖p‖
) + θn〈γ Sp –μFp, yn – p〉. (.)

Suppose now that ‖xn – yn‖ = o(θn) in addition. It follows from (.) that

〈γ Sp –μFp, yn – p〉

≤ 
θn

[(‖xn – p‖ + λαn‖p‖
) – ‖yn – p‖]

≤ 
θn

(‖xn – p‖ + λαn‖p‖ + ‖yn – p‖)(‖xn – p‖ + λαn‖p‖ – ‖yn – p‖)
≤ 

θn

(‖xn – p‖ + λαn‖p‖ + ‖yn – p‖)(‖xn – yn‖ + λαn‖p‖
)
.
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This, together with αn
θn

→  and ‖xn–yn‖
θn

→ , leads to

lim sup
n→∞

〈γ Sp –μFp, yn – p〉 ≤ .

Observe that

lim sup
n→∞

〈γ Sp –μFp,xn – p〉

= lim sup
n→∞

(〈γ Sp –μFp,xn – yn〉 + 〈γ Sp –μFp, yn – p〉)
= lim sup

n→∞
〈γ Sp –μFp, yn – p〉 ≤ .

So, it follows from xni ⇀ p∗ that

〈
γ Sp –μFp,p∗ – p

〉 ≤ , ∀p ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ .

Note also that  < γ ≤ τ and

μη ≥ τ ⇔ μη ≥  –
√
 –μ

(
η –μκ

)
⇔

√
 –μ

(
η –μκ

) ≥  –μη

⇔  – μη +μκ ≥  – μη +μη

⇔ κ ≥ η

⇔ κ ≥ η.

It is clear that

〈
(μF – γ S)x – (μF – γ S)y,x – y

〉 ≥ (μη – γ )‖x – y‖, ∀x, y ∈ H .

Hence, it follows from  < γ ≤ τ ≤ μη that μF – γ S is monotone. Since p∗ ∈ ωw(xn) ⊂
Fix(T)∩MEP(Θ ,ϕ)∩ Γ , by Minty’s lemma [] we have

〈
γ Sp∗ –μFp∗,p – p∗〉 ≤ , ∀p ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ ;

that is, p∗ ∈ Ξ . This shows that ωw(xn) ⊂ Ξ . �

Theorem . Assuming the conditions in Theorem ..We have:
(i) {xn} and {yn} both converge strongly to an element x∗ ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ ,

which is a unique solution of the variational inequality

〈
γVx∗ –μFx∗,x – x∗〉 ≤ , ∀x ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ .

(ii) {xn} and {yn} both converge strongly to a unique solution of THVI (.) if
‖xn – yn‖ = o(θn) in addition.
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Proof Utilizing Lemmas . and . we get from (.)

‖xn+ – p‖

=
∥∥βnγVyn + (I –μF)Tũn – p

∥∥

=
∥∥βn(γVp –μFp) + βn(γVyn – γVp) + (I – βnμF)Tũn – (I – βnμF)Tp

∥∥

≤ ∥∥βn(γVyn – γVp) + (I – θnμF)Tũn – (I – θnμF)Tp
∥∥

+ βn〈γVp –μFp,xn+ – p〉
≤ [∥∥βn(γVyn – γVp)

∥∥ +
∥∥(I – βnμF)Tũn – (I – θnμF)Tp

∥∥]
+ βn〈γVp –μFp,xn+ – p〉

≤ [
βnγρ‖yn – p‖ + ( – βnτ )‖ũn – p‖] + βn〈γVp –μFp,xn+ – p〉

≤ βn
γ ρ

τ
‖yn – p‖ + ( – βnτ )‖ũn – p‖ + βn〈γVp –μFp,xn+ – p〉

≤ βn
γ ρ

τ

[(‖xn – p‖ + λαn‖p‖
) + θn〈γ Sp –μFp, yn – p〉]

+ ( – βnτ )
(‖xn – p‖ + λαn‖p‖

) + βn〈γVp –μFp,xn+ – p〉

=
(
 – βn

τ  – γ ρ

τ

)(‖xn – p‖ + λαn‖p‖
) + βnθn

γ ρ

τ
〈γ Sp –μFp, yn – p〉

+ βn〈γVp –μFp,xn+ – p〉, (.)

where τ =  –
√
 –μ(η –μκ).

Note thatμF–γV :H →H is (μκ +γρ)-Lipschitzian and (μη–γρ)-stronglymonotone,
namely

∥∥(μF – γV )x – (μF – γV )y
∥∥ ≤ (μκ + γρ)‖x – y‖, ∀x, y ∈H

and

〈
(μF – γV )x – (μF – γV )y,x – y

〉 ≥ (μη – γρ)‖x – y‖, ∀x, y ∈H .

Hence there exists a unique solution x∗ ∈ Fix(T) ∩ MEP(Θ ,ϕ) ∩ Γ of the variational in-
equality problem

〈
γVx∗ –μFx∗,x – x∗〉 ≤ , ∀x ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ . (.)

Since the sequence {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γVx∗ –μFx∗,xn – x∗〉 = lim

i→∞
〈
γVx∗ –μFx∗,xni – x∗〉. (.)

Also, since H is reflexive and {xn} is bounded, without loss of generality we may assume
that xni ⇀ x̄ ∈ Fix(T)∩MEP(Θ ,ϕ)∩Γ (due to Theorem .(i)). Taking into consideration
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that x∗ is the unique solution of VIP (.), we obtain from (.)

lim sup
n→∞

〈
γVx∗ –μFx∗,xn+ – x∗〉

= lim sup
n→∞

(〈
γVx∗ –μFx∗,xn – x∗〉 + 〈

γVx∗ –μFx∗,xn+ – xn
〉)

= lim sup
n→∞

〈
γVx∗ –μFx∗,xn – x∗〉 = lim

i→∞
〈
γVx∗ –μFx∗,xni – x∗〉

=
〈
γVx∗ –μFx∗, x̄ – x∗〉 ≤ . (.)

Putting p = x∗, from (.) we conclude that

∥∥xn+ – x∗∥∥

≤
(
 – βn

τ  – γ ρ

τ

)(∥∥xn – x∗∥∥ + λαn
∥∥x∗∥∥)

+ βnθn
γ ρ

τ

∥∥γ Sx∗ –μFx∗∥∥∥∥yn – x∗∥∥ + βn
〈
γVx∗ –μFx∗,xn+ – x∗〉

≤
(
 – βn

τ  – γ ρ

τ

)∥∥xn – x∗∥∥ + λαn
∥∥x∗∥∥(


∥∥xn – x∗∥∥ + λαn

∥∥x∗∥∥)
+ βnθn

γ ρ

τ

∥∥γ Sx∗ –μFx∗∥∥∥∥yn – x∗∥∥ + βn
〈
γVx∗ –μFx∗,xn+ – x∗〉

=
(
 – βn

τ  – γ ρ

τ

)∥∥xn – x∗∥∥ + βn
τ  – γ ρ

τ

· τ

τ  – γ ρ

{
θn

γ ρ

τ

∥∥γ Sx∗ –μFx∗∥∥∥∥yn – x∗∥∥
+ 

〈
γVx∗ –μFx∗,xn+ – x∗〉} + αnλ

∥∥x∗∥∥(

∥∥xn – x∗∥∥ + λαn

∥∥x∗∥∥)
. (.)

Since
∑∞

n= βn = +∞,
∑∞

n= αn < +∞, and θn →  as n → ∞, it follows from (.) that∑∞
n= βn

τ–γ ρ

τ
= +∞,

∑∞
n= αnλ‖x∗‖(‖xn – x∗‖ + λαn‖x∗‖) < +∞, and

lim sup
n→∞

τ

τ  – γ ρ

{
θn

γ ρ

τ

∥∥γ Sx∗–μFx∗∥∥∥∥yn–x∗∥∥+〈γVx∗–μFx∗,xn+ –x∗〉} ≤ .

Applying Lemma . to (.), we get

lim
n→∞

∥∥xn – x∗∥∥ = .

This, together with ‖xn – yn‖ → , implies that

lim
n→∞

∥∥yn – x∗∥∥ = .

From now on, we suppose that ‖xn – yn‖ = o(θn). Then by Theorem .(ii) we know that
ωw(xn) ⊂ Ξ . Since μF – γV : H → H is (μκ + γρ)-Lipschitzian and (μη – γρ)-strongly
monotone, there exists a unique solution x∗ ∈ Ξ of the variational inequality problem

〈
γVx∗ –μFx∗,x – x∗〉 ≤ , ∀x ∈ Ξ . (.)
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Since the sequence {xn} is bounded, there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γVx∗ –μFx∗,xn – x∗〉 = lim

i→∞
〈
γVx∗ –μFx∗,xni – x∗〉. (.)

Again, since H is reflexive and {xn} is bounded, without loss of generality we may assume
that xni ⇀ x̄ ∈ Ξ (due to Theorem .(ii)). Taking into account that x∗ is the unique solu-
tion of VIP (.), we deduce from (.) that

lim sup
n→∞

〈
γVx∗ –μFx∗,xn+ – x∗〉 ≤ 〈

γVx∗ –μFx∗, x̄ – x∗〉 ≤ .

Putting p = x∗, from (.) we immediately infer that

∥∥xn+ – x∗∥∥

≤
(
 – βn

τ  – γ ρ

τ

)∥∥xn – x∗∥∥ + βn
τ  – γ ρ

τ

· τ

τ  – γ ρ

{
θn

γ ρ

τ

∥∥γ Sx∗ –μFx∗∥∥∥∥yn – x∗∥∥
+ 

〈
γVx∗ –μFx∗,xn+ – x∗〉} + αnλ

∥∥x∗∥∥(

∥∥xn – x∗∥∥ + λαn

∥∥x∗∥∥)
.

Repeating the same arguments as above, we can readily see that

lim
n→∞

∥∥xn – x∗∥∥ = ,

which, together with ‖xn – yn‖ → , yields

lim
n→∞

∥∥yn – x∗∥∥ = .

This completes the proof. �

Remark . Our iterative algorithm (.) is very different from Xu’s iterative ones in [],
and Yao et al.’s iterative one in []. Here, the two-step iterative scheme in [] for two non-
expansive mappings and the gradient-projection iterative schemes in [] for MP (.) are
extended to develop our three-step iterative scheme (.) with regularization for the THVI
(.). It is worth pointing out that without assuming the conditions that ‖xn – yn‖ = o(θn)
and that ‖x – Tx‖ ≥ kDist(x,Fix(T)), ∀x ∈ C for some constant k > , our three-step iter-
ative scheme (.) converges strongly to an element x∗ ∈ Fix(T) ∩MEP(Θ ,ϕ) ∩ Γ , which
is a unique solution of the variational inequality

〈
γVx∗ –μFx∗,x – x∗〉 ≤ , ∀x ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ .

See Theorem .(i).

Remark . As an example, we consider the following sequences:
(a) αn = 

n+s+t , βn = 
ns , and θn = 

nt where t ∈ (,  ] and s ∈ (t, t) or t ∈ (  ,

 ),

s ∈ (t,  – t);
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(b) rn = 
 +


n+s+t .

They satisfy the hypotheses on the parameter sequences in Theorems . and ..

Remark . Our Theorems . and . improve, extend, supplement, and develop [,
Theorems . and .] and [, Theorems . and .] in the following aspects:
(a) Our THVI (.) with the unique solution x∗ ∈ Ξ satisfying

x∗ = PFix(T)∩Fix(Γ )∩Ξ

(
I – (μF – γ S)

)
x∗

is more general than the problem of finding an element x̃ ∈ C satisfying x̃ = PFix(T)Sx̃
in [] and the problem of finding an element x̃ ∈ Ξ in [].

(b) Our three-step iterative algorithm (.) for THVI (.) is more flexible, more
advantageous and more subtle than Xu’s iterative ones in [] and than Yao et al.’s
two-step iterative one in [], because, e.g., it drops the requirement of
‖x – Tx‖ ≥ kDist(x,Fix(T)), ∀x ∈ C for some k >  in [, Theorem .(v)].

(c) The arguments and techniques in our Theorems . and . are very different from
the ones in [, Theorems . and .] and in [, Theorems . and .] because we
utilize the properties of resolvent operators and maximal monotone mappings
(Lemmas ., . and .), the convergence criteria of real sequences (Lemma .),
and the contractive coefficient estimates for the contractions associated with
nonexpansive mappings (Lemma .).

(d) Compared with the proofs of [, Theorems . and .], the proofs of our Theorems
. and . derive limn→∞ ‖un – PC(I – λ∇fαn )un‖ =  via the argument showing
limn→∞ ‖∇fαn (un) –∇f (p)‖ = , ∀p ∈ Fix(T)∩MEP(Θ ,ϕ)∩ Γ (see Step  in the
proof of Theorem .).
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