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Abstract

This paper is concerned with the global exponential convergence of
Cohen-Grossberg neural networks with continuously distributed leakage delays. By
using the Lyapunov functional method and differential inequality techniques, we
propose a new approach to establishing some sufficient conditions ensuring that all
solutions of the networks converge exponentially to the zero point. Our results
complement some recent ones.
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1 Introduction

It is well known that Cohen-Grossberg neural networks (CGNNs) have been successfully
applied in many fields such as pattern recognition, parallel computing, associative mem-
ory, and combinatorial optimization (see [1-5]). Such applications heavily depend on the
global exponential convergence behaviors, because the exponential convergent rate can
be unveiled. Many good results on the problem of the global exponential convergence of
the equilibriums and periodic solutions of for CGNNSs are given in the literature. We re-
fer the reader to [6—13] and the references cited therein. Recently, in real applications,
a typical time delay called leakage (or ‘forgetting’) delay has been introduced in the nega-
tive feedback terms of the neural network system, and these terms are variously known as
forgetting or leakage terms (see [14—16]). Subsequently, Gopalsamy [17] investigated the
stability on the equilibrium for the bidirectional associative memory (BAM) neural net-
works with constant delay in the leakage term. Following this, the authors of [18—22] dealt
with the existence and stability of equilibrium and periodic solutions for neuron networks
model involving constant leakage delays. In particular, Peng [23] established some delay
dependent criteria for the existence and global attractive periodic solutions of the bidi-
rectional associative memory neural network with continuously distributed delays in the
leakage terms. However, to the best of our knowledge, few authors have considered the ex-
ponential convergence behavior for all solutions of CGNNs with continuously distributed
delays in the leakage terms. Motivated by the arguments above, in the present paper, we
shall consider the following CGNNs with time-varying coefficients and continuously dis-
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tributed delays in the leakage terms:

x;(t) = —Lll'(t, xi(t)) |:bl (t,/o 8;(s)x;(t —s) dS) - Z Clj(t)ﬁ (x]' (t - ‘L'ij(t)))

j-1

_ Zd,](t)/ Kij(u)g; x,(t u)) du + I (t):| i=1,2,. (1.1)

j=1

where a; and b; are continuous functions on R2, §;, Tij, fi» g» Cij» dyj and I; are continuous
functions on R; n corresponds to the number of units in a neural network; x;(¢) denotes
the potential (or voltage) of cell i at time ¢; a; represents an amplification function; b; is
an appropriately behaved function; c;(¢) and dj;(¢) denote the strengths of connectivity
between cell i and j at time ¢, respectively; the activation functions f;(-) and g;(-) show
how the ith neuron reacts to the input, 7;;(¢) > 0 corresponds to the transmission delays,
K;j(u) and 8;(u2) > 0 correspond to the transmission delay kernels, and /;(¢) denotes the ith
component of an external input source introduced from outside the network to cell i at
time ¢ for i,j € F={1,2,...,n}.

Throughout this paper, for i,j € F, it will be assumed that %; : [0, +00) — [0, +00) and

K : [0,+00) — R are continuous functions, and there exist constants 7, I, ¢;, and d_l]
such that
rl;f = sup 7;(£), I = sup|],~(t)|, d_z, = Sup|dij(t)|~ (1.2)
teR ter teR

We also make the following assumptions.

(Hi) For eachj € F, there exist nonnegative constants §, o, Z/ and L; such that

0=p=<L0=<ae<l |f|=<Lilulf, |gWw)]|=<Lul

forall u € R. 1.3)
(Hz) For i € F, there exist positive constants a; and a; such that
ﬂfai(t,u) <a; forallt>0,ueR.
(H3) For i€ F, b;(t,0) =0, and there exist positive constants b; and b; such that
bilu—v| <sgn(u - v)(bi(t, u) — b;(t, v)) <bjlu-v| forallt>0,u,veRr.
(Hq) Forall£>0andij € F, there exist constants > 0 and X > 0 such that

/ s8;(s)e™* ds < +00, / ‘K,-j(u)‘e“ du < +00
0 0

and

-n> —|:az b; /0 8i(s)e** ds — A (1+ab / $8;(s) “ds)
—a;b; / $8,(s)e dsa; / 8i(s)e* ds]
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n o0
+ d_i|: L (|Ci;‘(t) |5 + @b, / s8,(s)e’ dscze' i )em‘ﬂ“
j-1 0

+) L / |Kj(u) | €™ du <|di;(t)| + dyjaib; / s8i(s)e™ dS) em‘“)‘}.
= 0 0
(Hs) L(t) = O(e™) (t > +o00), i € F.

The initial conditions associated with system (1.1) are of the form

xi(s) = gi(s), se(-00,0],i e F, (1.4)

where ¢;(-) denotes a real-valued bounded continuous function defined on (-0, 0].

The remaining part of this paper is organized as follows. In Section 2, we present some
new sufficient conditions to ensure that all solutions of CGNNs (1.1) with initial conditions
(1.4) converge exponentially to the zero point. In Section 3, we shall give some examples

and remarks to illustrate our results obtained in the previous sections.

2 Main results

Theorem 2.1 Let (H,)-(Hs) hold. Then, for every solution Z(t) = (x1(t),%2(¢), ..., %,(t))T of
CGNNss (1.1) with initial conditions (1.4), there exists a positive constant K such that

|xi()| <Ke™ forallt>0,i€F.

Proof Let Z(t) = (x1(£), %2(£), ..., %,(£))T be a solution of system (1.1) with initial conditions
(1.4), and let

X,‘(t) = e”x,»(t), ieF.

In view of (1.1), we have

0

Xi(8) = 2X;(t) + € a; (£, %:(0)) [-b,» (t, / N 8:(s)e"C DX (¢ — s) ds)
+ Y e (it —T(0)) + Y di(e) /o Kij(u)gj (%t — ) du — Ii(t):|
j=1 =1
=AXi(t) + e“a,'(t, xi(t)) |:—bi (t, /00 8:()e* I X,(¢) ds)
0

+ <bi (t, / ” 8:()e* I X,(¢) ds) —b; <t, / ” 8:(8)e* DX (¢t — ) ds))
0 0

+ Y ciOfi (it - (1))

Jj=1

+ ) dy(t) /0 I(,y(u)g(x,(t—u))du—]i(t):|, i=1,2,...,n 2.1)

j=1
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Let

M = r1n2ax sup{ A |¢J,(s)|}

yyyyy n s<0
From (1.2) and (Hs), we can choose a positive constant K > M + 1 such that

1+a;b; [ 8;(s)e™ ds)a; su Mt
n>[ fo () K] Prck| 0l forallt>0,ieF.

Then it is easy to see that

|Xi(t)| <M <K forallt<0,i=1,2,...,n
We now claim that

|X,»(t)| <K forallt>0,ieF.

Otherwise, one of the following two cases must occur.
(1) There exist i € F and £* > 0 such that

Xi(t*) =K, ‘Xj(t)| <K forallt<t*,jeF.
(2) There exist i € F and £** > 0 such that
Xi(£) ==K, |X;(t)| <K forallt<¢™,jeF.

Now, we distinguish two cases to finish the proof.
Case (1). If (2.5) holds. Then, from (2.1), (2.3), and (H;)-(H4), we have

0 = X;(t")

:MWﬂHMMﬁmm{w<ﬁ/a@mewmg
0

+ <hi (t*’/oo ai(s)ex(s—t*b(i(t*) ds) - b; (t*,/oo 8i(s)e* X, (t —s) ds))
0 0

+ch/ )i (i (£ = 75(¢7)))

+fymﬁﬁm@wg@w_@ww¢mﬂ

[*
< AX —aib; / 8i(s)e* dsX + ab; / 8i(s)e* X!(u)duds

t*—s

I i )

waH e [Tyl (e - )| du aie 1(e")

(2.2)

(2.6)
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%) ) t*
< )»X,-(t*) - ﬂ@/ 8i(s)e din(t*) + a_,'b_i/ Si(s)e“/ AX; (1)
0 0

t*—s

+ e a;(u, %, (1)) |:—bi (u, /00 8;()e X (u —v) dv) + Z cij()f (% (u — 7(w)))
0 p=

duds

+ Zd,,(u) / Ky (0)g(x(u = v)) dv — I; (u)i|

j=1

me L0 0 — 1)

L N e P ]

_ [o¢]

< AX;(t") - @@/ 8i(s)e™ dsX;(¢*) + Aa_ibi/ s8i(s)e™ dsX;(t*)

0
/ 8:(s)e™ dsazb; / 8i(s)e’ dsX;(t*)
0
/ (s)eks / a |:Z C_iijeAﬂti; ek(l—ﬂ)u ‘)(1(“ _ Tij(u)) ’ﬂ
t*—s

j=1

& |

d_,'j e / |K;(v) || X;(u —v)|* dv + sup|e“l (t)|:| duds
-1

+ ﬂ_iZ|Ci/(t*) |Zje)»/3ri/(t*)ex(l—ﬂ)t* |)(,(t* _ fz'/(t*)) |/3
j=1

+a; Z|d,, )L - / |Kj () [ | X;(t* - u)|" du + 7 @t |L;(¢")|
o0 o [ee]
<- [@@/ Si(s)e™ ds — A (1 +a;b; / s8;(s)e’ ds)
0 0
—aib; / s8:(s)e™ dsa;b; / 8i(s)e* ds] Xi(t*)
0 0
+a; |:ZL ( c,, |ew”1 a_ib_i/ 8:(s)e’ dsc; e ) M1-p)et
0
+ ZL// |I(,'j(u) |eA°‘“ du<|d,-j (t*)| + d_,]a_l_,/ $8:(s)e™ ds) em'“)t*:|1(
= 0 0
+ [1 + a_ib_i/ $8;(s)e’ ds:|a_i sup|e*I;(t)|
0 terR
= {—[@@/ 8i(s)e* ds — A (1 + a_,-b_i/ $8;(s)e™ ds)
0 0
—ab; / $8;(s)e dsa;b; / 8i(s)e* ds]
0 0

+“l|:ZL(Ct1 )| + zb; / 8i(s)e’ dscye ™ )m A
0
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S e 5 e
jer 70 0
+ [1 + a_ib_i/ $8;(s)e™s ds:|a_i sup|e*I;(t)|
0 teR

< —nK + [1 +a_ib_i/ s8;(s)e’ ds}a_,-sup|e*t1i(t)|
0 teR

< 0.

This contradiction implies that (2.5) does not hold.

Case (2). If (2.6) holds, then, from (2.1), (2.3), and (H;)-(H4), by using a similar argument

as in Case (1), we can derive a contradiction, which shows that (2.6) does not hold.

Therefore, (2.4) is proved and
|x:(t)| < Ke™* forallt>0,ieF.
This implies that the proof of Theorem 2.1 is now completed.

3 Anexample

Example 3.1 Consider the following CGNNs with time-varying delays in the leakage

terms:

x(t) = —2+ e ! o arctanxy (£))[(4 - %)fooo 5,(s)aey (£ — 5) ds
+ 75 lli‘:gitt\fl(xl t-2sin’t) + & Hssg\l;
Sloa(e = 35in ) + 5 £ [0 e e — )

7 1@36723 Jo7 e ga (¢ — ) du + 20,000e sin ],

x(8) = —(2 + e L arctan xy(£))[(4 — LLGE) [ 8, (s)ws (£ — ) s
% 1‘?'2875 (21 (¢ — 2 sin* £))
o St sin ) LS [ gy o - 1)
+ S5 tiser Jo. €ga(x(t — u) du + 30,0007 cos],

where fi(x) = gi(x) = xsin® x, 8;(¢) = e1%, i =1,2.
It follows that

and
bilu| < sgn(u)b(t,u) forallt,ueR,i=1,2.

Define a continuous function I';(w) by setting

Ii(w) = _[ﬂﬁ/ 8i(s)e™ ds — w(l + a_,fb_i‘/ s8;(s)e™* ds)
0 0

—aib; / 8:(s)e™ dsazb; / 8i(s)e®® dsi| +a; |:ZL <|c,,(t)|e‘“ﬂ’ll

j=1
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00 n [e'9)
+ @b; / 58,(s)e”* dscie”’ i )ewﬂ—f”f +Y L f | () [ e du(|d,-,(t)|
0 , 0
j=1
+ d_l,a_,y,/ $8;(s)e®* ds) eI forallt>0,i=1,2.
0

According to the continuity of I';(w) and I';(0) < 0, we can choose constants n = 0.1 and
A > 0 such that

Ii(A)<-n forallt>0,i=1,2,

which implies that the CGNNs5s (3.1) satisfied (H;)-(Hs). Hence, from Theorem 2.1, all so-
lutions of the CGNNs (3.1) with initial value (¢ (x), 92(x)) converge exponentially to the
zero point (0, 0).

Remark 3.1 It is easy to check that the results in [17-23] and [24-34] are invalid for
the global exponential convergence of (3.1), since the leakage delays are continuously dis-
tributed.
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