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Abstract
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1 Introduction
It is well known that the class of nonlinear operator equations of various types has many
useful applications in describing numerous problems of the real world. A number of equa-
tions which include several given operators have arisen in many branches of science such
as the theory of optimal control, economics, biological, mathematical physics and engi-
neering. The present paper is concerned with the solvability of the following quite general
nonlinear functional integral equation:

x(t) = f
(
t,x(t),

∫ t


k(t, s)u

(
s,x(s)

)
ds

)
, t ∈R

+ := [,∞), (.)

in L := L(R+), the space of Lebesgue integrable functions on R
+. Here, u : R+ × R → R

and f : R+ × R
 → R are two given functions, while k is a given real function defined on

R
+ ×R

+.
Among nonlinear operators, there is a distinguished class called superposition opera-

tors. The solvability of Eq. (.) is closely related to the fixed points of the nonautonomous
type superposition operator, which is asked to prove that there exists x ∈D satisfying the
following operator equation:

x = F(x,Ax) (.)
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for two given operators F : X×Y → X andA :D ⊂ X → X, whereX and Y are two Banach
spaces. Our goal in this paper is to study under what conditions Eq. (.) is solvable in an
L space. To this end, we establish a fixed point theorem for the solvability of Eq. (.) in
advance.
The organization of this paper is as follows. In Section , we gather some notions and

preliminary facts, including the concepts and properties of the measure of weak noncom-
pactness, which will be needed in our further considerations. In Section , we establish a
new fixed point theorem for Eq. (.). In Section , we prove the existence of integrable
solutions for Eq. (.) by virtue of the measure of weak noncompactness.

2 Preliminaries
Definition . Let I be an interval in R. A function f : I × R → R is said to be a
Carathéodory function if:
(a) for each fixed x ∈R, the function f (·,x) is Lebesgue measurable in I ;
(b) for almost everywhere (a.e., for short) fixed t ∈ I , the function f (t, ·) :R →R is

continuous.

Letm(I) be a set of all measurable functions ψ : I →R. If f is a Carathéodory function,
then f defines amappingNf :m(I)→m(I) by (Nf ψ)(t) = f (t,ψ(t)). This mapping is called
the superposition operator (orNemytskii operator) associated to f . The theory concerning
superposition operators is presented in [].
For a givenmeasurable functionψ : I →R, the composite operatorNf ◦ψ(·) := f (·,ψ(·))

whichmaps I intoR is said to be a nonautonomous type superposition operator. By gener-
alizing this concept, the solvability of Eq. (.) may be thought the existence of fixed points
of the nonautonomous type superposition operatorNF ◦A on D.
The following theorem was proved by Krasnosel’skii [] (see also []) in the case when

I is a bounded interval and has been extended to an unbounded interval by Appell and
Zabrejko [].

Theorem . (see [, Theorem ., pp.]) Let I be a (bounded or unbounded) interval
inR.The superposition operatorNf maps L(I) into L(I) if and only if there exist a function
L+(I) and a constant b >  such that

∣∣f (t,x)∣∣ ≤ a(t) + b|x|,

where L+(I) denotes a positive cone of the space L(I).

In this case, the operator Nf is continuous and bounded in the sense that it maps
bounded sets in bounded sets.
The following Scorza-Dragoni theoremexplains the structure of theCarathéodory func-

tions on a bounded interval.

Theorem . (see [, Theorem ]) Let I be a bounded interval of R, and let f : I ×R →R

be a Carathéodory function. Then, for each ε > , there exists a closed subset Dε of the
interval I such that meas(I\Dε) < ε and f :Dε ×R →R is continuous.
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Next, we gather together some notations and preliminary facts of some weak topology
feature which will be needed in our further considerations. Let B(X) be a collection of
all nonempty bounded subsets of a Banach space X, and let W(X) be a subset of B(X)
consisting of all weakly compact subsets ofX. Also, letUr denote a closed ball inX centered
in  and with radius r.
In what follows, we accept the following definition [].

Definition . Let X be a Banach space; let M, M and M be in B(X). A function μ :
B(X) → R

+ is said to be a measure of weak noncompactness if it satisfies the following
conditions:
() the family ker(μ) := {M ∈B(X) : μ(M) = } is nonempty and ker(μ) is contained in

the set of relatively weakly compact sets of X ;
() M ⊂M ⇒ μ(M)≤ μ(M);
() μ(conv(M)) = μ(M), where conv(M) refers to the closed convex hull ofM;
() μ(λM + ( – λ)M) ≤ λμ(M) + ( – λ)μ(M) for λ ∈ [, ];
() if (Mn)∞n= is a decreasing sequence of nonempty, bounded and weakly closed subsets

of X with limn→∞ μ(Mn) = , thenM∞ :=
⋂∞

n=Mn is nonempty.

The family ker(μ) described in () is called the kernel of the measure of weak noncom-
pactness μ. Note that the intersection set M∞ from () belongs to ker(μ) since μ(M∞) ≤
μ(Mn) for every n ∈N and limn→∞ Mn = .
The first important example of a measure of weak noncompactness has been defined by

De Blasi [] as follows:

ω(M) = inf
{
r >  : ∃W ∈W(X) such thatM ⊂W + Ur

}
.

The De Blasi measure of weak noncompactness has some interesting properties. It plays
a significant role in nonlinear analysis and has many applications.
Nevertheless, it is rather difficult to express the De Blasi measure of weak noncompact-

ness with the help of a convenient formula in a concrete Banach space. Such a formula is
only known in the case of the space of L(I), where I is a bounded subinterval of R. In [],
Appell and De Pascale gave to ω the following simple form in spaces:

ω(M) = lim
ε→

sup
ψ∈M

{
sup

{∫
D

∣∣ψ(t)
∣∣dt :D⊂ I,meas(D)≤ ε

}}

for all bounded subsetsM of L(I), where meas(·) denotes the Lebesgue measure.
For a nonempty and bounded subset M of the space L(R+), Banas and Knap [] con-

structed a useful measure of weak noncompactness as follows:

c(M) := lim
ε→

sup
ψ∈M

{
sup

{∫
D

∣∣ψ(t)
∣∣dt :D⊂ R

+,meas(D)≤ ε

}}
,

d(M) := lim
T→∞ sup

ψ∈M

{∫ ∞

T

∣∣ψ(t)
∣∣dt}.

Finally, let us put

μ(M) = c(M) + d(M).
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Based on the following criterion for weak noncompactness due to Dieudonné [], it was
shown that the function μ is a measure of weak noncompactness in the space L(R+).

Theorem . A bounded set N is relatively weakly compact in L(R+) if and only if the
following two conditions are satisfied:
() for any ε > , there exists δ >  such that if meas(D)≤ δ then

∫
D |ψ(t)|dt ≤ ε for all

ψ ∈ N ,
() for any ε > , there exists T >  such that

∫ ∞
T |ψ(t)|dt ≤ ε for all ψ ∈N .

The nonlinear contractive property of the operators plays some important roles in our
subsequent considerations.

Definition . Let D be a subset of the Banach space X. An operator T :D → X is said
to be nonlinear contractive (or a ϕ-nonlinear contraction) if there exists a continuous and
nondecreasing function ϕ :R+ →R

+ with ϕ(r) < r for r >  such that

‖Tx – Tx‖ ≤ ϕ
(‖x – x‖

)

for all x,x ∈D.

Remark . If we take ϕ(r) = λr with  ≤ λ < , then such a ϕ-nonlinear contraction is
also said to be λ-contraction.

Lemma. Let X and Y be two Banach spaces, and letD be a subset of Y . If F : X×Y → X
is continuous, and for any y ∈D the operator F(·, y) is a ϕ-nonlinear contraction, then there
exists a continuous map J :D → X such that Jy = F(Jy, y) for any y ∈D.

Proof For arbitrary fixed y ∈D, themapping F(·, y) defined by x �→ F(x, y) is a ϕ-nonlinear
contraction and maps X into X, so it has a unique fixed point by [, Theorem ]. Let us
denote by J :D → X the map which assigns to each y ∈D the unique point in X such that
Jy = F(Jy, y). Thus, the map J is well defined.
For any y ∈D and a sequence (yn)n∈N ⊂D which converges to y, we have

‖Jyn – Jy‖ =
∥∥F(Jyn, yn) – F(Jy, y)

∥∥
≤ ∥∥F(Jyn, yn) – F(Jy, yn)

∥∥ +
∥∥F(Jy, yn) – F(Jy, y)

∥∥
≤ ϕ

(‖Jyn – Jy‖
)
+

∥∥F(Jy, yn) – F(Jy, y)
∥∥,

which implies

‖Jyn – Jy‖ – ϕ
(‖Jyn – Jy‖

) ≤ ∥∥F(Jy, yn) – F(Jy, y)
∥∥.

Let rn := ‖Jyn–Jy‖. Since the operator F is continuous, we obtain rn–ϕ(rn) →  as n → ∞.
The properties of the function ϕ show that rn → , that is, Jyn → Jy. The continuity of J
is proved. �
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3 Fixed point theorem of nonautonomous type superposition operators
Theorem . Let X and Y be two Banach spaces, and let D be a nonempty subset of X .
Suppose that the operators A :D → Y and F : X × Y → X satisfy the following:
() A and F is continuous,
() for any y ∈ A(D), the operator F(·, y) is a ϕ-nonlinear contraction,
() there exists a nonempty, compact and convex subset P of D such that

x = F(x,Az) ⇒ x ∈P for all z ∈P .

Then there is a point x in D such that x = F(x,Ax).

Proof Let us denote by J : A(D) → X the map which assigns to each y ∈ A(D) the unique
point inX such that Jy = F(Jy, y). FromLemma., themap J is well defined and continuous
on A(D).
By assumption (), for any z ∈ P , we infer that there is x = (J ◦ A)z ∈ P such that x =

F(x,Az). This shows that (J ◦A)(P) ⊂ P . Since A and J are all continuous, the composite
operator J ◦ A is continuous on P . Now applying the Schauder fixed point theorem, we
conclude that J ◦ A has at least one fixed point x ∈ P ⊂ D such that (J ◦ A)x = x, which
implies that

F(x,Ax) = F
(
(J ◦A)x,Ax) = (J ◦A)x = x.

This completes the proof. �

Remark . There are some fixed point theorems, which involve several operators such
as the operators Tx := Ax + Bx in a Banach space, or Tx := AxBx + Cx in Banach algebras
etc., and they may be formulated by Theorem . in a coincident form.

For example, let F(x,Ax) := Ax + Bx and D be a nonempty, convex and closed set of a
Banach space X in Theorem ., where A :D → X is compact and continuous, B :D → X
is a contraction mapping and Ax + By ∈ D for all x, y ∈ D. Then we immediately obtain
the celebrated Krasnosel’skii fixed point theorem (see [, Theorem .., pp.]), which
implies that Theorem . is a generalization of the Krasnosel’skii fixed point theorem. In
fact, if we takeP = conv((I–B)–A(M)), thenP satisfies the assumption () of Theorem .
(see the proof of [, Lemma .., pp.]).
As another example, let F(x,Ax) := AxBx + Cx and D be a closed convex and bounded

subset of the Banach algebraX in Theorem., whereB :D → X is completely continuous,
and A,C : X → X satisfy

‖Ax –Ay‖ ≤ φA
(‖x – y‖), ‖Cx –Cy‖ ≤ φC

(‖x – y‖), ∀x, y ∈ X,

where φA,φC : R+ → R
+ are two continuous nondecreasing functions satisfying φA() =

φC() =  and

MφA(r) + φC(r) < r, ∀r > 
(
M := sup

{‖Bx‖ : x ∈D
})
.
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It is obvious that F(·, y) is a ϕ-nonlinear contraction for any y ∈ A(D) with ϕ(r) =MφA(r) +
φC(r), and if we take P = conv(( I–CA )–B(D)), it is also easily proved that P satisfies the
assumption () of Theorem .. Thus, we obtain the fixed point theorem for the operator
AB + C in Banach algebras, which implies that Theorem . is a generalization of [,
Theorem .].

4 The solvability of general nonlinear integral equations in L1 space
In this section, we study the existence of integrable solutions for Eq. (.). A number of
functional integral equations, such as the following:

x(t) = f
(
t,

∫ t


k(t, s)f

(
s,x(s)

)
ds

)
, t ∈R; (.)

x(t) = g
(
t,x(t)

)
+ f

(
t,

∫ t


k(t, s)f

(
s,x(s)

)
ds

)
, t ∈R; (.)

x(t) = f
(
t,x(t)

)
+ f

(
t,x(t)

)∫ t


k(t, s)u

(
s,x(s)

)
ds, t ∈R, (.)

may all be illustrated as special examples of Eq. (.).
Solutions to Eq. (.) will be sought in L := L(R+), the space of Lebesgue integrable

functions on R
+ with values in R, endowed with the standard norm ‖x‖ :=

∫ ∞
 |x(t)|dt.

Here are some hypotheses on the nonlinear functions involved in Eq. (.).

Assumption . Assume that

(H) u : R+ × R → R is a Carathéodory function, and there exist a function a ∈ L+ and a
constant b >  such that |u(t,x)| ≤ a(t) + b|x|;

(H) k :R+ ×R
+ →R is a Carathéodory function, and ess sups∈R+

∫ ∞
s |k(t, s)|dt < ∞;

(H) f : R+ × R
 → R is a Carathéodory function; there exist two positive numbers α, β

and a function g ∈ L+ such that |f (t,x(t), y(t))| ≤ g(t) +α|x(t)|+β|y(t)| for a.e. t ∈R
+;

(H) α + bβ‖K‖+ ‖g‖ ≤  if g = , otherwise α + bβ‖K‖ < , where ‖K‖ denotes the norm
of the linear Volterra integral operator K generated by the function k;

(H) for an arbitrary fixed y(t) =
∫ t
 k(t, s)u(s, z(s))ds with z ∈ Ur , where r satisfies

r ≥ ‖g‖ + β‖k‖‖a‖
 – α – bβ‖K‖ ,

there exists a continuous and nondecreasing function ϕ : R+ → R
+ with ϕ(r) < r for

r >  such that∫ ∞



∣∣f (t,x(t), y(t)) – f
(
t,x(t), y(t)

)
dt

∣∣ ≤ ϕ
(‖x – x‖

)
, ∀x,x ∈ L.

Remark . First notice that Eq. (.) may be written in an abstract form by Eq. (.),
where F is the superposition operator associated to the function f (F :=Nf , the superpo-
sition operator of double variables type was proposed by []):

F : L × L → L,

(x, y) �→ F(x, y) :R+ →R; F(x, y)(t) = f
(
t,x(t), y(t)

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/487
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and A := K ◦Nu appears as the composition of the superposition operator associated to u
with the linear Volterra integral operator defined by

K : L × L → L,

ψ �→ Kψ :R+ →R; Kψ(t) =
∫ t


k(t, s)ψ(s)ds.

Our aim is now to prove that the nonautonomous type superposition operator NF ◦ A
has a fixed point in L(R+). Before starting to study this problem, we give some remarks
to illustrate that the operators A and F are well defined as follows.
() It should be noted that assumption (H) leads to the estimate

∥∥∥∥
∫ t


k(t, s)ψ(s)ds

∥∥∥∥ =
∫ ∞

s

∣∣k(t, s)∣∣dt ∫ ∞



∣∣ψ(s)
∣∣ds

≤
(
ess sup

s∈R+

∫ ∞

s

∣∣k(t, s)∣∣dt)‖ψ‖, ψ ∈ L,

which shows that the linear Volterra integral operator K is continuous from an L

space into itself, and ‖K‖ ≤ ess sups∈R+
∫ ∞
s |k(t, s)|dt.

() Assumption (H) shows that the superposition operatorNu is continuous and maps
bounded sets of L into bounded sets of L by Theorem ..

() Note that α|x| + β|y| being an equivalent norm of (x, y) in R
, according to the

Lucchetti-Patrone theorem (see [] or [, Theorem ]), assumption (H) shows
that the superposition operatorNf is continuous and maps bounded sets of L × L

into bounded sets of L.

Theorem . If Assumption . is verified, then the equation

x(t) = f
(
t,x(t),

∫ t


k(t, s)u

(
s,x(s)

)
ds

)
, t ∈ R,

that is, Eq. (.) has at least a solution x ∈ L.

Proof It is clear that the solutions of the operator equation x = F(x,Ax) satisfy Eq. (.).We
will use Theorem . to prove the present theorem, thus the assumptions of Theorem .
have to be checked. Our proving is divided into several steps.
() By Remark ., the operators A : L → L, F : L × L → L are well defined and

continuous, and then the assumption () of Theorem . is fulfilled.
() By (H), for arbitrary fixed y = Az with z ∈ Ur , there exists a continuous and non-

decreasing function ϕ :R+ →R
+ such that

∥∥F(x, y) – F(x, y)
∥∥ =

∫ ∞



∣∣f (t,x(t), y(t)) – f
(
t,x(t), y(t)

)∣∣dt
≤ ϕ

(‖x – x‖
)

for any x,x ∈ L, and then the assumption () of Theorem . is fulfilled.

http://www.journalofinequalitiesandapplications.com/content/2014/1/487
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() If there is x ∈ L such that x(t) = f (t,x(t),Az(t)) for z ∈ Ur , then by (H) we have

∣∣f (t,x(t),Az(t))∣∣ ≤ g(t) + α
∣∣x(t)∣∣ + β

∣∣Az(t)∣∣ = g(t) + α
∣∣x(t)∣∣ + β

∣∣(K ◦Nu ◦ z)(t)∣∣.
It follows that

‖x‖ =
∫ ∞



∣∣f (t,x(t),Az(t))∣∣dt ≤ ‖g‖ + α‖x‖ + β‖K‖(‖a‖ + b‖z‖),
that is,

‖x‖ ≤ ( – α)–
(‖g‖ + β‖K‖(‖a‖ + b‖z‖))

≤ ( – α)–
(‖g‖ + β‖K‖‖a‖ + bβ‖K‖r

) ≤ r

since ‖g‖ + β‖K‖‖a‖ ≤ r( – α – bβ‖K‖) by (H). This shows that the nonautonomous
type superposition operatorNF ◦Amaps Ur into itself.
() Let P := Ur , and let

Pn := conv

{
x ∈ L : x(t) = f

(
t,x(t),

∫ t


k(t, s)u

(
s, z(s)

)
ds

)
, z ∈Pn–

}
, n ∈N.

Then Pn (n = , , , . . .) are all nonempty closed convex, and then they are weakly closed.
Moreover, we have P ⊂ Ur = P from step (), and by the induction we may infer that
Pn ⊂Pn– for all n ∈N.
On the other hand, for each ε >  and a nonempty measurable subset D of R+ such that

meas(D)≤ ε, we know that if there exist z ∈Pn– and x ∈Pn such that

x(t) = f
(
t,x(t),

∫ t


k(t, s)u

(
s, z(s)

)
ds

)
,

then

∫
D

∣∣x(t)∣∣dt = ∫
D

∣∣∣∣f
(
t,x(t),

∫ t


k(t, s)u

(
s, z(s)

)
ds

)∣∣∣∣dt
≤

∫
D
g(t)dt + α

∫
D

∣∣x(t)∣∣dt + β‖K‖
(∫

D
a(t)dt + b

∫
D

∣∣z(t)∣∣dt),
which implies that

∫
D

∣∣x(t)∣∣dt ≤ ( – α)–
(∫

D
g(t)dt + β‖K‖

∫
D
a(t)dt + bβ‖K‖

∫
D

∣∣z(t)∣∣dt).
Taking into account the fact that the set consisting of one element is weakly compact, the
use of Theorem . leads to

lim
ε→

sup

{∫
D
g(t)dt :D ⊂R

+,meas(D)≤ ε

}
= ,

lim
ε→

sup

{∫
D
a(t)dt :D⊂R

+,meas(D) ≤ ε

}
= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/487
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As a result,

c(Pn) = lim
ε→

sup
x∈Pn

{
sup

[∫
D

∣∣x(t)∣∣dt :D ⊂R
+,meas(D)≤ ε

]}

≤ ( – α)–bβ‖K‖ lim
ε→

sup
z∈Pn–

{
sup

{∫
D

∣∣z(t)∣∣dt :D ⊂R
+,meas(D)≤ ε

}}

= λc(Pn–), (.)

where λ := ( – α)–bβ‖K‖ <  by (H).
In the sequel let us fix arbitrarily the number T > . Then, for z ∈Pn– and x ∈Pn with

x(t) = f
(
t,x(t),

∫ t


k(t, s)u

(
s, z(s)

)
ds

)
,

we have

∫ ∞

T

∣∣x(t)∣∣dt = ∫ ∞

T

∣∣∣∣f
(
t,x(t),

∫ t


k(t, s)u

(
s, z(s)

)
ds

)∣∣∣∣dt
≤

∫ ∞

T
g(t)dt + α

∫ ∞

T

∣∣x(t)∣∣dt + β‖K‖
(∫ ∞

T
a(t)dt + b

∫ ∞

T

∣∣z(t)∣∣dt),
which implies that

∫ ∞

T

∣∣x(t)∣∣dt ≤ ( – α)–
(∫ ∞

T
g(t)dt + β‖K‖

∫ ∞

T
a(t)dt + bβ‖K‖

∫ ∞

T

∣∣z(t)∣∣dt),
and the use of Theorem . leads to

lim
T→∞

∫ ∞

T
g(t)dt = , and lim

T→∞

∫ ∞

T
a(t)dt = .

As a result,

d(Pn) = lim
ε→

sup
x∈Pn

{∫ ∞

T

∣∣x(t)∣∣dt ≤ ε

}

≤ λ lim
ε→

sup
z∈Pn–

{∫ ∞

T

∣∣z(t)∣∣dt ≤ ε

}
= λd(Pn–). (.)

Thus, combining estimates (.) and (.), we obtain that

μ(Pn) ≤ λμ(Pn–).

Further, from μ(Pn)≤ λμ(Pn–) ≤ · · · ≤ λnμ(P) for n ∈N, we obtain that

lim
n→∞μ(Pn) = .

Setting P :=
⋂∞

n=Pn, we see that P is nonempty and weakly compact by Definition ..
Moreover, we infer that for any z ∈P if x = F(x,Az) holds, then x ∈P .
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() In this final step, let us prove that P is compact. To this end, for any sequence
(xn)n∈N ⊂P with

xn(t) = f
(
t,xn(t),

∫ t


k(t, s)u

(
s, zn(s)

)
ds

)
, (zn)n∈N ⊂P , (.)

we shall show that (xn)n∈N possesses a convergent subsequence in L.
SinceP is weakly compact, for an arbitrary fixed ε > , by Theorem . there existsT > 

such that∫ ∞

T

∣∣xm(t) – xn(t)
∣∣dt ≤ ε


(.)

for allm,n ∈ N.
Moreover, for the sequence (zn)n∈N in (.), let

yn(t) :=
∫ t


k(t, s)u

(
s, zn(s)

)
ds, n ∈N.

According to Theorem ., there exists a closed subsetDε of [,T] such that the functions
k and u are continuous onDε × [,T] andDε ×R, respectively, wheremeas([,T]\Dε) ≤ ε.
By taking t, t ∈Dε with t < t, we have

∣∣yn(t) – yn(t)
∣∣ = ∣∣∣∣

∫ t


k(t, s)u

(
s, zn(s)

)
ds –

∫ t


k(t, s)u

(
s, zn(s)

)
ds

∣∣∣∣
≤

∫ t



∣∣k(t, s) – k(t, s)
∣∣∣∣u(

s, zn(s)
)∣∣ds + ∣∣∣∣

∫ t

t
k(t, s)u

(
s, zn(s)

)
ds

∣∣∣∣
≤ ωT(

k, |t – t|
)∫ T



(
a(s) + b

∣∣zn(s)∣∣)ds + k̃
∫ t

t

(
a(s) + b

∣∣zn(s)∣∣)ds
≤ ωT(

k, |t – t|
)(‖a‖ + br

)
+ k̃

∫ t

t
a(s)ds + b̃k

∫ t

t

∣∣zn(s)∣∣ds, (.)

where k̃ := max{|k(t, s)| : (t, s) ∈ Dε × [,T]}, and ωT (k, |t – t|) denotes the modulus of
continuity of the function k on the set Dε × [,T].
Since (zn)n∈N ⊂ P is relatively weakly compact and the set consisting of one element is

also weakly compact, by Theorem . we infer that the terms
∫ t
t

|zn(s)|ds and
∫ t
t
a(s)ds

in (.) may all be arbitrarily small provided that the number |t – t| is small enough.
Thus, we obtain that the sequence (yn(t))n∈N is equicontinuous on C(Dε) (the space of all
continuous functions defined on Dε).
On the other hand, we have

∣∣yn(t)∣∣ =
∣∣∣∣
∫ t


k(t, s)u

(
s, zn(s)

)
ds

∣∣∣∣ ≤
∫ t



∣∣k(t, s)∣∣(a(s) + b
∣∣zn(s)∣∣)ds

≤ k̃
(‖a‖ + b‖zn‖

) ≤ k̃
(‖a‖ + br

)
:= Y ,

which implies the sequence (yn(t))n∈N is uniformly bounded on C(Dε).
Since the map J , which signs each y ∈ A(P) the unique point x ∈ P such that x(t) =

f (t,x(t), y(t)), is well defined and uniformly continuous on Dε × [–Y ,Y ], by Lemma . we

http://www.journalofinequalitiesandapplications.com/content/2014/1/487
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infer that the sequence (xn(t))n∈N with xn(t) = f (t,xn(t), yn(t)) is uniformly bounded and
equicontinuous on C(Dε). Hence, by applying the Arzéla-Ascoli theorem, we obtain that
the set {xn : n ∈N} forms a relatively compact set in C(Dε).
Note that our reasoning does not depend on the choice of ε. Thus we can construct a

sequence (D/k)k∈N of closed subsets of the interval [,T] such thatmeas([,T]\D/k) → 
as k → ∞, and the sequence (xn)n∈N is relatively compact in every space C(D/k). Passing
to subsequences if necessary, we can assume that (xn)n∈N is a Cauchy sequence in each
space C(D/k) for k ∈ N.
In what follows, by virtue of the fact that P is weakly compact, let us choose a number

δ >  such that for each closed subset Dδ of the interval [,T] with meas([,T]\Dδ) ≤ δ

satisfies∫
[,T]\Dδ

∣∣xm(t) – xn(t)
∣∣dt ≤ ε


for allm,n ∈N. (.)

Since (xn)n∈N is a Cauchy sequence in each space C(D/k), there is k ∈ N such that
meas([,T]\D/k )≤ δ and form,n≥ k

‖xm – xn‖C(D/k )
≤ ε

( +meas(D/k ))
. (.)

Consequently, (.) and (.) imply that form,n≥ k we have

∫ T



∣∣xm(t) – xn(t)
∣∣dt

=
∫
D/k

∣∣xm(t) – xn(t)
∣∣dt + ∫

[,T]\D/k

∣∣xm(t) – xn(t)
∣∣dt < ε


. (.)

Now, combining (.) and (.) form,n≥ k, we obtain that

‖xm – xn‖ =
∫ T



∣∣xm(t) – xn(t)
∣∣dt + ∫ ∞

T

∣∣xm(t) – xn(t)
∣∣dt < ε,

which shows that (xn)n∈N is a Cauchy sequence in an L space. Thus, the sequence
(xn)n∈N ⊂P has a convergent subsequence, which implies that the closed setP is compact.
This shows that the assumptions of Theorem . are all fulfilled, which completes the

proof. �

Remark . The techniques of the proof of Theorem . based on Carathéodory condi-
tions and the Scorza-Dragoni theorem were already used in [–] for proving the solv-
ability of Eq. (.), (.), etc.

Finally, we provide an example, which is not included in Eq. (.)-(.), and which may
be treated by our Theorem ..

Example . Consider the following nonlinear integral equation:

ψ(t) =
t
et

–
arctanψ(t)

 + t
+

sin t
 + |ψ(t)| sin

(∫ t



√
( + t)– +ψ(s)

et+s
ds

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/487


Wang Journal of Inequalities and Applications 2014, 2014:487 Page 12 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/487

for t ∈R
+. In order to show that such an equation admits a solution in L, we are going to

check that the conditions of Theorem . are satisfied.
Define the functions as follows:

k :R+ ×R
+ →R, k(t, s) = e–(t+s);

u :R+ ×R →R, u(t,x) =
√
( + t)– + x;

f :R+ ×R
 →R, f (t,x, y) = te–t –

arctanx
 + t

+
sin t sin y
 + |x| .

It obvious that u, k and f are all Carathéodory functions. Taking a(t) = (+ t)– and b = ,
we have

∣∣u(t,x)∣∣ =√
( + t)– + x ≤ ( + t)– + |x| = a(t) + b|x|.

So, u satisfies (H). Taking g(t) = te–t , α = / and β = /, we have

∣∣f (t,x, y)∣∣ = ∣∣∣∣te–t – arctanx
 + t

+
sin t sin y
 + |x|

∣∣∣∣ ≤ te–t +



|x| + 

|y| = g(t) + α|x| + β|y|.

It follows that f satisfies (H). By a simple calculation, we obtain that

‖g‖ =
∫ ∞


te–t dt =



, ‖K‖ ≤ sup

s≥

∫ ∞

s

∣∣k(t, s)∣∣dt = sup
s≥

∫ ∞

s
e–(t+s) dt = .

It follows that

α + bβ‖K‖ + ‖g‖ ≤ 

+


+


= ,

which shows that (H) and (H) are satisfied.
From the inequality

∣∣f (t,x(t), y(t)) – f
(
t,x(t), y(t)

)∣∣
≤ 

 + t
∣∣arctanx(t) – arctanx(t)

∣∣ + ∣∣∣∣ sin t sin y(t) + |x(t)| –
sin t sin y(t)
 + |x(t)|

∣∣∣∣,
≤ 

 + t
∣∣x(t) – x(t)

∣∣ + |x(t) – x(t)|
 + |x(t)| + |x(t)| + |x(t)x(t)|

≤ 

∣∣x(t) – x(t)

∣∣,
it follows that∫ ∞



∣∣f (t,x(t), y(t)) – f
(
t,x(t), y(t)

)∣∣dt ≤ 

‖x – x‖, ∀x,x ∈ L

for all y ∈ L. So (H) is satisfied for ϕ(r) := 
 r.

Since the assumptions (H)-(H) are all satisfied, we apply Theorem . to derive the
existence of a solution to Eq. (.).
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