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Abstract
Let Gσ be an oriented graph of a simple undirected graph G with an orientation σ ,
which assigns to each edge of G a direction so that the resultant graph Gσ becomes a
directed graph. The skew energy of Gσ is defined as the sum of the absolute values of
all eigenvalues of the skew-adjacency matrix of Gσ . Denote by Uσ (2k) the set of all
oriented unicyclic graphs on 2k vertices with a perfect matching which contain no
cycle of length l with l ≡ 2(mod4). In this paper, we characterize the oriented graphs
of Uσ (2k) with the minimal skew energy for k ≥ 4.
MSC: 05C50; 15A30
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1 Introduction
Let G be a simple undirected graph on n vertices and A(G) be its adjacency matrix. Let
Sp(G) = {λ,λ, . . . ,λn} be the spectrum of A(G). Then the energy of G, denoted by E(G),
is defined as E(G) =

∑n
i= |λi| (see []). The theory of graph energy is well developed nowa-

days. Its details can be found in the review [] and recent book [], and the references
therein.
The skew energy of oriented graphs is a generalization for graph energy. First of all, we

recall some definitions and notations. Let Gσ be an oriented graph of a simple undirected
graph G with the orientation σ , which assigns to each edge of G a direction so that the
resultant graph Gσ becomes an oriented graph or a directed graph. Then G is called the
underlying graph of Gσ .
The skew-adjacency matrix S(Gσ ) = (sij) of Gσ is a real skew symmetric matrix, where

sij =  and sji = – if �ij is an arc of Gσ , otherwise sij = sji = . The skew-spectrum Sp(Gσ ) of
Gσ is defined as the spectrum of S(Gσ ). Note that Sp(Gσ ) consists of only purely imaginary
eigenvalues because S(Gσ ) is real skew symmetric. Shader and So [] first studied the
skew-spectrum of oriented graphs and obtained some results.
Analogous to the definition of the energy of a simple undirected graph, the skew energy

of an oriented graphGσ , proposed first byAdiga et al. [] and denoted by Es(Gσ ), is defined
as the sum of the absolute values of all eigenvalues of S(Gσ ), that is, Es(Gσ ) =

∑n
i= |si|,

where s, s, . . . , sn are all the eigenvalues of S(Gσ ). Recently, the skew energy of oriented
graphs has been studied in [–].
The characteristic polynomial det(xI – S(Gσ )) of the skew-adjacency matrix S(Gσ ) of

an oriented graph Gσ is also called the skew characteristic polynomial of Gσ , written

©2014 Zhu and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
mailto:zhujianming2005@suibe.edu.cn
http://creativecommons.org/licenses/by/2.0


Zhu and Yang Journal of Inequalities and Applications 2014, 2014:486 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/486

as φs(Gσ ,x) =
∑n

i= ai(Gσ )xn–i. Since S(Gσ ) is a real skew symmetric matrix, we have
ai(Gσ )≥  and ai+(Gσ ) =  for all  ≤ i≤ � n

 � (see []). Then we have

φs
(
Gσ ,x

)
=

� n �∑
i=

ai
(
Gσ

)
xn–i. ()

Using equation (), the skew energy Es(Gσ ) of an oriented graph Gσ of order n can be
expressed by the following integral formula []:

Es
(
Gσ

)
=


π

∫ +∞




x

ln

[�n/�∑
i=

ai
(
Gσ

)
xi

]
dx. ()

Note that a(Gσ ) =  and a(Gσ ) equals the number of the edges of G. It follows
that Es(Gσ ) is a strictly monotonically increasing function of those numbers ai(Gσ )
(i = , . . . , � n

 �) for any oriented graphs. This in turn provides a way of comparing the skew
energies of a pair of oriented graphs as follows.

Definition . Let Gσ
 and Gσ

 be two oriented graphs of order n. If ai(Gσ
 ) ≤ ai(Gσ

 )
for all i with  ≤ i ≤ � n

 �, then we write Gσ
 	Gσ

 .

Furthermore, if Gσ
 	 Gσ

 and there exists at least one index j such that aj(Gσ
 ) <

aj(Gσ
 ), then we write that Gσ

 ≺ Gσ
 . If ai(Gσ

 ) = ai(Gσ
 ) for all i, we write Gσ

 ∼ Gσ
 .

According to the integral formula (), we have for two oriented graphs Gσ
 and Gσ

 of
order n that

Gσ
 	Gσ

 �⇒ Es
(
Gσ


) ≤ Es

(
Gσ


)
,

Gσ
 ≺Gσ

 �⇒ Es
(
Gσ


)
< Es

(
Gσ


)
.

One of fundamental questions that is encountered in the study of skew energy is which
oriented graphs from a given class have the maximal and minimal skew energy. In [],
Shader and So showed that Sp(Tσ ) = iSp(T) for any n-vertex oriented tree Tσ , and thus
Es(Tσ ) = E(T) which implies that Es(Sσ

n ) ≤ Es(Tσ ) ≤ Es(Pσ
n ), where Sσ

n and Pσ
n denote an

oriented star and an oriented path with any orientation, respectively.
Using the method of quasi-order defined as above, some oriented graphs from a given

class which have the maximal or minimal skew energy have been further characterized.
Hou et al. [] determined the oriented unicyclic graphs with the maximal and minimal
skew energies. Zhu [] further characterized the oriented unicyclic graphs with the first
� n–

 � largest skew energies. Shen et al. [] determined the oriented bicyclic graphs with
themaximal andminimal skew energies. Recently, Gong et al. [] determined the oriented
connected graph on n verticeswithm (n≤m≤ (n–)) arcswhich have theminimal skew
energy.
In this paper, we first present some recurrence relations of the skew characteristic poly-

nomials of oriented graphs in Section . By using these recurrence relations, we then pro-
vide a new technique to compare the skew energies of a class of oriented graphs which
can tackle the quasi-order incomparable problems in Section . Denote by Uσ (k) the set
of all oriented unicyclic graphs on k vertices with a perfect matching which contain no
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cycle of length l with l ≡ (mod). We finally characterize the oriented graphs of Uσ (k)
with the minimal skew energy for k ≥  in Section .

2 Some recurrence relations of the skew characteristic polynomials of oriented
graphs

In this section, we will show some recurrence relations of the skew characteristic polyno-
mials of oriented graphs which will be used in the next section.
LetGσ be an oriented graph andC be an undirected even cycle ofG. ThenC is said to be

evenly oriented relative to the orientation σ if it has an even number of edges oriented in
clockwise direction (and now it also has even number of edges oriented in anticlockwise
direction, since C is an even cycle). Otherwise C is said to be oddly oriented.
A linear subgraph L ofG is a disjoint union of some edges and some cycles inG. We call

a linear subgraph L of G evenly linear if L contains no odd cycle. We denote by ELi(G)
the set of all evenly linear subgraphs of G with i vertices. For an evenly linear subgraph
L ∈ ELi(G), we denote by pe(L) the number of evenly oriented cycles in L relative to the
orientation σ .
The following lemma characterizes the coefficients of skew characteristic of an oriented

graph, which is analogous to the famous Sachs theorem [] for an undirected graph.

Lemma . ([]) Let Gσ be an oriented graph with the skew characteristic polynomial
φs(Gσ ,x) =

∑� n �
i= ai(Gσ )xn–i. Then

ai
(
Gσ

)
=

∑
L∈ELi(G)

(–)pe(L)c(L), ()

where pe(L) is the number of evenly oriented cycles of L and c(L) is the number of even cycles
of L, respectively.

For convenience, we write φs(Gσ ) = φs(Gσ ,x) in what follows. From Lemma ., we can
get the recurrence relation of φs(Gσ ) as follows.

Theorem . Let v be a vertex of Gσ . Then

φs
(
Gσ

)
= xφs

(
Gσ – v

)
+

∑
uv∈G

φs
(
Gσ – v – u

)
+ 

∑
v∈C∈Od(Gσ )

φs
(
Gσ –C

)

– 
∑

v∈C∈Ev(Gσ )

φs
(
Gσ –C

)
, ()

where Od(Gσ ) and Ev(Gσ ) denote the sets of all oddly oriented cycles and evenly oriented
cycles of Gσ , respectively.

Proof The proof is similar to the proof of Theorem . in []. �

Using Theorem ., we can easily derive the following corollary.

Corollary . Let v be a vertex of Gσ that is on no even cycle in Gσ . Then

φs
(
Gσ

)
= xφs

(
Gσ – v

)
+

∑
uv∈G

φs
(
Gσ – v – u

)
.
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The coalescence of two oriented graphs Gσ and Hτ with respect to vertex u in Gσ and
vertex v in Hτ , denoted by Gσ

u · Hτ
v (sometimes abbreviated as Gσ · Hτ ), is the oriented

graph obtained by identifying the vertices u and v. From Theorem ., we can deduce the
recurrence relation of φs(Gσ ·Hτ ) as follows.

Theorem .

φs
(
Gσ ·Hτ

)
= φs

(
Gσ

)
φs

(
Hτ – v

)
+ φs

(
Gσ – u

)(
φs

(
Hτ

)
– xφs

(
Hτ – v

))
.

Proof By using () we can get

φs
(
Gσ ·Hτ

)
= xφs

(
Gσ ·Hτ – v

)
+

∑
ru∈G

φs
(
Gσ ·Hτ – u – r

)
+

∑
vt∈H

φs
(
Gσ ·Hτ – v – t

)

+ 
∑

u∈C∈Od(Gσ )

φs
(
Gσ ·Hτ –C

)
+ 

∑
v∈C∈Od(Hτ )

φs
(
Gσ ·Hτ –C

)

– 
∑

u∈C∈Ev(Gσ )

φs
(
Gσ ·Hτ –C

)
– 

∑
v∈C∈Ev(Hτ )

φs
(
Gσ ·Hτ –C

)
. ()

Moreover, it is easily checked that

φs
(
Gσ ·Hτ – v

)
= φs

(
Gσ – u

) · φs
(
Hτ – v

)
,

φs
(
Gσ ·Hτ – u – r

)
= φs

(
Gσ – u – r

) · φs
(
Hτ – v

)
,

φs
(
Gσ ·Hτ – v – t

)
= φs

(
Gσ – u

) · φs
(
Hτ – v – t

)
, ()

φs
(
Gσ ·Hτ –C

)
= φs

(
Gσ –C

) · φs
(
Hτ – v

) (
C ∈ Gσ

)
,

φs
(
Gσ ·Hτ –C

)
= φs

(
Hτ –C

) · φs
(
Gσ – u

) (
C ∈Hτ

)
.

Applying () to (), we find that

φs
(
Gσ ·Hτ

)
= xφs

(
Gσ – u

) · φs
(
Hτ – v

)
+ φs

(
Hτ – v

)(
φs

(
Gσ

)
– xφs

(
Gσ – u

))
+ φs

(
Gσ – u

)(
φs

(
Hτ

)
– xφs

(
Hτ – v

))
= φs

(
Gσ

)
φs

(
Hτ – v

)
+ φs

(
Gσ – u

)(
φs

(
Hτ

)
– xφs

(
Hτ – v

))
.

Thus we complete the proof. �

3 A new technique for comparing the skew energies of two oriented k-sun
attaching graphs

In [], Shan and Shao presented a new technique of directly comparing the energies of two
k-claw attaching bipartite graphs. In this section, we apply the main idea of this technique
to compare the skew energies of oriented graphs. Then we will present a new technique
for comparing the skew energies of two oriented k-sun attaching graphs.
Let k ≥ . The tree Suk of order k +  will be called the k-sun (see Figure ), which can

be obtained by inserting a new vertex on each edge of the star Sk+.
The coalescence of two graphs G and H with respect to vertex u in G and vertex v in H ,

denoted by Gu ·Hv (sometimes abbreviated as G ·H), is the graph obtained by identifying

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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Figure 1 The tree k-sun and the k-sun attaching graph Gu(k).

the vertices u and v. In particular, if H is the k-sun and v is the vertex of degree k, then
we write G · H = Gu(k), which is called the k-sun attaching graphs at u, see Figure . For
any orientations σ, σ, τ and τ, for the sake of simplicity, we always write Gσ

u · (Suk)σ =
(Gu(k))σ =Gσ

u (k) and Hτ
v · (Suk)τ = (Hv(k))τ =Hτ

v (k).
From Theorem ., we can get the recurrence relations of φs(Gσ

u (k)) and φs(Hτ
u (k)) in

what follows.

Lemma .

φs
(
Gσ

u (k)
)
=

(
x + 

)k–((x + 
)
φs

(
Gσ

)
+ xkφs

(
Gσ – u

))
, ()

φs
(
Hτ

v (k)
)
=

(
x + 

)k–((x + 
)
φs

(
Hτ

)
+ xkφs

(
Hτ – v

))
. ()

Proof By Theorem . we have

φs
(
Gσ

u (k)
)
= φs

(
Gσ

)(
x + 

)k + φs
(
Gσ – u

)(
φs

(
(Suk)σ

)
– x

(
x + 

)k). ()

From Corollary ., we can show

φs
(
(Suk)σ

)
= x

(
x + 

)k–(x +  + k
)
. ()

Applying () to (), we can obtain (). Similarly, we can show (). Then the results hold.
�

In what follows, we write:

S
(
Hτ ,Gσ

)
= φs

(
Hτ

)
φs

(
Gσ – u

)
– φs

(
Hτ – v

)
φs

(
Gσ

)
,

D =
{
x >  | S(Hτ ,Gσ

)
> 

}
,

Dc =
{
x >  | S(Hτ ,Gσ

) ≤ 
}
.

It is easily checked that D∪Dc = (,+∞).
Furthermore, we write

sk(x) =
φs(Hτ

v (k))
φs(Gσ

u (k))
=
(x + )φs(Hτ ) + xkφs(Hτ – v)
(x + )φs(Gσ ) + xkφs(Gσ – u)

,

s(x) =
φs(Hτ – v)
φs(Gσ – u)

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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Under the above notations, we have the following properties for the functions sk(x) and
s(x).

Lemma . Let x >  be fixed. Then, for all  ≤ l < k, we have the following.
() If x ∈D, then s(x) < sk(x) < sl(x).
() If x ∈Dc, then s(x)≥ sk(x)≥ sl(x).

Proof Using the definitions and some simple calculations, we can deduce that

sk(x) – s(x) =
(x + )kS(Hτ ,Gσ )
φs(Gσ

u (k))φs(Gσ – u)
, ()

sk(x) – sl(x) =
x(x + )k+l–(l – k)S(Hτ ,Gσ )

φs(Gσ
u (k))φs(Gσ

u (l))
. ()

Then the results follow easily from () and (). �

The following result [] illustrates an integral formula for the difference of the skew
energies of two oriented graphs with the same order.

Lemma . Let φs(Hτ ,x) and φs(Gσ ,x) be two skew characteristic polynomials of two ori-
ented graphs Hτ and Gσ with the same order. Then

Es
(
Hτ

)
– Es

(
Gσ

)
=


π

∫ +∞


ln

φs(Hτ ,x)
φs(Gσ ,x)

dx.

In the following, we assume that G and H have the same order. From Lemma ., we
have

Es
(
Hτ

v (k)
)
– Es

(
Gσ

u (k)
)
=


π

∫ +∞


ln sk(x)dx. ()

Combining Lemma . and Lemma ., we can present a new technique for comparing
the skew energies of two oriented k-sun attaching graphs in the following theorem.

Theorem . Let D, Dc, sk(x) and s(x) be defined as above. Then, for  ≤ l < k,

∫
D
ln s(x)dx +

∫
Dc
ln sl(x)dx ≤ π


(
Es

(
Hτ

v (k)
)
– Es

(
Gσ

u (k)
))

≤
∫
D
ln sl(x)dx +

∫
Dc
ln s(x)dx.

Proof Using () we have

π


(
Es

(
Hτ

v (k)
)
– Es

(
Gσ

u (k)
))

=
∫ +∞


ln sk(x)dx

=
∫
D
ln sk(x)dx +

∫
Dc
ln sk(x)dx.

The result easily follows from Lemma .. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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4 Minimal skew energy of oriented unicyclic graphs with a perfect matching
In this section, we always assume that the order of a graph is n = k. A k-matching is a
disjoint union of k edges in G. The number of k-matchings is denoted by m(G,k). We
agree thatm(G, ) =  and m(G,k) =  (k < ).
With regard to the coefficients ai(Gσ ) of an oriented unicyclic graph, Hou et al. [] got

the following lemma.

Lemma . ([]) Let Gσ ∈ Uσ (k) and Cl be the unique cycle of G. Then we have:
() If l is odd, then ai(Gσ ) =m(G, i).
() If l is even and Cl is oddly oriented, then ai(Gσ ) =m(G, i) + m(G –Cl, i – l

 ).
() If l is even and Cl is evenly oriented, then ai(Gσ ) =m(G, i) – m(G –Cl, i – l

 ).

FromLemma., we can see that the skew energy ofGσ is independent of the orientation
σ when l is odd. Thus, for convenience, we write G∗ as Gσ when l is odd. Furthermore,
when l is even and Cl is oddly oriented relative to σ , we write G+ as Gσ . When l is even
and Cl is evenly oriented relative to σ , we write G– as Gσ .
Denote by U(k) the set of all unicyclic graphs on k vertices with a perfect match-

ing which contain no cycle of length l with l ≡ (mod). Let A, B, B, B be the uni-
cyclic graphs as shown in Figure . The following theorem is the main result of this sec-
tion.

Theorem . Let Gσ ∈Uσ (k) and k ≥ . If Gσ �= B–
 , then Es(B–

 ) < Es(Gσ ).

In order to prove Theorem., we first outline the basic strategy of the proof.We classify
the graphs in U(k) into the following classes. Let B(k) = {G ∈ U(k) | the length of the
unique cycle of G is divisible by } and A(k) =U(k)\B(k).
Denote by K (G) the number of perfect matchings of a graph G. We first quote the fol-

lowing basic property about the number of perfect matchings of unicyclic graphs.

Lemma . ([]) Let G ∈U(k). Then K (G) =  or K (G) = .

Figure 2 The unicyclic graphs A1, B1, B2, B3.

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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By Lemma ., we can classify the graphs in B(k) into two classes as follows:

B(k) =
{
G ∈ B(k) | K (G) = 

}
,

D(k) =
{
G ∈ B(k) | K (G) = 

}
.

Next, in order to further classify the graphs inD(k) into two classes, we introduce some
notations in what follows.
Throughout this paper, we denote by M(G) a perfect matching of a graph G. Let Ĝ =

G –M(G) – S, where S is the set of isolated vertices in G –M(G). We call Ĝ the capped
graph of G and G the original graph of Ĝ.
Denote by E(G) the edge set of a graph G. Let G ∈ D(k). Then K (G) = . Since a tree

contains at most one perfect matching, we can see that E(G – Cl) ∩ E(Ĝ) are the same
under two different perfect matchings of G. Thus we can classify the graphs in D(k) into
the following two classes:

B(k) =
{
G ∈D(k) | E(G –Cl)∩ E(Ĝ) �= ∅}

,

B(k) =
{
G ∈D(k) | E(G –Cl)∩ E(Ĝ) = ∅}

.

To conclude, it is easy to see that

U(k) = A(k)∪ B(k)∪ B(k)∪ B(k),

and A ∈ A(k), B ∈ B(k), B ∈ B(k) and B ∈ B(k).
For k ≥ , our basic strategy of the proof of Theorem . is to prove the following results

(R)-(R) later:

(R) () Es(B–
 ) < Es(A∗

 ).
() Es(B–

 ) < Es(B–
 ).

() Es(B–
 ) < Es(B–

 ).
(R) Let Gσ ∈ Aσ (k). If Gσ �= A∗

 , then Es(A∗
 ) < Es(Gσ ).

(R) () Let Gσ ∈ Bσ
 (k). If Gσ �= B–

 , then Es(B–
 ) < Es(Gσ ).

() Let Gσ ∈ Bσ
 (k). If Gσ �= B–

 , then Es(B–
 ) < Es(Gσ ).

() Let Gσ ∈ Bσ
 (k). If Gσ �= B–

 , then Es(B–
 ) < Es(Gσ ).

It is easy to see that we can prove Theorem . by combining the above results (R)-(R).
We will prove the results (R)-(R) in Sections . to ., respectively.

4.1 The proof of (R1)
By some simple calculations, we find that A∗

 and B–
 , B–

 and B–
 , B–

 and B–
 are all quasi-

order incomparable. We first prove the results () and () of (R) by Theorem ..

Lemma . If k ≥ , then Es(B–
 ) < Es(B–

 ).

Proof Let B–
 =H–

v (k – ) and B–
 = G–

u(k – ) (see Figure ). By some simple calculations,
we have

φs
(
H–) = x + x + x, φs

(
H– – v

)
= x

(
x + 

)
,

φs
(
G–) = x + x + x + , φs

(
G– – u

)
= x

(
x + x + 

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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It is easily checked that S(H–,G–) = –x(x – )(x + x + ) implying that D = (, ). From
Theorem ., we can deduce that for k ≥ ,

π


(
Es

(
B–

)
– Es

(
B–

))

≤
∫
D
ln s(x)dx +

∫
Dc
ln s(x)dx

=
∫ 


ln

x + x + x

x + x + x + 
dx +

∫ +∞


ln

x + x

x + x + 
dx

.= –. < .

Then Es(B–
 ) < Es(B–

 ). �

Lemma . If k ≥ , then Es(B–
 ) < Es(B–

 ).

Proof Let B–
 = H–

v (k – ) and B–
 = G–

u(k – ) (see Figure ). By some simple calculations
we have

φs
(
H–) = x + x + x, φs

(
H– – v

)
= x

(
x + 

)
,

φs
(
G–) = x + x + x, φs

(
G– – u

)
= x

(
x + 

)(
x + 

)
,

which implies that S(H–,G–) = –x(x – )(x + x + ). Then we have D = (,
√
). By

Theorem ., we can find that for k ≥ ,

π


(
Es

(
B–

)
– Es

(
B–

))

≤
∫
D
log s(x)dx +

∫
Dc
log s(x)dx

=
∫ √




log

x + x + x + 
(x + )(x + x + )

dx +
∫ +∞

√


log
x(x + )

(x + )(x + )
dx

.= –. < .

When k =  and k = , we can have Es(B–
 ) < Es(B–

 ) by some simple calculations. Conse-
quently, Es(B–

 ) < Es(B–
 ) for k ≥ . �

By computing, we find that we cannot show that Es(B–
 ) < Es(A∗

 ) by the above method.
Thus we use an alternate method to prove the result.

Lemma . If k ≥ , then Es(B–
 ) < Es(A∗

 ).

Proof When k = ,, , we can get Es(B–
 ) < Es(A∗

 ) by some direct calculations. Then in
what follows we assume that k ≥ . By Corollary . we have

φs
(
A∗
 ,x

)
=

(
x + 

)k–(x + (k + )x + 
)
,

φs
(
B–
 ,x

)
= x

(
x + 

)k–(x + (k + )x + kx + 
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/486
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Since the roots of φs(A∗
 ,x) and φs(B–

 ,x) are purely imaginary, we can take x = iλ, which
implies that

φs
(
A∗
 , iλ

)
=

(
 – λ)k–(λ – (k + )λ + 

)
=

(
 – λ)k–f (λ),

φs
(
B–
 , iλ

)
= λ( – λ)k–(λ – (k + )λ + kλ – 

)
= λ( – λ)k–g(λ),

where f (λ) = λ – (k + )λ +  and g(λ) = λ – (k + )λ + kλ – .
Let x > x be the roots of f (λ) and y > y > y be the roots of g(λ). Then

Es
(
A∗

)
= (k – ) + (

√
x +

√
x + ),

Es
(
B–

)
= (k – ) + (

√
y +

√
y +

√
y).

Thus we only need to prove that √y +
√y +

√y <
√x +

√x +  for k ≥ . By some
calculations we get

g() = g() = – < ,

g
(

k

)
=


k

+  –
(

k
+

k

)
> ,

g
(
k +




)
=

(
k +




)(
k

–



)
–  > .

It follows that y < 
k , y <  and y < k + 

 implying that

√
y +

√
y +

√
y <

√

k
+

√
k +



+ .

Moreover,

√
x +

√
x =

√
x + x + 

√
xx =

√
k + ,

which implies that we only need to show

√

k
+

√
k +



<

√
k + . ()

In fact, it is easily checked that 
 k

 – k +  >  for k ≥ , which implies (). Thus we
have completed the proof. �

Proof of (R) The result can be directly derived from Lemmas ., . and .. �

4.2 The proof of (R2)
Let G ∈ U(k). Firstly, we show a method of computing the matching number of G. It is
easy to see that E(G) = E(Ĝ) ∪ M(G). Thus each i-matching � of G can be partitioned
into two parts: � = � ∪ 	 , where � ⊆ E(Ĝ) and 	 ⊆ M(G). Let r(i)j (G) be the number
of ways to choose i independent edges in G such that just j edges are in Ĝ. For example,
r(i) (G) =

( k
i

)
and r(i) (G) = k

( k–
i–

)
.
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Thus we have

m(G, i) =
i∑

j=

r(i)j (G) = p +
i∑

j=

r(i)j (G),

where p =
( k
i

)
+ k

( k–
i–

)
.

Proof of (R) Let Gσ ∈ Aσ (k). By Lemma . we have ai(Gσ ) = m(G, i). Furthermore,
since Â is a star of order k + , we have

∑i
j= r

(i)
j (A) = . From Lemma . we can deduce

that ai(A∗
 ) =m(A, i) = p ≤ m(G, i) = ai(Gσ ). Because G �= A, a(A∗

 ) < a(Gσ ) implying
that Es(A∗

 ) < Es(Gσ ). �

4.3 The proof of (R3)
We firstly quote and prove some lemmas which will be used in the proof of (R).

Lemma . Let G be a unicyclic graph of order n and Cl be the unique cycle of G. If l ≡
(mod), then E(G) = Es(G–).

Proof Since l ≡ (mod), G is a bipartite unicyclic graph. Then we can assume that the
characteristic polynomial of G is

φ(G,x) =
� n �∑
i=

(–)ibi(G)xn–i,

where bi(G) ≥ . According to the famous Coulson integral formula for energy of a graph
[], we have

E(G) =

π

∫ +∞




x

ln

[�n/�∑
i=

bi(G)xi
]
dx. ()

From the Sachs theorem [], we can easily get bi(G) =m(G, i)–m(G–Cl, i– l
 ). By Lem-

ma . we have ai(G–) =m(G, i) – m(G – Cl, i – l
 ), which implies that bi(G) = ai(G–).

Combining () and (), we can find that E(G) = Es(G–). �

In [], Li et al. showed the following result.

Lemma . ([])
() Let G ∈ B(k). If G �= B, then E(B) < E(G).
() Let G ∈ B(k). If G �= B, then E(B) < E(G).
() Let G ∈ B(k). If G �= B, then E(B) < E(G).

Lemma . Let G be a bipartite unicyclic graph. Then Es(G–) < Es(G+).

Proof Let Cl be the unique cycle of G. From Lemma ., we can see that

ai
(
G–) =m(G, i) – m

(
G –Cl, i –

l


)
,
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ai
(
G+) =m(G, i) + m

(
G –Cl, i –

l


)
,

which implies that ai(G–) ≤ ai(G+). al(G–) < al(G+) yields that Es(G–) < Es(G+). �

Now we can use Lemmas ., . and . to prove the result (R) as follows.

Proof of (R) We first prove the result () of (R). Let Gσ ∈ Bσ
 (k) and Cl be the unique

cycle of G. Then l ≡ (mod).
If Cl is evenly oriented relative to σ , then Es(Gσ ) = Es(G–). From Lemmas . and . we

have Es(B–
 ) = E(B) < E(G) = Es(G–) = Es(Gσ ). Then the result () holds.

If Cl is oddly oriented relative to σ , then Es(Gσ ) = Es(G+). Using Lemmas ., . and
., we can see that Es(B–

 ) = E(B) ≤ E(G) = Es(G–) < Es(G+) = Es(Gσ ). Then the result ()
holds.
The results () and () of (R) can be proved similarly. Thus we have completed the

proof. �
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