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Abstract
This paper is concerned with the global exponential convergence of
Cohen-Grossberg neural networks with continuously distributed leakage delays. By
using the Lyapunov functional method and differential inequality techniques, we
propose a new approach to establishing some sufficient conditions ensuring that all
solutions of the networks converge exponentially to the zero point. Our results
complement some recent ones.
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1 Introduction
It is well known that Cohen-Grossberg neural networks (CGNNs) have been successfully
applied in many fields such as pattern recognition, parallel computing, associative mem-
ory, and combinatorial optimization (see [–]). Such applications heavily depend on the
global exponential convergence behaviors, because the exponential convergent rate can
be unveiled. Many good results on the problem of the global exponential convergence of
the equilibriums and periodic solutions of for CGNNs are given in the literature. We re-
fer the reader to [–] and the references cited therein. Recently, in real applications,
a typical time delay called leakage (or ‘forgetting’) delay has been introduced in the nega-
tive feedback terms of the neural network system, and these terms are variously known as
forgetting or leakage terms (see [–]). Subsequently, Gopalsamy [] investigated the
stability on the equilibrium for the bidirectional associative memory (BAM) neural net-
works with constant delay in the leakage term. Following this, the authors of [–] dealt
with the existence and stability of equilibrium and periodic solutions for neuron networks
model involving constant leakage delays. In particular, Peng [] established some delay
dependent criteria for the existence and global attractive periodic solutions of the bidi-
rectional associative memory neural network with continuously distributed delays in the
leakage terms. However, to the best of our knowledge, few authors have considered the ex-
ponential convergence behavior for all solutions of CGNNs with continuously distributed
delays in the leakage terms. Motivated by the arguments above, in the present paper, we
shall consider the following CGNNs with time-varying coefficients and continuously dis-
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tributed delays in the leakage terms:

x′
i(t) = –ai

(
t,xi(t)

)[
bi

(
t,

∫ ∞


δi(s)xi(t – s)ds

)
–

n∑
j=

cij(t)fj
(
xj

(
t – τij(t)

))

–
n∑
j=

dij(t)
∫ ∞


Kij(u)gj

(
xj(t – u)

)
du + Ii(t)

]
, i = , , . . . ,n, (.)

where ai and bi are continuous functions on R, δi, τij, fj, gj, cij, dij and Ii are continuous
functions on R; n corresponds to the number of units in a neural network; xi(t) denotes
the potential (or voltage) of cell i at time t; ai represents an amplification function; bi is
an appropriately behaved function; cij(t) and dij(t) denote the strengths of connectivity
between cell i and j at time t, respectively; the activation functions fi(·) and gi(·) show
how the ith neuron reacts to the input, τij(t) ≥  corresponds to the transmission delays,
Kij(u) and δi(u) ≥  correspond to the transmission delay kernels, and Ii(t) denotes the ith
component of an external input source introduced from outside the network to cell i at
time t for i, j ∈ F = {, , . . . ,n}.
Throughout this paper, for i, j ∈ F , it will be assumed that hi : [, +∞) → [, +∞) and

Kij : [, +∞) → R are continuous functions, and there exist constants τ+
ij , Ii, cij, and dij

such that

τ+
ij = sup

t∈R
τij(t), Ii = sup

t∈R

∣∣Ii(t)∣∣, cij = sup
t∈R

∣∣cij(t)∣∣, dij = sup
t∈R

∣∣dij(t)∣∣. (.)

We also make the following assumptions.

(H) For each j ∈ F , there exist nonnegative constants β , α, L̃j and Lj such that

 ≤ β ≤ , ≤ α ≤ ,
∣∣fj(u)∣∣ ≤ L̃j|u|β , ∣∣gj(u)∣∣ ≤ Lj|u|α

for all u ∈ R. (.)

(H) For i ∈ F , there exist positive constants ai and ai such that

ai ≤ ai(t,u) ≤ ai for all t > ,u ∈ R.

(H) For i ∈ F , bi(t, ) ≡ , and there exist positive constants bi and bi such that

bi|u – v| ≤ sgn(u – v)
(
bi(t,u) – bi(t, v)

) ≤ bi|u – v| for all t > ,u, v ∈ R.

(H) For all t >  and i, j ∈ F , there exist constants η >  and λ >  such that
∫ ∞


sδi(s)eλs ds < +∞,

∫ ∞



∣∣Kij(u)
∣∣eλu du < +∞

and

–η > –
[
aibi

∫ ∞


δi(s)eλs ds – λ

(
 + aibi

∫ ∞


sδi(s)eλs ds

)

– aibi
∫ ∞


sδi(s)eλs dsaibi

∫ ∞


δi(s)eλs ds

]

http://www.journalofinequalitiesandapplications.com/content/2014/1/48


Chen and Gong Journal of Inequalities and Applications 2014, 2014:48 Page 3 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/48

+ ai

[ n∑
j=

L̃j
(∣∣cij(t)∣∣eλβτij(t) + aibi

∫ ∞


sδi(s)eλs dscije

λβτ+ij

)
eλ(–β)t

+
n∑
j=

Lj
∫ ∞



∣∣Kij(u)
∣∣eλαu du

(∣∣dij(t)∣∣ + dijaibi
∫ ∞


sδi(s)eλs ds

)
eλ(–α)t

]
.

(H) Ii(t) =O(e–λt) (t → ±∞), i ∈ F .

The initial conditions associated with system (.) are of the form

xi(s) = ϕi(s), s ∈ (–∞, ], i ∈ F , (.)

where ϕi(·) denotes a real-valued bounded continuous function defined on (–∞, ].
The remaining part of this paper is organized as follows. In Section , we present some

new sufficient conditions to ensure that all solutions of CGNNs (.) with initial conditions
(.) converge exponentially to the zero point. In Section , we shall give some examples
and remarks to illustrate our results obtained in the previous sections.

2 Main results
Theorem . Let (H)-(H) hold. Then, for every solution Z(t) = (x(t),x(t), . . . ,xn(t))T of
CGNNs (.) with initial conditions (.), there exists a positive constant K such that

∣∣xi(t)∣∣ ≤ Ke–λt for all t > , i ∈ F .

Proof Let Z(t) = (x(t),x(t), . . . ,xn(t))T be a solution of system (.) with initial conditions
(.), and let

Xi(t) = eλtxi(t), i ∈ F .

In view of (.), we have

X ′
i(t) = λXi(t) + eλtai

(
t,xi(t)

)[
–bi

(
t,

∫ ∞


δi(s)eλ(s–t)Xi(t – s)ds

)

+
n∑
j=

cij(t)fj
(
xj

(
t – τij(t)

))
+

n∑
j=

dij(t)
∫ ∞


Kij(u)gj

(
xj(t – u)

)
du – Ii(t)

]

= λXi(t) + eλtai
(
t,xi(t)

)[
–bi

(
t,

∫ ∞


δi(s)eλ(s–t)Xi(t)ds

)

+
(
bi

(
t,

∫ ∞


δi(s)eλ(s–t)Xi(t)ds

)
– bi

(
t,

∫ ∞


δi(s)eλ(s–t)Xi(t – s)ds

))

+
n∑
j=

cij(t)fj
(
xj

(
t – τij(t)

))

+
n∑
j=

dij(t)
∫ ∞


Kij(u)gj

(
xj(t – u)

)
du – Ii(t)

]
, i = , , . . . ,n. (.)
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Let

M = max
i=,,...,n

sup
s≤

{
eλs∣∣ϕi(s)

∣∣}. (.)

From (.) and (H), we can choose a positive constant K >M +  such that

η >
[ + aibi

∫ ∞
 sδi(s)eλs ds]ai supt∈R |eλtIi(t)|

K
for all t > , i ∈ F . (.)

Then it is easy to see that

∣∣Xi(t)
∣∣ ≤M < K for all t ≤ , i = , , . . . ,n.

We now claim that

∣∣Xi(t)
∣∣ < K for all t > , i ∈ F . (.)

Otherwise, one of the following two cases must occur.
() There exist i ∈ F and t∗ >  such that

Xi
(
t∗

)
= K ,

∣∣Xj(t)
∣∣ < K for all t < t∗, j ∈ F . (.)

() There exist i ∈ F and t∗∗ >  such that

Xi
(
t∗∗) = –K ,

∣∣Xj(t)
∣∣ < K for all t < t∗∗, j ∈ F . (.)

Now, we distinguish two cases to finish the proof.
Case (). If (.) holds. Then, from (.), (.), and (H)-(H), we have

 ≤ X ′
i
(
t∗

)
= λXi

(
t∗

)
+ eλt∗ai

(
t∗,xi

(
t∗

))[
–bi

(
t∗,

∫ ∞


δi(s)eλ(s–t∗)Xi

(
t∗

)
ds

)

+
(
bi

(
t∗,

∫ ∞


δi(s)eλ(s–t∗)Xi

(
t∗

)
ds

)
– bi

(
t∗,

∫ ∞


δi(s)eλ(s–t∗)Xi

(
t∗ – s

)
ds

))

+
n∑
j=

cij
(
t∗

)
fj
(
xj

(
t∗ – τij

(
t∗

)))

+
n∑
j=

dij
(
t∗

)∫ ∞


Kij(u)gj

(
xj

(
t∗ – u

))
du – Ii

(
t∗

)]

≤ λXi
(
t∗

)
– aibi

∫ ∞


δi(s)eλs dsXi

(
t∗

)
+ aibi

∫ ∞


δi(s)eλs

∫ t∗

t∗–s
X ′
i(u)duds

+ ai
n∑
j=

∣∣cij(t∗)∣∣L̃jeλβτij(t∗)eλ(–β)t∗ ∣∣Xj
(
t∗ – τij

(
t∗

))∣∣β

+ ai
n∑
j=

∣∣dij(t∗)∣∣Ljeλ(–α)t∗
∫ ∞



∣∣Kij(u)
∣∣eλαu∣∣Xj

(
t∗ – u

)∣∣α du + aieλt∗ ∣∣Ii(t∗)∣∣
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≤ λXi
(
t∗

)
– aibi

∫ ∞


δi(s)eλs dsXi

(
t∗

)
+ aibi

∫ ∞


δi(s)eλs

∫ t∗

t∗–s

∣∣∣∣∣λXi(u)

+ eλuai
(
u,xi(u)

)[
–bi

(
u,

∫ ∞


δi(v)eλ(v–u)Xi(u – v)dv

)
+

n∑
j=

cij(u)fj
(
xj

(
u – τij(u)

))

+
n∑
j=

dij(u)
∫ ∞


Kij(v)gj

(
xj(u – v)

)
dv – Ii(u)

]∣∣∣∣∣duds

+ ai
n∑
j=

∣∣cij(t∗)∣∣L̃jeλβτij(t∗)eλ(–β)t∗ ∣∣Xj
(
t∗ – τij

(
t∗

))∣∣β

+ ai
n∑
j=

∣∣dij(t∗)∣∣Ljeλ(–α)t∗
∫ ∞



∣∣Kij(u)
∣∣eλαu∣∣Xj

(
t∗ – u

)∣∣α du + aieλt∗ ∣∣Ii(t∗)∣∣
≤ λXi

(
t∗

)
– aibi

∫ ∞


δi(s)eλs dsXi

(
t∗

)
+ λaibi

∫ ∞


sδi(s)eλs dsXi

(
t∗

)
+ aibi

∫ ∞


sδi(s)eλs dsaibi

∫ ∞


δi(s)eλs dsXi

(
t∗

)

+ aibi
∫ ∞


δi(s)eλs

∫ t∗

t∗–s
ai

[ n∑
j=

cijL̃je
λβτ+ij eλ(–β)u∣∣Xj

(
u – τij(u)

)∣∣β

+
n∑
j=

dijLjeλ(–α)u
∫ ∞



∣∣Kij(v)
∣∣eλαv∣∣Xj(u – v)

∣∣α dv + sup
t∈R

∣∣eλtIi(t)
∣∣]duds

+ ai
n∑
j=

∣∣cij(t∗)∣∣L̃jeλβτij(t∗)eλ(–β)t∗ ∣∣Xj
(
t∗ – τij

(
t∗

))∣∣β

+ ai
n∑
j=

∣∣dij(t∗)∣∣Ljeλ(–α)t∗
∫ ∞



∣∣Kij(u)
∣∣eλαu∣∣Xj

(
t∗ – u

)∣∣α du + aieλt∗ ∣∣Ii(t∗)∣∣

≤ –
[
aibi

∫ ∞


δi(s)eλs ds – λ

(
 + aibi

∫ ∞


sδi(s)eλs ds

)

– aibi
∫ ∞


sδi(s)eλs dsaibi

∫ ∞


δi(s)eλs ds

]
Xi

(
t∗

)

+ ai

[ n∑
j=

L̃j
(∣∣cij(t∗)∣∣eλβτij(t∗) + aibi

∫ ∞


sδi(s)eλs dscije

λβτ+ij

)
eλ(–β)t∗

+
n∑
j=

Lj
∫ ∞



∣∣Kij(u)
∣∣eλαu du

(∣∣dij(t∗)∣∣ + dijaibi
∫ ∞


sδi(s)eλs ds

)
eλ(–α)t∗

]
K

+
[
 + aibi

∫ ∞


sδi(s)eλs ds

]
ai sup

t∈R

∣∣eλtIi(t)
∣∣

=

{
–
[
aibi

∫ ∞


δi(s)eλs ds – λ

(
 + aibi

∫ ∞


sδi(s)eλs ds

)

– aibi
∫ ∞


sδi(s)eλs dsaibi

∫ ∞


δi(s)eλs ds

]

+ ai

[ n∑
j=

L̃j
(∣∣cij(t∗)∣∣eλβτij(t∗) + aibi

∫ ∞


sδi(s)eλs dscije

λβτ+ij

)
eλ(–β)t∗
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+
n∑
j=

Lj
∫ ∞



∣∣Kij(u)
∣∣eλαu du

(∣∣dij(t∗)∣∣ + dijaibi
∫ ∞


sδi(s)eλs ds

)
eλ(–α)t∗

]}
K

+
[
 + aibi

∫ ∞


sδi(s)eλs ds

]
ai sup

t∈R

∣∣eλtIi(t)
∣∣

< –ηK +
[
 + aibi

∫ ∞


sδi(s)eλs ds

]
ai sup

t∈R

∣∣eλtIi(t)
∣∣

< .

This contradiction implies that (.) does not hold.
Case (). If (.) holds, then, from (.), (.), and (H)-(H), by using a similar argument

as in Case (), we can derive a contradiction, which shows that (.) does not hold.
Therefore, (.) is proved and

∣∣xi(t)∣∣ ≤ Ke–λt for all t > , i ∈ F .

This implies that the proof of Theorem . is now completed. �

3 An example
Example . Consider the following CGNNs with time-varying delays in the leakage
terms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
(t) = –( + ecos t 

π
arctanx(t))[( – |t|| sin t|

+|t| )
∫ ∞
 δ(s)x(t – s)ds

+ 


|t| sin t
+|t| f(x(t –  sin t)) + 


|t| sin t
+|t|

· f(x(t –  sin t)) + 


|t| sin t
+|t|

∫ ∞
 e–ug(xj(t – u))du

+ 


|t| sin t
+|t|

∫ ∞
 e–ug(xj(t – u))du + ,e–t sin t],

x′
(t) = –( + esin t 

π
arctanx(t))[( – |t|| cos t|

+|t| )
∫ ∞
 δ(s)x(t – s)ds

+ 


|t| cos t
+|t| f(x(t –  sin t))

+ 


|t| cos t
+|t| f(x(t –  sin t)) + 


|t| cos t
+|t|

∫ ∞
 e–ug(xj(t – u))du

+ 


|t| cos t
+|t|

∫ ∞
 e–ug(xj(t – u))du + ,e–t cos t],

(.)

where fi(x) = gi(x) = x sini x, δi(t) = e–t , i = , .
It follows that

≤ ai ≤ ai ≤ ,  ≤ bi ≤ bi ≤ , i = , 

and

bi|u| ≤ sgn(u)bi(t,u) for all t,u ∈ R, i = , .

Define a continuous function 
i(ω) by setting


i(ω) = –
[
aibi

∫ ∞


δi(s)eωs ds –ω

(
 + aibi

∫ ∞


sδi(s)eωs ds

)

– aibi
∫ ∞


sδi(s)eωs dsaibi

∫ ∞


δi(s)eωs ds

]
+ ai

[ n∑
j=

L̃j
(∣∣cij(t)∣∣eωβτij(t)
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+ aibi
∫ ∞


sδi(s)eωs dscije

ωβτ+ij

)
eω(–β)t +

n∑
j=

Lj
∫ ∞



∣∣Kij(u)
∣∣eωαu du

(∣∣dij(t)∣∣

+ dijaibi
∫ ∞


sδi(s)eωs ds

)
eω(–α)t

]
for all t > , i = , .

According to the continuity of 
i(ω) and 
i() < , we can choose constants η = . and
λ >  such that


i(λ) < –η for all t > , i = , ,

which implies that the CGNNs (.) satisfied (H)-(H). Hence, from Theorem ., all so-
lutions of the CGNNs (.) with initial value (ϕ(x),ϕ(x)) converge exponentially to the
zero point (, ).

Remark . It is easy to check that the results in [–] and [–] are invalid for
the global exponential convergence of (.), since the leakage delays are continuously dis-
tributed.
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