
Zhu et al. Journal of Inequalities and Applications 2014, 2014:475
http://www.journalofinequalitiesandapplications.com/content/2014/1/475

RESEARCH Open Access

Common fixed point theorems for
generalized expansive mappings in partial
b-metric spaces and an application
Chuanxi Zhu, Wenqing Xu*, Chunfang Chen and Xiaozhi Zhang

*Correspondence:
wen_qing_xu@163.com
Department of Mathematics,
Nanchang University, Nanchang,
330031, P.R. China

Abstract
In this paper, we first introduce the concepts of generalized (ψ , f )λ-expansive
mappings and generalized (φ ,g,h)λ-weakly expansive mappings designed for three
mappings. Then we establish some common fixed point results for such two new
types of mappings in partial b-metric spaces. These results generalize and extend the
main results of Karapınar et al. (J. Inequal. Appl. 2014:22, 2014), Nashine et al. (Fixed
Point Theory Appl. 2013:203, 2013) and many comparable results from the current
literature. Moreover, some examples and an application to a system of integral
equations are given here to illustrate the usability of the obtained results.
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1 Introduction and preliminaries
Fixed point theory in metric spaces is an important branch of nonlinear analysis, which is
closely related to the existence and uniqueness of solutions of differential equations and
integral equations.
There are many generalizations of the concept of metric spaces in the literature. In par-

ticular, Matthews [] introduced the concept of a partial metric space as a part of the study
of denotational data for networks and proved that the Banach contraction mapping the-
orem can be generalized to the partial metric context for applications in program verifi-
cation. After that, fixed point results in partial metric spaces have been studied by many
authors (see [–]). On the other hand, the concept of a b-metric space was introduced
and studied by Bakhtin [] andCzerwik []. Since then, several papers have been published
on the fixed point theory of the variational principle for single-valued and multi-valued
operators in b-metric spaces (see [–] and the references therein). We begin with the
definition of b-metric spaces.

Definition . ([]) Let X be a nonempty set and λ ≥  be a given real number. A function
d : X × X → R+ is said to be a b-metric on X if, for all x, y, z ∈ X, the following conditions
are satisfied:

(b) d(x, y) =  if and only if x = y,
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(b) d(y,x) = d(x, y),
(b) d(x, z) ≤ λ[d(x, y) + d(y, z)].

In this case, the pair (X,d) is called a b-metric space.

Recently, Shukla [] introduced the notion of a partial b-metric space as a generaliza-
tion of partial metric spaces and b-metric spaces.

Definition . ([]) Let X be a nonempty set and λ ≥  be a given real number. A map-
ping pb : X ×X → R+ is said to be a partial b-metric on X if for all x, y, z ∈ X, the following
conditions are satisfied:

(pb) pb(x,x) = pb(y, y) = pb(x, y) if and only if x = y,
(pb) pb(x,x)≤ pb(x, y),
(pb) pb(x, y) = pb(y,x),
(pb) pb(x, z) ≤ λ[pb(x, y) + pb(y, z)] – pb(y, y).

A partial b-metric space is a pair (X,pb) such that X is a nonempty set and pb is a partial
b-metric on X. The number λ ≥  is called the coefficient of (X,pb).

In [], Mustafa et al. introduced a new concept of partial b-metric by modifying Defi-
nition . in order to guarantee that each partial b-metric pb can induce a b-metric. The
advantage of the new definition of partial b-metric is that by using it one can define a de-
pendent b-metric which is called the b-metric associated with partial b-metric pb. The
new concept of partial b-metric is as follows.

Definition . ([]) LetX be a nonempty set and λ ≥  be a given real number. Amapping
pb : X × X → R+ is said to be a partial b-metric on X if for all x, y, z ∈ X, the following
conditions are satisfied:

(pb) pb(x,x) = pb(y, y) = pb(x, y) if and only if x = y,
(pb) pb(x,x)≤ pb(x, y),
(pb) pb(x, y) = pb(y,x),
(p′

b) pb(x, z) ≤ λ[pb(x, y) + pb(y, z) – pb(y, y)] + (–λ)
 [pb(x,x) + pb(z, z)].

The pair (X,b) is called a partial b-metric space with coefficient λ ≥ .

Since λ ≥ , from (p′
b), we have

pb(x, z) ≤ λ
[
pb(x, y) + pb(y, z) – pb(y, y)

] ≤ λ
[
pb(x, y) + pb(y, z)

]
– pb(y, y).

Hence, a partial b-metric in the sense of Definition . is also a partial b-metric in the
sense of Definition ..
In a partial b-metric space (X,pb), if pb(x, y) = , then (pb) and (pb) imply that x = y.

But the converse does not hold always. It is clear that every partial metric space is a partial
b-metric space with coefficient λ =  and every b-metric is a partial b-metric space with
same coefficient and zero distance.However, the converse of these facts need not hold. The
following example shows that a partial b-metric on X might be neither a partial metric,
nor a b-metric on X.
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Example . ([]) Let X = R, q >  be a constant and pb : X ×X → R+ be defined by

pb(x, y) = |x – y|q + ,

for all x, y ∈ X. Then (X,pb) is a partial b-metric space with the coefficient λ = q– > , but
it is neither a b-metric nor a partial metric space.

Each partial b-metric pb on X generates a topology τpb on X, which has a subbase of
the family of open pb-balls {Bpb (x, ε) : x ∈ X, ε > }, where Bpb (x, ε) = {y ∈ X : pb(x, y) <
pb(x,x) + ε}, for all x ∈ X and ε > . The topology space (X,pb) is T, but does not need to
be T. The topology τpb on X is called a pb-metric topology.

Definition . ([]) A sequence {xn} in a partial b-metric space is said to be:
() pb-convergent to a point x ∈ X if limn→∞ pb(x,xn) = pb(x,x).
() a pb-Cauchy sequence if limn,m→∞ pb(xn,xm) exists and is finite.
() A partial b-metric space (X,pb) is said to be pb-complete if every pb-Cauchy

sequence {xn} in X pb-converges to a point x ∈ X such that
limn→∞ pb(x,xn) = pb(x,x).

It should be noted that the limit of a convergent sequence in a partial b-metric space
may not be unique (see [, Example ]).
In [], using Definition ., Mustafa et al. proved the fact if pb is a partial b-metric on X,

then the function psb : X × X → R+ given by psb(x, y) = pb(x, y) – pb(x,x) – pb(y, y) defines
a b-metric on X. Using Definition ., Mustafa et al. also obtained the following lemma
which is the key to the proof of our theorems.

Lemma . ([]) Let (X,pb) be a partial b-metric space. Then:
() A sequence {xn} in X is a pb-Cauchy sequence in (X,pb) if and only if it is a b-Cauchy

sequence in b-metric space (X,psb).
() A partial b-metric space (X,pb) is pb-complete if and only if the b-metric space

(X,psb) is b-complete.Moreover, limn→∞ psb(x,xn) =  if and only if
limn,m→∞ pb(xn,xm) = limn→∞ pb(x,xn) = pb(x,x).

It should be noted that in general a partial b-metric function pb(x, y) for λ >  is not
jointly continuous for all variables. The following example illustrates this fact.

Example . Let X =N ∪ {∞}, and let pb : X ×X → R+ be defined by

pb(m,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
, ifm = n,
, if one ofm,n is even and the other is even (m 	= n) or ∞,
| 
m – 

n |, if one ofm,n is odd and the other is odd or ∞,
, otherwise.

Then considering all possible cases, it can be checked that, for allm,n,p ∈ X, we have

pb(m,p) ≤ 
[
pb(m,n) + pb(n,p)

]
= 

[
pb(m,n) + pb(n,p) – pb(n,n)

]
+
 – 


[
pb(m,m) + pb(p,p)

]
.
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Thus, (X,pb) is a partial b-metric space (with λ = ). Let xn = n +  for each n ∈ N . Then
pb(n + ,∞) = 

n+ →  as n→ ∞, that is, xn → ∞, but pb(xn, ) = �  = pb(∞, ).

Since in general a partial b-metric is not continuous, we need the following simple
lemma about the pb-convergent sequences in the proof of our results.

Lemma . ([]) Let (X,pb) be a partial b-metric space with the coefficient λ ≥  and
suppose that {xn} and {yn} are pb-convergent to x and y, respectively. Then we have

pb(x, y)
λ –

pb(x,x)
λ

– pb(y, y) ≤ lim inf
n→∞ pb(xn, yn) ≤ lim sup

n→∞
pb(xn, yn)

≤ λpb(x,x) + λpb(y, y) + λpb(x, y).

In particular, if pb(x, y) = , then we have limn→∞ pb(xn, yn) = . Moreover, for each z ∈ X,
we have

pb(x, z)
λ

– pb(x,x)≤ lim inf
n→∞ pb(xn, z) ≤ lim sup

n→∞
pb(xn, z) ≤ λpb(x, z) + λpb(x,x).

In particular, if pb(x,x) = , then we have

pb(x, z)
λ

≤ lim inf
n→∞ pb(xn, z) ≤ lim sup

n→∞
pb(xn, z) ≤ λpb(x, z).

Jungck [] introduced the concept of weakly compatible mappings as follows.

Definition . ([]) Let X be a nonempty set, A and T : X → X be two self-maps. A and
T are said to be weakly compatible (or coincidentally commuting) if they commute at their
coincidence points, i.e., if Az = Tz for some z ∈ X, then ATz = TAz.

It is worthmentioning that most of the preceding references concerned with fixed point
results of contractions in partial metric spaces and b-metric spaces, but we rarely see fixed
point results of expansions in such two types of spaces. Recently, in [], Karapınar et al.
considered a generalized expansivemapping and proved the fixed point theorem inmetric
spaces. Nashine et al. [] introduced ψS-contractive mappings and proved some fixed
point theorems in ordered metric spaces. Here, we recall the relevant definition.

Definition . ([]) Let (X,d,≤) be an ordered metric space, and let S,T : X → X. The
mappings S, T are said to be ψS-contractive if

d(Sx,Ty)≤ ψ
(
d(x, y),d(x,Sx),d(y,Ty),d(x,Ty),d(y,Sx)

)
,

for all x ≥ y, where ψ : R+ → R+ is a strictly increasing and continuous function in each
coordinate, and for all t ∈ R+\{}, ψ(t, t, t, , t) < t, ψ(t, t, t, t, ) < t, ψ(, , t, t, ) < t,
ψ(, t, , , t) < t and ψ(t, , , t, t) < t.

Inspired by the notions of ψS-contractive mappings of [], we first introduce the con-
cepts of generalized (ψ , f )λ-expansive mappings and generalized (φ, g,h)λ-weakly expan-
sive mappings. Then we establish some common fixed point theorems for these classes of
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mappings in complete partial b-metric spaces. The obtained results generalize and extend
the main results of [–]. We also provide some examples to show the generality of our
results. Finally, an application is given to illustrate the usability of the obtained results.

2 Main results
The study of expansive mappings is a very interesting research area in fixed point theory
(see [, –]). In this section, inspired by the notion ofψS-contractivemappings of [],
we first introduce the notions of generalized (ψ , f )λ-expansive mappings and generalized
(φ, g,h)λ-weakly expansive mappings in partial b-metric spaces.
For convenience, we denote by � the class of functions ψ : R+ → R+ satisfying the

following conditions:
(i) ψ is a nondecreasing and continuous function in each coordinate;
(ii) for ti ∈ R+, i = , , . . . , , ψ(t, t, t, t, t) >min{t, t+t }, where min{t, t+t } > ;
(iii) ψ(, , , , ) =  and ψ(t, t, t, t, t) >min{t, t}, where min{t, t} > .
The following are some easy examples of functions from class � :

ψ(t, t, t, t, t) = at, for a > ;
ψ(t, t, t, t, t) =max{amin{t, t+t }, cmin{t, t}}, for a, c > ;
ψ(t, t, t, t, t) =max{at + b t+t

 , cmin{t, t}}, for a,b≥ , a + b > , and c > ;
ψ(t, t, t, t, t) =max{at + b t+t

 , ct + dt}, for a,b, c,d ≥ , a + b > , and c + d > ;
ψ(t, t, t, t, t) =max{min{t, t+t },min{t, t}} + φ(max{min{t, t+t },min{t, t}}),
where φ : R+ → R+ is a nondecreasing and continuous function, and φ(s) =  if and
only if s = .

Definition . Let (X,pb) be a partial b-metric space with the coefficient λ ≥ , A, S,
and T : X → X be three mappings. Then A, S, and T are said to be generalized (ψ , f )λ-
expansive mappings if

f
(
pb(Sx,Ty)

λ

)
≥ ψ

(
pb(Ax,Ay),pb(Ax,Sx),pb(Ay,Ty),

pb(Ax,Ty)
λ

,
pb(Ay,Sx)

λ

)
, (.)

for all x, y ∈ X, where ψ ∈ � , f : [,∞) → [,∞) is a nondecreasing and continuous
function, f () = , and for all t > , ψ(t, t, t, t, t) > f (t), where min{t, t+t } = t or
min{t, t} = t.

Definition . Let (X,pb) be a partial b-metric space with the coefficient λ ≥ , A, S, and
T : X → X be threemappings. ThenA, S, and T are said to be generalized (φ, g,h)λ-weakly
expansive mappings if

g
(
pb(Sx,Ty)

λ

)
≥ h

(
Mλ(Ax,Ay)

)
+ φ

(
Mλ(Ax,Ay)

)
(.)

for all x, y ∈ X, where Mλ(Ax,Ay) = max{min{pb(Ax,Ay), pb(Ax,Sx)+pb(Ay,Ty) },min{pb(Ax,Ay),
pb(Ay,Sx)

λ
}}, φ, g,h : R+ → R+ are continuous and nondecreasing functions, g() = h() = ,

φ(s) =  if and only if s = , and for all t > , h(t) + φ(t) > g(t).

It is easy to acquire the following example of generalized (ψ , f )λ-expansive mappings or
generalized (φ, g,h)λ-weakly expansive mappings.
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Example . Let X = R+ be endowed with the partial b-metric pb : X ×X → R+ given by

pb(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
, if x = x and y = y,
(x + x), if x 	= x and y = y,
(y + y), if x = x and y 	= y,
(x + x) + (y + y), otherwise,

for u = (x, y), v = (x, y) ∈ X, where λ = . Let ψ : R+ → R+ and f : R+ → R+ be given by

ψ(t, t, t, t, t) =max

{
min

{
t,

t + t


}
, min{t, t}

}
, f (t) = t,

for all t, t, . . . , t, t ∈ R+, and A,S,T : X → X be given by

S(x, y) =
(
x, ey –  + y

)
, T(x, y) =

(
x, ey –  + y

)
,

A(x, y) =
(


x,


y
)
, for all (x, y) ∈ X.

Then A, S, and T are generalized (ψ , f )λ-expansive mappings. In fact, if φ, g,h : R+ → R+

are defined by

g(t) =
t

, h(t) = ηt, φ(t) = ( – η)t,

for all t ∈ R+, where  < η < . Then A, S, and T are also generalized (φ, g,h)λ-weakly
expansive mappings.

Now, we first prove some fixed point results for generalized (ψ , f )λ-expansive mappings
in pb-complete partial b-metric spaces.

Theorem . Let (X,pb) be a pb-complete partial b-metric space, A, S, and T : X → X be
three mappings satisfying the generalized (ψ , f )λ-expansive condition (.). Suppose that
the following conditions are satisfied:

(i) A(X)⊂ S(X), A(X) ⊂ T(X), and A(X) is a closed subset of (X,psb);
(ii) A is an injective and A and T are weakly compatible.

Then A, S, and T have a unique common fixed point in X .

Proof Let x ∈ X be an arbitrary point in X. Since A(X)⊂ S(X), there exists an x ∈ X such
that Ax = Sx. Since A(X) ⊂ T(X), there exists an x ∈ X such that Ax = Tx. Continuing
this process, we can construct a sequence {Axn} in X such that

Axn = Sxn+, Axn+ = Txn+, for n = , , , . . . .

We will complete the proof in three steps.
Step . We prove that

lim
n→∞pb(Axn,Axn+) = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/475
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Suppose that pb(Axn,Axn+) =  for some n = n. In the case that n = k, pb(Axk ,
Axk+) =  gives pb(Axk+,Axk+) = . Indeed, by (.), we have

 = f
(
pb(Axk ,Axk+)

λ

)
= f

(
pb(Sxk+,Txk+)

λ

)

≥ ψ

(
pb(Axk+,Axk+),pb(Axk+,Sxk+),

pb(Axk+,Txk+),
pb(Axk+,Txk+)

λ
,
pb(Axk+,Sxk+)

λ

)

=ψ

(
pb(Axk+,Axk+), ,pb(Axk+,Axk+), ,

pb(Axk+,Axk)
λ

)
,

which implies that pb(Axk+,Axk+)
 = , that is, pb(Axk+,Axk+) = . Similarly, if n =

k + , then pb(Axk+,Axk+) = . Consequently, pb(Axn,Axn+) ≡  for n ≥ n. Hence,
limn→∞ pb(Axn,Axn+) = .
Now, suppose that pb(Axn,Axn+) > , for each n. By (.), we have

f
(
pb(Axn,Axn+)

λ

)
= f

(
pb(Sxn+,Txn+)

)

≥ ψ

(
pb(Axn+,Axn+),pb(Axn+,Sxn+),

pb(Axn+,Txn+),
pb(Axn+,Txn+)

λ
,
pb(Axn+,Sxn+)

λ

)

=ψ

(
pb(Axn+,Axn+),pb(Axn,Axn+),pb(Axn+,Axn+),

pb(Axn+,Axn+)
λ

,
pb(Axn+,Axn)

λ

)
. (.)

If min{pb(Axn+,Axn+), pb(Axn ,Axn+)+pb(Axn+,Axn+) } = pb(Axn ,Axn+)+pb(Axn+,Axn+)
 > ,

thenwe have pb(Axn,Axn+) ≤ pb(Axn+,Axn+). It follows from (.) and the properties
of ψ and f that

f
(
pb(Axn,Axn+)

) ≥ f
(
pb(Axn,Axn+)

λ

)
≥ ψ

(
pb(Axn+,Axn+),pb(Axn,Axn+),

pb(Axn+,Axn+),
pb(Axn+,Axn+)

λ
,
pb(Axn+,Axn)

λ

)

> f
(
pb(Axn,Axn+) + pb(Axn+,Axn+)



)
.

Since f is nondecreasing, we get pb(Axn,Axn+) > pb(Axn+,Axn+), which is a contra-
diction. Thus,

f
(
pb(Axn,Axn+)

) ≥ f
(
pb(Axn,Axn+)

λ

)
> f

(
pb(Axn+,Axn+)

)
.

Hence, we deduce that, for each n ∈N , pb(Axn+,Axn+) < pb(Axn,Axn+). Similarly, we
can prove that pb(Axn,Axn+) < pb(Axn–,Axn), for all n≥ . Therefore, {pb(Axn,Axn+)}

http://www.journalofinequalitiesandapplications.com/content/2014/1/475
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is a decreasing sequence of nonnegative real numbers. So, there exists r ≥  such that
limn→∞ pb(Axn,Axn+) = r.
From Definition .(p′

b), we have

pb(Axn,Axn+) ≤ pb(Axn,Axn+) + pb(Axn+,Axn+)

≤ λpb(Axn,Axn+) + λpb(Axn+,Axn+). (.)

It follows from (.) that {pb(Axn,Axn+)} and {pb(Axn+,Axn+)} are two bounded se-
quences. Hence, the sequence {pb(Axn,Axn+)} has a subsequence {pb(Axnk ,Axnk+)}
which converges to a real number α ≤ λr, and the sequence {pb(Axnk+,Axnk+)} has a
subsequence {pb(Axnk(i)+,Axnk(i)+)} which converges to a real number β ≤ λr. By (.),
we have

f
(pb(Axnk(i) ,Axnk(i)+)

λ

)
= f

(
pb(Sxnk(i)+,Txnk(i)+)

)

≥ ψ

(
pb(Axnk(i)+,Axnk(i)+),pb(Axnk(i) ,Axnk(i)+),

pb(Axnk(i)+,Axnk(i)+),

pb(Axnk(i)+,Axnk(i)+)
λ

,
pb(Axnk(i)+,Axnk(i) )

λ

)
.

Letting nk(i) → ∞ in the above inequality, by the properties of ψ and f , we have f (r) ≥
f ( r

λ
)≥ ψ(r, r, r, β

λ
, α

λ
), which implies that r = . Hence, limn→∞ p(Axn,Axn+) = .

Step . We show that {Axn} is a pb-Cauchy sequence.
Indeed, we first prove that limm,n→∞ pb(Axn,Axm) = . Because of (.), it is sufficient to

show that limm,n→∞ pb(Axn,Axm) = . Suppose on the contrary, then there exists ε > 
for which we can find two subsequences {Axn(k)} and {Axm(k)} of {Axn} such that m(k)
is the smallest index for which

m(k) > n(k) > k, pb(Axm(k),An(k)) ≥ ε, for every k. (.)

This means that

pb(Axm(k)–,An(k)) < ε. (.)

From (.), using the triangular inequality, we can see that

 < ε ≤ pb(Axm(k),Axn(k)) ≤ λpb(Axm(k),Axn(k)+) + λpb(Axn(k)+,Axn(k))

and

 < ε ≤ pb(Axm(k),Axn(k)) ≤ λpb(Axm(k),Axm(k)–) + λpb(Axm(k)–,Axn(k))

≤ λpb(Axm(k),Axm(k)–) + λpb(Axm(k)–,Axn(k)+) + λpb(Axn(k)+,Axn(k)).

http://www.journalofinequalitiesandapplications.com/content/2014/1/475
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By means of (.), taking the lower limit as k → ∞ in the above inequality, we get

ε ≤ lim inf
k→∞

pb(Axm(k),Axn(k)) ≤ lim sup
k→∞

pb(Axm(k),Axn(k)). (.)

ε

λ
≤ lim inf

k→∞
pb(Axm(k),Axn(k)+) ≤ lim sup

k→∞
pb(Axm(k),Axn(k)+), (.)

ε

λ ≤ lim inf
k→∞

pb(Axm(k)–,Axn(k)+) ≤ lim sup
k→∞

pb(Axm(k)–,Axn(k)+). (.)

On the other hand, we have

pb(Axn(k),Axm(k)–) ≤ λpb(Axn(k),Axm(k)–) + λpb(Axm(k)–,Axm(k)–).

With the help of (.) and (.) and taking the upper limit as k → ∞ in the above inequal-
ity, it is not difficult to see that

lim sup
k→∞

pb(Axn(k),Axm(k)–) ≤ λε. (.)

From (.), we have

f
(
pb(Axn(k),Axm(k)–)

λ

)

= f
(
pb(Sxn(k)+,Txm(k))

λ

)

≥ ψ

(
pb(Axn(k)+,Axm(k)),pb(Axn(k)+,Sxn(k)+),

pb(Axm(k),Txm(k)),
pb(Axn(k)+,Txm(k))

λ
,
pb(Axm(k),Sxn(k)+)

λ

)

=ψ

(
pb(Axn(k)+,Axm(k)),pb(Axn(k)+,Axn(k)),

pb(Axm(k),Axm(k)–),
pb(Axn(k)+,Axm(k)–)

λ
,
pb(Axm(k),Axn(k))

λ

)
.

Now, taking upper limit as k → ∞ in the above inequality, the properties of ψ , f , and
(.)-(.) guarantee that

f
(

ε

λ

)
≥ f

(
lim supk→∞ pb(Axn(k),Axm(k)–)

λ

)

= f
(
lim supk→∞ pb(Sxn(k)+,Txm(k))

λ

)

≥ ψ

(
lim inf
k→∞

pb(Axn(k)+,Axm(k)), lim inf
k→∞

pb(Axn(k)+,Axn(k)),

lim inf
k→∞

pb(Axm(k),Axm(k)–),

lim infk→∞ pb(Axn(k)+,Axm(k)–)
λ

,
lim infk→∞ pb(Axm(k),Axn(k))

λ

)
,
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which implies that f ( ε
λ
) ≥ ψ( ε

λ
, , , ε

λ
, ε

λ
). Thus, ε = , a contradiction. Hence,

limm,n→∞ pb(Axn,Axm) = , that is, {Axn} is a pb-Cauchy sequence.
Step . We will show that A, S, and T have a unique common fixed point.
Since {Axn}is a pb-Cauchy sequence in (X,pb), and thus it is also b-Cauchy sequence in

the b-metric space (X,psb) by Lemma .. Since (X,pb) is pb-complete, from Lemma .,
(X,psb) is also b-complete, so the sequence {Axn} is b-convergent in the b-metric space
(X,psb). Therefore, there exists x∗ ∈ X such that limn→∞ psb(Axn,x∗) = . Then
limm,n→∞ pb(Axn,Axm) = limn→∞ pb(Axn,x∗) = pb(x∗,x∗) = .
Since A(X) is a closed set of (X,psb), A(X) ⊂ T(X), and limn→∞ psb(Axn,x∗) = , we get

x∗ ∈ A(X) ⊂ T(X). Hence, there exists z ∈ X such that Tz = x∗. This together with (.)
ensures that

f
(
pb(Axn,Tz)

λ

)
= f

(
pb(Sxn+,Tz)

λ

)

≥ ψ

(
pb(Axn+,Az),pb(Axn+,Sxn+),

pb(Az,Tz),
pb(Axn+,Tz)

λ
,
pb(Az,Sxn+)

λ

)

=ψ

(
pb(Axn+,Az),pb(Axn+,Axn),

pb(Az,Tz),
pb(Axn+,Tz)

λ
,
pb(Az,Axn)

λ

)
. (.)

Since limn→∞ pb(Axn,x∗) = pb(x∗,x∗) =  and Tz = x∗, we can find by Lemma . that

lim sup
n→∞

pb(Axn,Tz) = , lim inf
n→∞ pb(Axn+,Az) ≥ pb(Tz,Az)

λ
, (.)

lim inf
n→∞ pb(Axn+,Tz) = , lim inf

n→∞ pb(Az,Axn) ≥ pb(Az,Tz)
λ

. (.)

Taking the upper limit as n → ∞ in (.), using the properties of ψ and f , (.), and
(.), it is clear that

 = f () = f
(
lim sup
n→∞

pb(Axn,Tz)
)

≥ ψ

(
pb(Az,Tz)

λ
, ,pb(Az,Tz), ,

pb(Az,Tz)
λ

)
,

which implies that pb(Az,Tz) = . Hence, Az = Tz = x∗. Similarly, since x∗ ∈ A(X) ⊂
S(X), there exists z ∈ X such that Sz = x∗, we have Az = Sz = x∗. Hence, Az = Az = x∗.
Since A is an injective, we get z = z.
Let z = z = z. ThenAz = Sz = Tz = x∗. SinceA andT areweakly compatible, it is obvious

that Ax∗ = AAz = ATz = TAz = Tx∗. By (.), we get

f
(
pb(Az,Ax∗)

λ

)
≥ f

(
pb(Az,Ax∗)

λ

)
= f

(
pb(Sz,Tx∗)

λ

)

≥ ψ

(
pb

(
Az,Ax∗),pb(Az,Sz),pb(Ax∗,Tx∗),
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pb(Az,Tx∗)
λ

,
pb(Ax∗,Sz)

λ

)

=ψ

(
pb

(
Az,Ax∗),pb(Az,Az),pb(Ax∗,Ax∗),

pb(Az,Ax∗)
λ

,
pb(Ax∗,Az)

λ

)
,

which implies that pb(Az,Ax∗) = . Thus, Az = Ax∗. Since A is an injective, we get z = x∗.
Hence, Az = Sz = Tz = z, that is, z is a common fixed point of A, S, and T .
Now, we prove the uniqueness of common fixed points of A, S, and T . Suppose that

x∗, y∗ ∈ X such that Ax∗ = Sx∗ = Tx∗ = x∗ and Ay∗ = Sy∗ = Ty∗ = y∗. By means of (.), we
have

f
(
pb(x∗, y∗)

λ

)
≥ f

(
pb(x∗, y∗)

λ

)
= f

(
pb(Sx∗,Ty∗)

λ

)

≥ ψ

(
pb

(
Ax∗,Ay∗),pb(Ax∗,Sx∗),pb(Ay∗,Ty∗),

pb(Ax∗,Ty∗)
λ

,
pb(Ay∗,Sx∗)

λ

)

=ψ

(
pb

(
x∗, y∗),pb(x∗,x∗),pb(x∗, y∗), pb(x∗, y∗)

λ
,
pb(y∗,x∗)

λ

)
,

which implies that pb(x∗, y∗) = . Hence, x∗ = y∗. This completes the proof. �

Remark . Let I be the identity mappings on X. Taking A = I , f (t) = t, for all t ∈ R+ in
Theorem ., we have the following corollary, which extends and generalizes Theorem .
in [] and Theorem  in [].

Corollary . Let (X,pb) be a pb-complete partial b-metric space, S and T : X → X be two
bijective mappings. Suppose that

pb(Sx,Ty)
λ ≥ ψ

(
pb(x, y),pb(x,Sx),pb(y,Ty),

pb(x,Ty)
λ

,
pb(y,Sx)

λ

)
,

for all x, y ∈ X, where ψ ∈ � . Then S and T have a unique common fixed point in X .

Now, in order to support the usability of our results, we present the following example.

Example . Let C[, ] be the set of all real continuous functions defined on [, ] and
X = {x≥ θ : x ∈ C[, ]}. Define a partial b-metric pb : X ×X → R+ by

pb(x, y) =

{
maxt∈[,] |x(t)|, if x = y,
maxt∈[,](x(t) + y(t)), otherwise.

It is easy to see that (X,pb) is a pb-complete partial b-metric space with λ = . Let A,S,T :
X → X be defined by

(Ax)(t) =



∫ t


x(s)ds, (Sx)(t) = 

∫ t


x(s)ds,
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(Tx)(t) = 
∫ t


x(s)ds, for all x ∈ X.

Then it is easy to show that all the conditions (i)-(ii) of Theorem . are satisfied. Defineψ :
R+ → R+ and f : R+ → R+ by ψ(t, t, t, t, t) =max{  min{t, t+t },  min{t, t}}, f (t) = t.
Now, we consider following cases:
Case . If x = y = θ , then pb(Sx,Ty)

 =  = 
pb(Ax,Ay).

Case . If x = y 	= θ , then

pb(Sx,Ty)


=
maxt∈[,](

∫ t
 x(s)ds + 

∫ t
 y(s)ds)





=



max
t∈[,]

(∫ t


x(s)ds

)

≥ 


max
t∈[,]

(∫ t


x(s)ds

)

=


pb(Ax,Ay).

Case . If x 	= y and x = y, then

pb(Sx,Ty)


=



max
t∈[,]

(∫ t


x(s)ds

)

≥ 


max
t∈[,]

(∫ t


x(s)ds +




∫ t


x(s)ds

)

=


pb(Ax,Ay).

Case . If x 	= y and x 	= y, then

pb(Sx,Ty)


=
maxt∈[,](

∫ t
 x(s)ds + 

∫ t
 y(s)ds)





≥ 


max
t∈[,]

(∫ t


x(s)ds +

∫ t


y(s)ds

)

≥ 


max
t∈[,]

(∫ t


x(s)ds +

∫ t


y(s)ds

)

=


pb(Ax,Ay).

That is,

pb(Sx,Ty)
λ ≥ 


pb(Ax,Ay)

≥ ψ

(
pb(Ax,Ay),pb(Ax,Sx),pb(Ay,Ty),

pb(Ax,Ty)
λ

,
pb(Ay,Sx)

λ

)
,

for all x, y ∈ X. Thus, all conditions of Theorem . are satisfied. Hence, A, S, and T have
a unique common fixed point x = θ .

Now, we state and prove some fixed point results for generalized (φ, g,h)λ-weakly ex-
pansive mappings in partial b-metric spaces.

Theorem . Let (X,pb) be a pb-complete partial b-metric space, A, S, and T : X → X be
three mappings satisfying the generalized (φ, g,h)λ-weakly expansive condition (.). Sup-
pose that the following conditions are satisfied:

(i) A(X)⊂ S(X), A(X) ⊂ T(X), and A(X) is a closed subset of (X,psb);
(ii) A is an injective and A and T are weakly compatible.

Then A, S, and T have a unique common fixed point in X .
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Proof Let x ∈ X. Repeating the proof of Theorem ., we know that there exists a se-
quence {Axn} in X such that Axn = Sxn+ and Axn+ = Txn+, for n = , , , . . . .
We will complete the proof in three steps.
Step . We prove that limn→∞ pb(Axn,Axn+) = .
Suppose first that pb(Axn,Axn+) =  for some n = n. Then Axn = Axn+. In the case

that n = k, then pb(Axk ,Axk+) =  gives pb(Axk+,Axk+) = . Indeed, by (.), we
have

 = g
(
pb(Axk ,Axk+)

λ

)
= g

(
pb(Sxk+,Txk+)

λ

)

≥ h
(
Mλ(Axk+,Axk+)

)
+ φ

(
Mλ(Axk+,Axk+)

)
,

where

Mλ(Axk+,Axk+) = max

{
min

{
pb(Axk+,Axk+),

 + pb(Axk+,Axk+)


}
,

min

{
pb(Axk+,Axk+),

pb(Axk ,Axk+)
λ

}}
.

Thus, φ(Mλ(Axk+,Axk+)) = , implies that pb(Axk+,Axk+) = . Similarly, if n =
k + , then pb(Axk+,Axk+) = . Consequently, pb(Axn,Axn+) ≡  for n ≥ n. Hence,
limn→∞ pb(Axn,Axn+) = .
Now, suppose that pb(Axn,Axn+) > , for each n. By (.), we have

g
(
pb(Axn,Axn+)

λ

)
= g

(
pb(Sxn+,Txn+)

λ

)

≥ h
(
Mλ(Axn+,Axn+)

)
+ φ

(
Mλ(Axn+,Axn+)

)
, (.)

where

Mλ(Axn+,Axn+) = max

{
min

{
pb(Axn+,Axn+),

pb(Axn,Axn+) + pb(Axn+,Axn+)


}
,

min

{
pb(Axn+,Axn+),

pb(Axn+,Axn)
λ

}}
> .

If min{pb(Axn+,Axn+), pb(Axn ,Axn+)+pb(Axn+,Axn+) } = pb(Axn ,Axn+)+pb(Axn+,Axn+)
 > ,

then we have pb(Axn,Axn+) ≤ pb(Axn+,Axn+). It follows from (.) and the prop-
erties of φ, g , h that

g
(
pb(Axn,Axn+)

) ≥ g
(
pb(Axn,Axn+)

λ

)

≥ h
(
Mλ(Axn+,Axn+)

)
+ φ

(
Mλ(Axn+,Axn+)

)
> g

(
Mλ(Axn+,Axn+)

)
≥ g

(
pb(Axn,Axn+) + pb(Axn+,Axn+)



)
.
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Since g is nondecreasing, we get pb(Axn,Axn+) > pb(Axn+,Axn+), which is a contra-
diction. Thus, Mλ(Axn+,Axn+) ≥ pb(Axn+,Axn+). From (.), using the properties
of φ, g , h, we have

g
(
pb(Axn,Axn+)

) ≥ g
(
pb(Axn,Axn+)

λ

)
> g

(
pb(Axn+,Axn+)

)
.

Hence, we deduce that, for each n ∈N , pb(Axn+,Axn+) < pb(Axn,Axn+). Similarly, we
can prove that pb(Axn,Axn+) < pb(Axn–,Axn), for all n≥ . Therefore, {pb(Axn,Axn+)}
is a decreasing sequence of nonnegative real numbers. So, there exists r ≥  such that
limn→∞ pb(Axn,Axn+) = r. Following the proof of Theorem., we know that the sequence
{pb(Axn,Axn+)} has a subsequence {pb(Axnk ,Axnk+)} which converges to a real number
α ≤ λr. By (.), we get

g
(
pb(Axnk ,Axnk+)

λ

)
= g

(
pb(Sxnk+,Txnk+)

λ

)

≥ h
(
Mλ(Axnk+,Axnk+)

)
+ φ

(
Mλ(Axnk+,Axnk+)

)
.

Letting nk → ∞ in the above inequality, using the properties of φ, g , h, we can see that

g(r) ≥ g
(

r
λ

)
≥ h

(
max

{
min{r, r},min

{
r,

α

λ

}})
+ φ

(
max

{
min{r, r},min

{
r,

α

λ

}})

≥ h(r) + φ(r),

which implies that r = . Therefore, limn→∞ p(Axn,Axn+) = .
Step . We now show that {Axn} is a pb-Cauchy sequence.
Indeed, we first prove that limm,n→∞ pb(Axn,Axm) = . Since limn→∞ pb(Axn,Axn+) = ,

it is sufficient to show that limm,n→∞ pb(Axn,Axm) = . Suppose on the contrary, then
there exists ε >  for which we can find two subsequences {Axn(k)} and {Axm(k)} of {Axn}
such that m(k) is the smallest index, for which m(k) > n(k) > k, pb(Axm(k),An(k)) ≥ ε, for
every k. This means that pb(Axm(k)–,An(k)) < ε.
Repeating to the proof of Theorem ., we also have (.)-(.). By means of (.), we

get

g
(
pb(Axn(k),Axm(k)–)

λ

)
= g

(
pb(Sxn(k)+,Txm(k))

λ

)

≥ h
(
Mλ(Axn(k)+,Axm(k))

)
+ φ

(
Mλ(Axn(k)+,Axm(k))

)
,

(.)

where

Mλ(Axn(k)+,Axm(k)) = max

{
min

{
pb(Axn(k)+,Axm(k)),

pb(Axn(k)+,Axn(k)) + pb(Axm(k),Axm(k)–)


}
,

min

{
pb(Axn(k)+,Axm(k)),

pb(Axm(k),Axn(k))
λ

}}
.
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Taking the lower limit as k → ∞, using (.), (.), and (.), it is clear that

lim inf
k→∞

Mλ(Axn(k)+,Axm(k)) ≥max

{
min

{
ε

λ
, 

}
,min

{
ε

λ
,
ε

λ

}}
=

ε

λ
. (.)

Taking the upper limit as k → ∞ in (.), using the properties of φ, g , h, (.), and (.),
we obtain

g
(

ε

λ

)
≥ g

(
lim supn→∞ pb(Axn(k),Axm(k)–)

λ

)
≥ h

(
ε

λ

)
+ φ

(
ε

λ

)
,

which implies that ε = , a contradiction. Hence, we obtain limm,n→∞ pb(Axn,Axm) = ,
that is, {Axn} is a pb-Cauchy sequence.
Step . We will show that A, S, and T have a unique common fixed point.
Since {Axn} is a pb-Cauchy sequence in (X,pb). Similar to the proof of Theorem ., we

know that there exists x∗ ∈ X such that limn→∞ psb(Axn,x∗) = .
Since A(X) is a closed set of (X,psb), A(X) ⊂ T(X), and limn→∞ psb(Axn,x∗) = , we get

x∗ ∈ A(X) ⊂ T(X). Hence, there exists z ∈ X such that Tz = x∗. This together with (.)
ensures that

g
(
pb(Axn,Tz)

λ

)
= g

(
pb(Sxn+,Tz)

λ

)

≥ h
(
Mλ(Axn+,Az)

)
+ φ

(
Mλ(Axn+,Az)

)
, (.)

where

Mλ(Axn+,Az) = max

{
min

{
pb(Axn+,Az),

pb(Axn+,Axn) + pb(Az,Tz)


}
,

min

{
pb(Axn+,Az),

pb(Az,Axn)
λ

}}
.

Taking the upper limit as n→ ∞ in (.), using the properties of φ, g , h, (.), and (.),
we get

 = g()

≥ h
(
max

{
min

{
pb(Az,Tz)

λ
,
pb(Az,Tz)



}
,min

{
pb(Az,Tz)

λ
,
pb(Az,Tz)

λ

}})

+ φ

(
max

{
min

{
pb(Az,Tz)

λ
,
pb(Az,Tz)



}
,min

{
pb(Az,Tz)

λ
,
pb(Az,Tz)

λ

}})
,

which implies that p(Az,Tz) = .Hence,Az = Tz = x∗. Similarly, since x∗ ∈ A(X) ⊂ S(X),
there exists z ∈ X such that Sz = x∗, we have Az = Sz = x∗. Hence, Az = Az = x∗. Since
A is an injective, we get z = z.
Let z = z = z. ThenAz = Sz = Tz = x∗. SinceA andT areweakly compatible, it is obvious

that Ax∗ = AAz = ATz = TAz = Tx∗. Then we can find by (.) that

g
(
pb(Az,Ax∗)

λ

)
= g

(
pb(Sz,Tx∗)

λ

)
≥ h

(
Mλ

(
Az,Ax∗)) + φ

(
Mλ

(
Az,Ax∗)),
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where

Mλ

(
Az,Ax∗) = max

{
min

{
pb

(
Az,Ax∗), pb(Ax∗,Ax∗)



}
,

min

{
pb

(
Az,Ax∗), pb(Ax∗,Az)

λ

}}
≥ pb(Ax∗,Az)

λ
.

Thus,

g
(
pb(Az,Ax∗)

λ

)
≥ g

(
pb(Az,Ax∗)

λ

)
≥ h

(
pb(Ax∗,Az)

λ

)
+ φ

(
pb(Ax∗,Az)

λ

)
,

which implies that pb(Az,Ax∗) = . Thus, Az = Ax∗. Since A is an injective, we get z = x∗.
Thus, Az = Sz = Tz = z and z is a common fixed point of A, S, and T .
Now, we prove the uniqueness of common fixed points of A, S, and T . Suppose that

x∗, y∗ ∈ X such that Ax∗ = Sx∗ = Tx∗ = x∗ and Ay∗ = Sy∗ = Ty∗ = y∗. By means of (.), we
have

g
(
pb(x∗, y∗)

λ

)
= g

(
pb(Sx∗,Ty∗)

λ

)
≥ h

(
Mλ

(
Ax∗,Ay∗)) + φ

(
Ax∗,Ay∗),

where

Mλ

(
Ax∗,Ay∗) = max

{
min

{
pb

(
x∗, y∗), pb(x∗,x∗) + pb(y∗, y∗)



}
,

min

{
pb

(
x∗, y∗), pb(x∗, y∗)

λ

}}
≥ pb(x∗, y∗)

λ
.

Hence,

g
(
pb(x∗, y∗)

λ

)
≥ g

(
pb(x∗, y∗)

λ

)
≥ h

(
pb(x∗, y∗)

λ

)
+ φ

(
pb(x∗, y∗)

λ

)
,

which implies that pb(x∗, y∗) = . Hence, x∗ = y∗. This completes the proof. �

Remark . Taking g ≡ h in Theorem ., we have the following corollary, which extends
and generalizes Theorem . in [] and Theorem  in [].

Corollary . Let (X,pb) be a pb-complete partial b-metric space, A, S, and T : X → X be
three mappings. Suppose that the following conditions are satisfied:

(i) A(X)⊂ S(X), A(X) ⊂ T(X), and A(X) is a closed subset of (X,psb);
(ii) A is an injective and A and T are weakly compatible;
(iii) for all x, y ∈ X , we have

g
(
pb(Sx,Ty)

λ

)
≥ g

(
Mλ(Ax,Ay)

)
+ φ

(
Mλ(Ax,Ay)

)
,

where
Mλ(Ax,Ay) =max{min{pb(Ax,Ay), pb(Ax,Sx)+pb(Ay,Ty) },min{pb(Ax,Ay), pb(Ay,Sx)λ

}}, φ, g
are the same as in Definition ..

Then A, S, and T have a unique common fixed point in X .
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In the sequel, we will take an example to support our results of Theorem ..

Example . Let X = R+. Define a partial b-metric pb : X ×X → R+ by

pb(x, y) =
(
max{x, y}), for all x, y ∈ X.

It is easy to see that (X,pb) is a pb-complete partial b-metric space with λ = . Let A,S,T :
X → X be defined by

Ax = x, Sx = Tx =


x
√
 +


 + x

, for all x ∈ X.

Then it is easy to show that all the conditions (i)-(ii) of Theorem . are satisfied. Define
φ, g,h : R+ → R+ by g(t) = h(t) = t, φ(t) = t

+t , for all t ∈ R+. Without loss of generality, we
assume that x≤ y. Then

pb(Sx,Ty)


=
(max{ x

√
 + 

+x ,

y

√
 + 

+y })


=
( y

√
 + 

+y )




=



(
y +

y

 + y

)
≥ y +

y

 + y
= pb(Ax,Ay) + φ

(
pb(Ax,Ay)

)
.

That is,

g
(
pb(Sx,Ty)

λ

)
≥ h

(
pb(Ax,Ay)

)
+ φ

(
pb(Ax,Ay)

) ≥ h
(
Mλ(Ax,Ay)

)
+ φ

(
Mλ(Ax,Ay)

)
,

for all x, y ∈ X, where Mλ(Ax,Ay) = max{min{pb(Ax,Ay), pb(Ax,Sx)+pb(Ay,Ty) },min{pb(Ax,Ay),
pb(Ay,Sx)

λ
}}. Thus, all conditions of Theorem . are satisfied. Hence, A, S, and T have a

unique common fixed point x = .

3 An application
In this section, we establish the existence theorem for the solutions of a class of system of
integral equations.
Consider the system of integral equations

{
x(t) =

∫ T
 K (t, s)f(t, s,x(s))ds + x(t);

x(t) =
∫ T
 K (t, s)f(t, s,x(s))ds + x(t),

(.)

for t ∈ I = [,T], where T > , K : I → R+ is a continuous function and f, f : I × R → R
are also continuous functions.
Let X = C(I,R) be the set of all real continuous functions defined on I . We endowed X

with the partial b-metric

pb(x, y) =max
t∈I

∣∣x(t) – y(t)
∣∣q + a,

for all x, y ∈ X, where a ∈ R+ and q ≥ . It is not difficult to prove that (X,pb) is a pb-
complete partial b-metric space with coefficient λ = q–.
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Now, we define S and T : X → X by

Sx(t) =
∫ T


K (t, s)f

(
t, s,x(s)

)
ds + x(t), Tx(t) =

∫ T


K (t, s)f

(
t, s,x(s)

)
ds + x(t),

for all x ∈ X. Then x is a solution of (.) if and only if it is a common fixed point of S and T .
We shall prove the existence of common fixed point of S andT under certain conditions.

Theorem . Suppose that the following hypotheses hold:
(i) there exist a continuous function G : I → R+ and ψ ∈ � such that

K (t, s)[f(t, s,x(s)) – f(t, s, y(s))] + a
T

q–

≥G(t, s)ψ
(
pb(x, y),pb(x,Sx),pb(y,Ty),

pb(x,Ty)
q–

,
pb(y,Sx)
q–

)
,

for all t, s ∈ I , where K (t, s)f(t, s,x(s)) + a
T ≥ K (t, s)f(t, s, y(s)), for all t, s ∈ I .

(ii) inft∈I
∫ T
 G(t, s)ds≥ .

Then the system of integral equations (.) has a solution x∗ ∈ X.

Proof Let λ = q–. From the conditions (i) and (ii), we have

maxt∈I |Sx(t) – Ty(t)| + a
λ

=
maxt∈I |

∫ T
 K (t, s)f(t, s,x(s))ds –

∫ T
 K (t, s)f(t, s, y(s))ds| + a

λ

≥ maxt∈I |
∫ T
 [K (t, s)(f(t, s,x(s)) – f(t, s, y(s))) + a

T ]ds|
λ

≥
∫ T
 [K (t, s)(f(t, s,x(s)) – f(t, s, y(s))) + a

T ]ds
λ

≥
∫ T


G(t, s)ψ

(
pb(x, y),pb(x,Sx),pb(y,Ty),

pb(x,Ty)
λ

,
pb(y,Sx)

λ

)
ds

=ψ

(
pb(x, y),pb(x,Sx),pb(y,Ty),

pb(x,Ty)
λ

,
pb(y,Sx)

λ

)∫ T


G(t, s)ds

≥ ψ

(
pb(x, y),pb(x,Sx),pb(y,Ty),

pb(x,Ty)
λ

,
pb(y,Sx)

λ

)
,

for all x, y ∈ X. Thus, for any x, y ∈ X, we get the inequality of Corollary .. Hence, all the
hypotheses of Corollary . are satisfied. Then S and T have a common fixed point x∗ ∈ X,
that is, x∗ is a solution of the system of integral equations (.). �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

http://www.journalofinequalitiesandapplications.com/content/2014/1/475


Zhu et al. Journal of Inequalities and Applications 2014, 2014:475 Page 19 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/475

Acknowledgements
The authors thank the editor and the referees for their valuable comments and suggestions. The research was supported
by the National Natural Science Foundation of China (11071108, 11361042, 11326099) and the Provincial Natural Science
Foundation of Jiangxi, China (2010GZS0147, 20114BAB201007, 20142BAB211004, 20142BAB201007), and supported
partly by the Provincial Graduate Innovation Foundation of Jiangxi, China (YC2012-B004).

Received: 5 March 2014 Accepted: 12 November 2014 Published: 27 Nov 2014

References
1. Matthews, SG: Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications. Ann.

New York Acad. Sci., vol. 728, pp. 183-197 (1994)
2. Altun, I, Sola, F, Simsek, H: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778-2785 (2010)
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4. Samet, B, Rajović, M, Lazović, R, Stojiljković, R: Common fixed-point results for nonlinear contractions in ordered

partial metric spaces. Fixed Point Theory Appl. 2011, Article ID 71 (2011)
5. Aydi, H, Karapınar, E, Shatanawi, W: Coupled fixed point results for (ψ ,ϕ)-weakly contractive condition in ordered

partial metric spaces. Comput. Math. Appl. 62, 4449-4460 (2011)
6. Abbas, M, Nazir, T: Fixed point of generalized weakly contractive mappings in ordered partial metric spaces. Fixed

Point Theory Appl. 2012, Article ID 1 (2012)
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