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1 Introduction
Consider the following linear errors-in-variables (EV) model:

⎧⎨
⎩yt = xTt β + εt ,

Xt = xt + ζt , t = , , . . . ,n,
(.)

where the superscript T denotes the transpose throughout the paper, {yt , t = , , . . . ,n}
are scalar response variables, {Xt = (Xt,Xt, . . . ,Xtd)T , t = , , . . . ,n} and {xt = (xt,xt, . . . ,
xtd)T , t = , , . . . ,n} are observable and unobservable random variables, respectively, β =
(β, . . . ,βd)T is a vector of d unknown parameters, {ζt} are independent and identically
distributed (i.i.d.) measurement errors with Eζt =  and Var(ζt) = σ 

ζ Id , {ζt} and {εt} are
independent, {(εt , ζT

t )T } and {xt} are independent, and {εt , t = , , . . . ,n} are the first order
autoregressive (AR()) processes

ε = η, εt = aεt– + ηt , t = , , . . . ,n, (.)

where {ηt , t = , , . . . ,n} are i.i.d. random errors with zero mean and finite variance σ  > ,
and –∞ < a <∞ is a one-dimensional unknown parameter. A common assumption is that
the ratio of the error variances λ = σ

σ
ζ

is known. This is assumed throughout this paper
and all variables are assumed scaled so that λ = .
The linear errors-in-variables model (.) with AR() processes (.) includes three im-

portant special models: () an ordinary linear regression model with AR() processes
(when ζt = , see e.g., Hu [], Maller [], Pere [], and Fuller []); () an ordinary linear
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errors-in-variables model (when a = , see e.g., Miao and Liu [], Miao et al. [, ], Liu
and Chen [], Cui [], Cui and Chen [], Cheng and Van Ness []); () autoregressive
processes (when β = , see e.g., Hamilton [], Brockwell and Davis [], and Fuller []).
The independence assumption for the errors is not always valid in applications, especially
for sequentially collected economic data, which often exhibit evident dependence in the
errors. Recently, linear errors-in-variables models with serially correlated errors have at-
tracted increasing attention from statisticians; see, for example, Baran [], Fan et al. [],
Miao et al. [], among others.
It is well known that in the EV model, the ordinary least-squares (OLS) estimators are

biased and inconsistent and that orthogonal regression is better in that case Fuller [].
However, both methods are very sensitive to outliers in the data and some robust alter-
natives have been proposed. Brown [] and Ketellapper and Ronner [] applied robust
ordinary regression techniques in the EV model. Zamar [] proposed robust orthogonal
regressionM-estimators and showed that it outperformed the robust ordinary regression.
Cheng andVanNess [] generalized the proposal of Zamar by defining robust orthogonal
Generalized M-estimators which had bounded influence function in the simple case. He
and Liang [] proposed a regression quantile approach in the EV model which allowed
for heavier tailed errors distribution than the gaussian distribution. Fekri and Ruiz-Gazen
[] proposed robust weighted orthogonal regression.
Over the last  years, several estimators in linear regressionmodels that posses robust-

ness have been proposed, such as Wu [], Silvapullé [], Hampel et al. [], Huber and
Ronchetti [], Li [], Babu [], Cheng and Van Ness [], Salibian-Barrera and Zamar
[], Wu and Wang [], Zhou and Wu [], and so on. It is well known that HD esti-
mate approach is one of important robust techniques. Recently, some authors applied HD
estimate approach to regression models. For example, Silvapullé [] established asymp-
totic normality of HD estimators for the linear regression model with i.i.d. errors. Hu []
investigated asymptotic normality of HD estimators for the linear regression model with
AR() errors. Tong et al. [] considered consistency and normality of HD estimators for
the partial linear regression model. However, nobody used the HD method to investigate
the models (.)-(.).
The paper discusses the models (.)-(.) with a robust approach, which has been sug-

gested by Huber and Dutter. We extend some results of Hu [], Silvapullé [], etc. to the
EV regression model with AR() errors. The organization of the paper is as follows. In
Section  estimators of β , a and σ  are given by HD method. Under general conditions,
the asymptotic normality of the HD estimators is investigated in Section . The theoret-
ical proofs of main results are presented in Section , a simple example is given in Sec-
tion .

2 Estimationmethod
By (.), we have

εt =
t∑
j=

at–jηj, t = , , . . . , (.)
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thus εt is measurable with respect to the σ -field H generated by η,η, . . . ,ηt , Eεt =  and

Var(εt) =

{
σ ( –at–a ), if |a| �= ,
σ t, if |a| = .

(.)

Furthermore,

�n(a,σ ) =
n∑
t=

Eεt– =

{
σ ( a

n–a+(n–)(–a)
(–a) ), if |a| �= ,


σ

n(n – ), if |a| = ,

=

⎧⎪⎨
⎪⎩
O(n), if |a| < ,
O(an), if |a| > ,
O(n), if |a| = .

(.)

Let y = , x = . From (.),

εt = yt –
(
XT
t – ζT

t
)
β .

By the above equation and (.), we obtain

ηt = εt – aεt–

= yt –XT
t β + ζT

t β – a
(
yt– –XT

t–β + ζT
t–β

)
. (.)

Thus we could consider HD estimators by minimizing

Q
(
βT ,σ ,a

)
=

n∑
t=

ρ

(
yt –XT

t β + ζT
t β – a(yt– –XT

t–β + ζT
t–β)

σ

)
σ +Anσ , (.)

where ρ ≥  is convex, ρ() = , ρ(t)
|t| → k as |t| → ∞ for some k > , and {An} is a suitably

chosen sequence of constants.

Remark  Since

Var

(
yt –XT

t β – a(yt– –XT
t–β)√

 + ( + a)βTβ

)
= σ ,

using the method of HD, we also obtain HD estimators by minimizing

Q̃
(
βT ,σ ,a

)
=

n∑
t=

ρ

( yt–XT
t β–a(yt––XT

t–β)√
+(+a)βTβ

σ

)
σ +Anσ .

We will investigate its estimators in the future because there are some difficulties. For
example, there is very sophisticated calculation, and it is difficult to investigate the asymp-
totic properties of these unknown parametric estimators because

yt –XT
t β – a

(
yt– –XT

t–β
)
= ηt –

(
ζT
t – aζT

t–
)
β

are dependent.
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Let us introduce some notation:  × (d + ) vector θ = (βT ,σ ,a) and its estimator θ̂n =
(β̂T

n , σ̂n, ân). For an arbitrary function f , f ′ and f ′′ are the first and second derivatives of
f , respectively. ‖x‖ is the Euclidean norm of x and ε = . (M)ij and (U)i are the (i, j)th
component of matrixM and the ith component of vector U , respectively.
The HD estimators for θ are obtained by solving the estimating equations by equating

to  the derivatives

∂Q
∂βT = –

n∑
t=

ψ

(
yt –XT

t β + ζT
t β – a(yt– –XT

t–β + ζT
t–β)

σ

)(
Xt – aXt– – (ζt – aζt–)

)

= –
n∑
t=

ψ

(
εt – aεt–

σ

)(
Xt – aXt– – (ζt – aζt–)

)
, (.)

∂Q
∂σ

= –
n∑
t=

{
ψ

(
εt – aεt–

σ

)
εt – aεt–

σ
– ρ

(
εt – aεt–

σ

)}
+An

= –

{ n∑
t=

χ

(
εt – aεt–

σ

)
–An

}
, (.)

and

∂Q
∂a

= –
n∑
t=

ψ

(
εt – aεt–

σ

)
εt–, (.)

where ψ = ρ ′ and χ (u) = uψ(u) – ρ(u) =
∫ u
 xdψ(x).

The corresponding estimators, if they exist (see Proposition .), will satisfy

n∑
t=

ψ

(
ε̂t – ânε̂t–

σ̂n

)(
Xt – ânXt– – (ζt – ânζt–)

)
= , (.)

n∑
t=

χ

(
ε̂t – ânε̂t–

σ̂n

)
= An, (.)

and

n∑
t=

ψ

(
ε̂t – ânε̂t–

σ̂n

)
ε̂t– =  (.)

with ε̂t = yt – xTt β̂n.
Although {ζt} are unknown in (.)-(.), but we easily estimate it by the method of

Fuller [] in practice.
In what follows, it will be assumed that n≥ d +  and An > . Without loss of generality,

wemay assume k = . (Its definition has been given between (.) andRemark .) Therefore
ψ is bounded and increases from – to +. It will also be assumed that χ is bounded.

Remark  From the above equations, it is easily seen that our estimators include some
existing estimators; see, for example, simultaneous M-estimators of the location and the
scale (a = , An = ), the least-squares estimators (ρ(u) = u, An = , and σ = ), the least
absolute deviation estimators (ρ(u) = |u|,An = ). In particular, we discuss three important
cases as follows.
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Case . Let a = , ζt = . The estimating equations (.)-(.) may be written as

n∑
t=

ψ

(
yt –XT

t β̂n

σ̂n

)
Xt = ,

n∑
t=

χ

(
yt –XT

t β̂n

σ̂n

)
= An, (.)

which are the same as Silvapullé’s [].
Case . If ρ(u) = |u|q ( < q �= ), An = , and ζt = , then the above equations (.)-(.)

may be rewritten as

n∑
t=

∣∣∣∣ ε̂t – ânε̂t–
σ̂n

∣∣∣∣
q–

ε̂t – ânε̂t–
σ̂n

(Xt – ânXt–) = , (.)

n∑
t=

∣∣∣∣ ε̂t – ânε̂t–
σ̂n

∣∣∣∣
q

= , (.)

and

n∑
t=

∣∣∣∣ ε̂t – ânε̂t–
σ̂n

∣∣∣∣
q–

ε̂t – ânε̂t–
σ̂n

ε̂t– =  (.)

with ε̂t = yt –XT
t β̂n.

Let a =  and ρ(u) = |u|q ( < q �= ), An = . We rewrite (.)-(.) by

n∑
t=

∣∣∣∣yt –XT
t β̂n

σ̂n

∣∣∣∣
q– yt –XT

t β̂n

σ̂n
= ,

n∑
t=

∣∣∣∣yt –XT
t β̂n

σ̂n

∣∣∣∣
q

= . (.)

Furthermore, if σ is a constant, then the estimator of β satisfies the following equation:

n∑
t=

∣∣yt –XT
t β̂n

∣∣q–(yt –XT
t β̂n

)
= , (.)

which is Lq or the maximum likelihood estimate equation for the parameter β in a linear
regression model with q-norm distribution errors. Many authors have investigated (.),
such as Arcones [] and Zeckhauser and Thompson [], Ronner [, ], and so on.
Case . Let ζt = . The estimating equations (.)-(.) may be written as

n∑
t=

ψ

(
ε̂t – ânε̂t–

σ̂n

)
(Xt – ânXt–) = , (.)

n∑
t=

χ

(
ε̂t – ânε̂t–

σ̂n

)
= An, (.)

and

n∑
t=

ψ

(
ε̂t – ânε̂t–

σ̂n

)
ε̂t– = , (.)

with ε̂t = yt – xTt β̂n, which are the same as Hu’s [].
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From Proposition  in Silvapullé [] and pp. in Huber and Ronchetti [], the exis-
tence results of the HD estimators may be given by the following.

Proposition . Suppose that ρ ′′ is continuous and, for some A > , ν <  – AV–, where
ν is the largest jump in the error distribution, V = χ (–∞) ∧ χ (∞), then the equation
E{ψ( ε–μ

σ
),χ ( ε–μ

σ
) – A} =  has a solution (μ(A),σ (A)) with σ (A) > . Especially, when

A = limn→∞ n–An, where An is defined in (.), we denote it by (μ,σ ) with σ > .

3 Main results
To obtain our results, we start with some assumptions.
(A) maxnt= ‖Xt‖ <∞.
(A) limn→∞ n 

 (n–An –A) =  for some  < n–An, A <min{χ (∞),χ (–∞)}.
(A) The function ψ ′′ is continuous.
(A) Eψ( ηt

σ
) =  for any σ > . b = Eψ ′( ηt

σ
) > , c = E{ψ ′( ηt

σ
) ηt

σ
}, r = E{ψ ′( ηt

σ
)η

t }, br ≥ c,
Var(ψ ′( ηt

σ
)) < ∞, Var(ψ ′( ηt

σ
)ηt) < ∞, Var(ψ ′( ηt

σ
)η

t ) <∞, Eη
t < ∞ and

E(ψ ′′( ηt
σ
)) < ∞.

(A) For any a ∈ (–∞,∞), Xn(a) =
∑n

t=(Xt – aXt–)(Xt – aXt–)T is positive definite for
sufficiently large n.

Remark  The condition (A) is often imposed in the estimation theory of regression
models. The condition (A) is used by Tong et al. []. In addition, by (A) and (A), we
can obtain conditions n–maxnt= ‖Xt‖ →  and limn→∞(n–An – A) = , which are used
by Silvapullé []. The conditions (A) and (A) except Eη

t < ∞ and E(ψ ′′( ηt
σ
)) < ∞ are

used by Silvapullé []. The condition (A) is used by Maller [], Hu [], etc. Therefore,
our conditions are quite mild and can easily be satisfied.

For ease of exposition, we shall introduce the following notations which will be used
later in the paper. Define

� =
{
θ̃ : |θ̃ – θ | ≤ Cn–



}
,

� =
{
θ̃ : |β̃ – β| ≤ Cn–


 , |σ̃ – σ | ≤ Cn–


 , |ã – a| ≤ Cn–

}
,

� =
{
θ̃ : |β̃ – β| ≤ Cn–


 , |σ̃ – σ | ≤ Cn–


 , |ã – a| ≤ Ca–

n

}
,

Sn(θ ) =
∂Q
∂θ

=
(

∂Q
∂βT ,

∂Q
∂σ

,
∂Q
∂a

)
=
([

Sn(θ )
]
β ,σ ,

∂Q
∂a

)
, (.)

and

Fn(θ ) =
∂Q

∂θ ∂θT =

⎛
⎜⎜⎝

∂Q
∂βT ∂β

∂Q
∂βT ∂σ

∂Q
∂βT ∂a

∗ ∂Q
∂σ

∂Q
∂σ ∂a

∗ ∗ ∂Q
∂a

⎞
⎟⎟⎠ , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/474
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where the ∗ indicates that the elements are filled in by symmetry, and

∂Q
∂βT ∂β

=

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)

· (Xt – aXt– – (ζt – aζt–)
)(
Xt – aXt– – (ζt – aζt–)

)T
= Xn(a,ω), (.)

∂Q
∂βT ∂σ

=

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–)

(
Xt – aXt– – (ζt – aζt–)

)T , (.)

∂Q
∂βT ∂a

=
n∑
t=

ψ ′
(

εt – aεt–
σ

)
εt–

σ

(
Xt – aXt– – (ζt – aζt–)

)T

+
n∑
t=

ψ

(
εt – aεt–

σ

)
(Xt– – ζt–)T , (.)

∂Q
∂σ  =


σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–), (.)

∂Q
∂σ ∂a

=

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–)εt–, (.)

and

∂Q
∂a

=

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
εt–. (.)

Theorem . Suppose that conditions (A)-(A) hold. Then, as n→ ∞:
() For |a| <  and θ ∈ �, we have

(θ̂n – θ )Dn(θ )Var–


(
Sn(θ )

)→D N(, Id+), (.)

where Dn(θ ) = E(Fn(θ )) and Var(Sn(θ )) defined in Lemma ..
() For |a| =  and θ ∈ �, (.) holds.
() For |a| >  and θ ∈ �, (.) holds.

From the above theorem, we may obtain the following corollaries. Here we omit their
proofs.

Corollary . If β =  and conditions (A)-(A) hold, then

n

 (σ̂n – σ )→D N

(
,

σ 

r
Var

(
χ

(
η

σ

)))
(.)

and

�


n (a,σ )(ân – a)→D N

(
,

σ 

b
Eψ

(
η

σ

))
, n→ ∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/474
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Corollary . If a =  and conditions (A)-(A) hold, then

–
[
Sn(θ )

]
β ,σ

[
Var–


 Sn(θ )

]
β ,σ →D N(, Id+), n→ ∞. (.)

Remark  Corollary . is similar to Theorem  of Silvapullé [].

Corollary . Let σ be a constant. If conditions (A)-(A) hold, then

(β̂n – β)
(
Xn(a) + n

(
 + a

)
σ 

ζ Id
) 
 →D N

(
,

σ 

b
Eψ

(
η

σ

)
Id
)

(.)

and

�


n (a,σ )(ân – a)→D N

(
,

σ 

b
Eψ

(
η

σ

))
, n→ ∞. (.)

Corollary . Let ζt = . If conditions (A)-(A) hold, then Theorem . holds.

Remark  For |a| < , Corollary . is the same as Theorem . of Hu []. Therefore, we
extend the corresponding results of Hu [] to linear EV models.

If we do not consider the dependency on the parameters β̂n and σ̂n, then we will obtain
Theorem ..

Theorem . Let

[θ ]β ,σ =
(
βT ,σ

)
, Dn(θ ) = diag

([
Dn(θ )

]
β ,σ ,

b
σ

�n(a,σ )
)
.

Suppose that conditions (A)-(A) hold. Then
() for any a ∈ (–∞,∞),

n–

 [θ̂n – θ ]β ,σ

[
Dn(θ )

]
β ,σ →D N(,�), n→ ∞, (.)

where

� = diag

{
�–

n (a,σ )
(
Xn(a) + n

(
 + a

)
σ 

ζ Id
)
E
(

ψ
(

η

σ

))
,Var

(
χ

(
η

σ

))}
;

() for any a ∈ (–∞,∞),

�


n (a,σ )(ân – a)→D N

(
,

σ 

b
Eψ

(
η

σ

))
. (.)

4 Proofs of main results
Throughout this paper, let C denote a generic positive constant which could take different
value at each occurrence. To prove Theorem . and Theorem ., we first introduce the
following lemmas.

http://www.journalofinequalitiesandapplications.com/content/2014/1/474
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Lemma. If (A) and (A) hold, then thematrix Dn(θ ) is positive definite with E(Sn(θ )) =
 for sufficiently large n and

Var
(
Sn(θ )

)

=

⎛
⎜⎝
Eψ( η

σ
)(Xn(a) + n( + a)σ 

ζ Id) Cov( ∂Q
∂βT , ∂Q

∂σ
) 

∗ nVar(χ ( η
σ
)) 

  Eψ( η
σ
)�n(a,σ )

⎞
⎟⎠

= diag

{[
Var

(
Sn(θ )

)]
β ,σ ,Eψ

(
η

σ

)
�n(a,σ )

}
, (.)

where

Cov

(
∂Q
∂βT ,

∂Q
∂σ

)
= E

(
ψ

(
η

σ

)
χ

(
η

σ

)) n∑
t=

(Xt – aXt–)T .

Furthermore, Var(Sn(θ )) is a positive definite matrix.

Proof Note that Eψ( ηt
σ
) = , E(εt) = , and εt , ζt , and ηt+ are independent. By (.)-(.),

we easily obtain

Dn(θ ) =

⎛
⎜⎝

b
σ
Xn(a) + nb

σ
( + a)σ 

ζ Id
c
σ

∑n
t=(Xt – aXt–) 

∗ nr
σ


  b

σ
�n(a,σ )

⎞
⎟⎠ . (.)

It is easy to show that

Dn(θ ) =
∣∣∣∣ bσ Xn(a) +

nb
σ

(
 + a

)
σ 

ζ Id
∣∣∣∣ > ,

Dn(θ ) =

∣∣∣∣∣
b
σ
Xn(a) + nb

σ

(
 + a

)
σ 

ζ Id
c
σ

∑n
t=(Xt – aXt–)

∗ nr
σ

∣∣∣∣∣
=
∣∣∣∣ bσ Xn(a) +

nb
σ

(
 + a

)
σ 

ζ Id
∣∣∣∣ ·
∣∣∣∣∣nrσ –

c

bσ

n∑
t=

(Xt – aXt–)T

· (Xn(a) + n
(
 + a

)
σ 

ζ Id
)– n∑

t=

(Xt – aXt–)

∣∣∣∣∣ > ,

(.)

and

∣∣Dn(θ )
∣∣ > .

Thus the matrix Dn(θ ) is positive definite.
By (.), we have

E
(

∂Q
∂βT

)
= –

n∑
t=

Eψ

(
ηt

σ

)
(Xt – aXt–)T = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/474
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By (.) and Proposition ., we have

E
(

∂Q
∂σ

)
= –

n∑
t=

Eχ

(
ηt

σ

)
+An → . (.)

Note that εt– and ηt are independent; by (.) and E(εt) = , we have

E
(

∂Q
∂a

)
= –

n∑
t=

E
(

ψ

(
ηt

σ

)
εt–

)
= –

n∑
t=

E
(

ψ

(
ηt

σ

))
E(εt–) = . (.)

Hence, from (.)-(.),

E
(
Sn(θ )

)
=

(
,–

n∑
t=

Eχ

(
ηt

σ

)
+An, 

)
→ .

By (.), we have

Var

(
∂Q
∂βT

)
= Var

(
ψ

(
ηt

σ

)) n∑
t=

(
(Xt – aXt–)(Xt – aXt–)T +

(
 + a

)
σ 

ζ Id
)

= E
(

ψ

(
η

σ

))(
Xn(a) + n

(
 + a

)
σ 

ζ Id
)
. (.)

By (.), we have

Var

(
∂Q
∂σ

)
=

n∑
t=

Var

(
χ

(
ηt

σ

))
= nVar

(
χ

(
η

σ

))
. (.)

Note that {ψ( ηt
σ
)εt–,Ht} is a martingale difference sequence with

Var

(
ψ

(
ηt

σ

)
εt–

)
= E

(
ψ

(
ηt

σ

))

Eεt–,

so we have

Var

(
∂Q
∂a

)
=

n∑
t=

Var

(
ψ

(
ηt

σ

)
εt–

)

=
n∑
t=

E
(

ψ

(
ηt

σ

))

Eεt– = E
(

ψ

(
η

σ

))

�n(a,σ ). (.)

By (.) and (.), we have

Cov

(
∂Q
∂βT ,

∂Q
∂σ

)
= E

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T

·
n∑
t=

(
χ

(
ηt

σ

)
– Eχ

(
ηt

σ

)))
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=
n∑
t=

E
(

ψ

(
ηt

σ

)(
χ

(
ηt

σ

)
– Eχ

(
ηt

σ

)))
(Xt – aXt–)T

= E
(

ψ

(
η

σ

)
χ

(
η

σ

)) n∑
t=

(Xt – aXt–)T . (.)

By (.), (.), and noting that ζt , εt–, and ηt are independent, we have

Cov

(
∂Q
∂βT ,

∂Q
∂a

)
= E

(
∂Q
∂βT ,

∂Q
∂a

)

= E

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T n∑
t=

ψ

(
ηt

σ

)
εt–

)

=
n∑
t=

E
(

ψ
(

ηt

σ

)
εt–

)(
Xt – aXt– – (ζt – aζt–)

)T

+ 
n∑
t>k

E
(

ψ

(
ηt

σ

)
ψ

(
ηk

σ

)
εk–

)

=
n∑
t=

Eψ
(

ηt

σ

)
Eεt–(Xt – aXt–)T

+ 
n∑
t>k

E
(

ψ

(
ηt

σ

)
ψ

(
ηk

σ

))
Eεk–

= . (.)

By (.) and (.), we have

Cov

(
∂Q
∂a

,
∂Q
∂σ

)
= E

( n∑
t=

ψ

(
ηt

σ

)
εt–

n∑
t=

(
χ

(
ηt

σ

)
– Eχ

(
ηt

σ

)))

=
n∑
t=

E
(

ψ

(
ηt

σ

)(
χ

(
ηt

σ

)
– Eχ

(
ηt

σ

)))
Eεt–

+ 
n∑
t>k

E
((

χ

(
ηt

σ

)
– Eχ

(
ηt

σ

))
ψ

(
ηk

σ

))
Eεk–

= . (.)

Hence, (.) follows immediately from (.)-(.). �

Similarly to the proof of Dn(θ ), we easily prove that the matrix Var(Sn(θ )) is positive
definite. Thus, we complete the proof of Lemma ..

Lemma . Assume that (A) and (A) hold. Then:
() for |a| < , we have

Fn(θ ) –Dn(θ ) =Op
(
n



)
, n→ ∞; (.)
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() for |a| = , we have

Fn(θ ) –Dn(θ ) =

⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(n)

∗ Op(n

 ) Op(n


 )

∗ ∗ Op(n

 )

⎞
⎟⎠ , (.)

where the ∗ indicates that the elements are filled in by symmetry;
() for |a| > , we have

Fn(θ ) –Dn(θ ) =

⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(an)

∗ Op(n

 ) Op(n


 )

∗ ∗ Op(an)

⎞
⎟⎠ . (.)

Proof By (.) and (.), we obtain

n–
{
Xn(a,ω) – bXn(a) – nb

(
 + a

)
σ 

ζ Id
}

=

nσ

n∑
t=

{
ψ ′
(

εt – aεt–
σ

)
– b

}
(Xt – aXt–)(Xt – aXt–)T

+

nσ

n∑
t=

{
ψ ′
(

εt – aεt–
σ

)
ζtζ

T
t – bσ 

ζ Id
}

+
a

nσ

n∑
t=

{
ψ ′
(

εt – aεt–
σ

)
ζt–ζ

T
t– – bσ 

ζ Id
}

–
a
nσ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
ζtζ

T
t– –


nσ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(Xt – aXt–)ζT

t

+
a
nσ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(Xt – aXt–)ζT

t–

=U +U +U +U +U +U. (.)

Note that {ψ ′( ηt
σ
), t = , , . . . ,n} are i.i.d. random variables with finite varianceVar(ψ ′( ηt

σ
)),

we have

Var

{
n–

n∑
t=

(
ψ ′
(

ηt

σ

)
– Eψ ′

(
ηt

σ

))}
= n–

n∑
t=

Var

(
ψ ′
(

ηt

σ

))

= n–Var
(

ψ ′
(

η

σ

))
=O

(
n–

)
. (.)

By the Chebyshev inequality and (.), we have

(U)ij =

nσ

n∑
t=

{
ψ ′
(

ηt

σ

)
– Eψ ′

(
ηt

σ

)}
(Xt – aXt–)i(Xt – aXt–)Tj

≤ 
σ
max‖Xt – aXt–‖ · n–

n∑
t=

{
ψ ′
(

ηt

σ

)
– Eψ ′

(
ηt

σ

)}

=Op
(
n–



)
. (.)
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Similarly, we obtain

(Ui)ij =Op
(
n–



)
. (.)

By (.), (.), and (.), we have

Xn(θ ,ω) – bXn(a) – nb
(
 + a

)
σ 

ζ Id =Op
(
n



)
. (.)

By (.) and (.), we easily obtain

∂Q
∂βT ∂σ

–
c
σ

n∑
t=

(Xt – aXt–)T

=

σ

n∑
t=

{
ψ ′
(

ηt

σ

)
ηt

σ
– E

(
ψ ′
(

ηt

σ

)
ηt

σ

)}
(Xt – aXt–)T

–

σ

n∑
t=

ψ ′
(

ηt

σ

)
ηt

σ
(ζt – aζt–)T

=Op
(
n



)
. (.)

By (.) and (.), we obtain

n–



{
∂Q

∂βT ∂a
– 

}
= n–




n∑
t=

ψ ′
(

ηt

σ

)
εt–

σ
(Xt – aXt–)T

– n–



n∑
t=

ψ ′
(

ηt

σ

)
εt–

σ
(ζt – aζt–)T

+ n–



n∑
t=

ψ

(
ηt

σ

)
XT
t– – n–




n∑
t=

ψ

(
ηt

σ

)
ζT
t–

= n–

 (U +U +U +U). (.)

Note that {ψ ′( ηt
σ
) εt–

σ
,Ht} is a martingale difference sequence with

Var

(
ψ ′
(

ηt

σ

)
εt–

σ

)
= E

(
ψ ′
(

ηt

σ

))

E
(

εt–
σ 

)
,

so we have
(
Var

{
n–

n∑
t=

ψ ′
(

ηt

σ

)
εt–

σ
(Xt – aXt–)T

})
ij

= n–
n∑
t=

Var

{
ψ ′
(

ηt

σ

)
εt–

σ

}
(Xt – aXt–)i(Xt – aXt–)Tj

≤ 
σ  max‖Xt – aXt–‖E

(
ψ ′
(

η

σ

))

n–
n∑
t=

E
(
εt–

)

=O
(
�n(a,σ )n–

)
. (.)
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By the Chebyshev inequality and (.), we have

(U)i =Op
(
�



n (a,σ )

)
. (.)

Similarly, we have

(U)i =Op
(
�



n (a,σ )

)
. (.)

It is easy to show that

(U)i =Op
(
n



)
, U =Op

(
n



)
. (.)

By (.) and (.)-(.), we have

∂Q
∂βT ∂a

–  =Op
(
�



n (a,σ )

)
. (.)

By (.) and (.), we obtain

∂Q
∂σ  –

nd
σ

=

σ

{ n∑
t=

ψ ′
(

ηt

σ

)
η
t – nd

}
=


σ

n∑
t=

{
ψ ′
(

ηt

σ

)
η
t – E

(
ψ ′
(

ηt

σ

)
η
t

)}

= Op
(
n



)
. (.)

Note that {ψ ′( ηt
σ
)ηtεt–,Ht} is a martingale difference sequence with Var(ψ ′( ηt

σ
)ηtεt–) =

Var(ψ ′( ηt
σ
)ηt)Var(εt–), and by (.) and (.), we obtain

∂Q
∂σ ∂a

–  =

σ 

n∑
t=

ψ ′
(

ηt

σ

)
ηtεt– =Op

(
n



)
. (.)

By (.) and (.), we obtain

n–
{

∂Q
∂a

–
b
σ

�n(a,σ )
}
=


nσ

{ n∑
t=

ψ ′
(

ηt

σ

)
εt– – b�n(a,σ )

}

=

nσ

n∑
t=

{
ψ ′
(

ηt

σ

)
– E

(
ψ ′
(

ηt

σ

))}
εt–

+
b

�n(a,σ )σ

n∑
t=

(
εt– – E

(
εt–

))
= T + T. (.)

Since we easily prove that {ψ ′( ηt
σ
) – E(ψ ′( ηt

σ
))εt–,Ht} is a martingale difference sequence,

Var(T) =


(nσ )

n∑
t=

E
{
ψ ′
(

ηt

σ

)
– E

(
ψ ′
(

ηt

σ

))}

E
(
εt–

)

=


(nσ )
Var

{
ψ ′
(

η

σ

)} n∑
t=

E
(
εt–

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/474


Hu and Pan Journal of Inequalities and Applications 2014, 2014:474 Page 15 of 25
http://www.journalofinequalitiesandapplications.com/content/2014/1/474

By (.), we obtain

E
(
εt–

) ≤
t–∑
j=

a(t––j)Eη
j + σ 

t–∑
j=

a(t––j)
t–∑
k=

a(t––k)

=

{
Eη


a(t–)(–a–(t–))

–a– + σ ( a
(t–)(–a–(t–))

–a– ), if |a| �= ,
Eη

 (t – ) + σ (t – ), if |a| = .
(.)

Thus

n∑
t=

E
(
εt–

)

≤
{
Eη

 (
an–

(–a–) –
n

a– ) +
σ

(–a–) (
an–
–a– –

(an–)
a–(–a–) + na–), |a| �= ,


Eη

n(n – ) + σ  (n–)n(n–)
 , |a| = .

(.)

That is,

n∑
t=

E
(
εt–

)
=

⎧⎪⎨
⎪⎩
O(n), if |a| < ,
O(an), if |a| > ,
O(n), if |a| = .

(.)

By Chebyshev inequality and (.)-(.), we have

T =

⎧⎪⎨
⎪⎩
Op(n–


 ), if |a| < ,

Op(n–an), if |a| > ,
Op(n


 ), if |a| = .

(.)

Similarly to the proof of (.), we easily obtain

T =

⎧⎪⎨
⎪⎩
Op(n–


 ), if |a| < ,

Op(), if |a| > ,
Op(n–


 ), if |a| = .

(.)

Hence, by (.), (.), and (.), we have

∂Q
∂a

–
b
σ

�n(θ ) =

⎧⎪⎨
⎪⎩
Op(n


 ), if |a| < ,

Op(an), if |a| > ,
Op(n


 ), if |a| = .

(.)

Thus Lemma . follows from (.), (.), (.)-(.), and (.). �

Lemma . Assume that (A), (A), and (A) hold, and Eη
t < ∞, E(ψ ′′( ηt

σ
)) < ∞ and

θ ∈ �. Then, as n→ ∞:
() for |a| < , we have

Rnl(θ ) =
∂

∂θl

∂

∂θT∂θ
Q(θ ) =

∂

∂θl
Fn(θ ) =Op

(
n



)
, l = , , . . . ,d + ;
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() for |a| = , we have

Rnl(θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(n)

∗ Op(n

 ) Op(n)

∗ ∗ Op(n)

⎞
⎟⎠

(d+)×(d+)
...⎛

⎜⎝
Op(n


 ) Op(n


 ) Op(n)

∗ Op(n

 ) Op(n)

∗ ∗ Op(n)

⎞
⎟⎠

(d+)×(d+)⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(n)

∗ Op(n

 ) Op(n)

∗ ∗ Op(n

 )

⎞
⎟⎠

(d+)×(d+)⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(n


 )

∗ Op(n

 ) Op(n


 )

∗ ∗ Op(n)

⎞
⎟⎠

(d+)×(d+)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d+)×

;

() for |a| > , we have

Rnl(θ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(an)

∗ Op(n

 ) Op(an)

∗ ∗ Op(an)

⎞
⎟⎠

(d+)×(d+)
...⎛

⎜⎝
Op(n


 ) Op(n


 ) Op(an)

∗ Op(n

 ) Op(an)

∗ ∗ Op(an)

⎞
⎟⎠

(d+)×(d+)⎛
⎜⎝
Op(n


 ) Op(n


 ) Op(an)

∗ Op(n

 ) Op(an)

∗ ∗ Op(an)

⎞
⎟⎠

(d+)×(d+)⎛
⎜⎝
Op(an) Op(an) Op(an)

∗ Op(an) Op(an)
∗ ∗ Op(an)

⎞
⎟⎠

(d+)×(d+)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d+)×

.

Proof Let

∂

∂θl
Fn(θ ) =

⎛
⎜⎜⎝

∂Q
∂θl ∂βT ∂β

∂Q
∂θl ∂βT ∂σ

∂Q
∂θl ∂βT ∂a

∗ ∂Q
∂θl ∂σ

∂Q
∂θl ∂σ ∂a

∗ ∗ ∂Q
∂θl ∂a

⎞
⎟⎟⎠ . (.)

Case . l = , , . . . ,d.

∂Q
∂θl ∂βT ∂β

= –

σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)(
Xtl – aXt–,l – (ζtl – aζt–,l)

)

· (Xt – aXt– – (ζt – aζt–)
)(
Xt – aXt– – (ζt – aζt–)

)T , (.)
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∂Q
∂θl ∂βT ∂σ

= –

σ 

n∑
t=

{
ψ ′
(

εt – aεt–
σ

)
+ψ ′′

(
εt – aεt–

σ

)
εt – aεt–

σ

}

· (Xtl – aXt–,l – (ζtl – aζt–,l)
)(
Xt – aXt– – (ζt – aζt–)

)T , (.)

∂Q
∂θl ∂βT ∂a

= –

σ

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–

σ

· (Xtl – aXt–,l – (ζtl – aζt–,l)
)(
Xt – aXt– – (ζt – aζt–)

)T
–


σ

n∑
t=

ψ ′
(

εt – aεt–
σ

){
(Xt–,l – ζt–,l)

(
Xt – aXt– – (ζt – aζt–)

)T
+
(
Xtl – aXt–,l – (ζtl – aζt–,l)

)
(Xt– – ζt–)T

}
, (.)

∂Q
∂θl ∂σ  = –


σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)(
Xtl – aXt–,l – (ζtl – aζt–,l)

)
(εt – aεt–)

–

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)(
Xtl – aXt–,l – (ζtl – aζt–,l)

)
(εt – aεt–), (.)

∂Q
∂θl ∂σ ∂a

= –

σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt – aεt–

σ
εt–

(
Xtl – aXt–,l – (ζtl – aζt–,l)

)

–

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
εt–

(
Xtl – aXt–,l – (ζtl – aζt–,l)

)

–

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–)(Xt–,l – ζt–,l), (.)

and

∂Q
∂θl ∂a

= –

σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–

(
Xtl – aXt–,l – (ζtl – aζt–,l)

)

–

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
εt–(Xt–,l – ζt–,l). (.)

Case . l = d + .

∂Q
∂σ ∂βT ∂β

= –

σ 

n∑
t=

(
ψ ′′

(
εt – aεt–

σ

)
εt – aεt–

σ
+ψ ′

(
εt – aεt–

σ

))

· (Xt – aXt– – (ζt – aζt–)
)(
Xt – aXt– – (ζt – aζt–)

)T , (.)

∂Q
∂σ ∂βT ∂σ

= –

σ 

n∑
t=

{
ψ ′

(
εt – aεt–

σ

)
+ψ ′′

(
εt – aεt–

σ

)
εt – aεt–

σ

}

· (εt – aεt–)
(
Xt – aXt– – (ζt – aζt–)

)T , (.)

∂Q
∂σ ∂βT ∂a

= –

σ

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt – aεt–

σ

εt–

σ

(
Xt – aXt– – (ζt – aζt–)

)T
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–

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)

·
(

εt–

σ

(
Xt – aXt– – (ζt – aζt–)

)T +
εt – aεt–

σ

)
, (.)

∂Q
∂σ  =


σ 

n∑
t=

(
ψ ′

(
εt – aεt–

σ

)

+ψ ′′
(

εt – aεt–
σ

)
εt – aεt–

σ

)
(εt – aεt–), (.)

∂Q
∂σ  ∂a

= –


σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
(εt – aεt–)εt–

–

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–)εt–, (.)

and

∂Q
∂σ∂a

= –

σ 

n∑
t=

(
ψ ′′

(
εt – aεt–

σ

)
εt – aεt–

σ
+ψ ′

(
εt – aεt–

σ

))
εt–. (.)

Case . l = d + .

∂Q
∂a ∂βT ∂β

= –

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)

· εt–

σ

(
Xt – aXt– – (ζt – aζt–)

)(
Xt – aXt– – (ζt – aζt–)

)T
–


σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(Xt– – ζt–)

(
Xt – aXt– – (ζt – aζt–)

)T

–

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)(
Xt – aXt– – (ζt – aζt–)

)
(Xt– – ζt–)T , (.)

∂Q
∂a ∂βT ∂σ

= –

σ 

n∑
t=

ψ ′
(

εt – aεt–
σ

)

· ((εt – aεt–)(Xt– – ζt–)T + εt–
(
Xt – aXt– – (ζt – aζt–)

)T)
–


σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–

σ
(εt – aεt–)

· (Xt – aXt– – (ζt – aζt–)
)T , (.)

∂Q
∂a ∂βT ∂a

= –

σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–

(
Xt – aXt– – (ζt – aζt–)

)T , (.)

∂Q
∂a ∂σ  = –


σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–(εt – aεt–)

–

σ

n∑
t=

ψ ′
(

εt – aεt–
σ

)
(εt – aεt–)εt–, (.)
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∂Q
∂a ∂σ ∂a

= –

σ 

n∑
t=

(
ψ ′′

(
εt – aεt–

σ

)
εt – aεt–

σ
+ψ ′

(
εt – aεt–

σ

))
εt–, (.)

and

∂Q
∂a

= –

σ 

n∑
t=

ψ ′′
(

εt – aεt–
σ

)
εt–. (.)

�

Similarly to the proof of Lemma ., we easily obtain Lemma .. Here we omit it.

Lemma . (Prakasa Rao []) If {Xn,n ≥ } are independent random variables with
EXn = , and s–(+δ)

n
∑n

j= E|Xj|+δ →  for some δ > , then

s–n
n∑
j=

Xj → N(, ),

where sn =
∑n

j= EX
j .

Lemma . (Hall and Heyde []) Let {Sni,Fni,  ≤ i ≤ kn,n ≥ } be a zero-mean, square-
integrable martingale array with differences Xni, and let η be an a.s. finite random vari-
able. Suppose that

∑
i E{X

niI(|Xni| > ε)|Fn,i–} →p , for all ε → , and
∑

i E{X
ni|Fn,i–} →p

η. Then

Snkn =
∑
i

Xni →D Z,

where the r.v. Z has characteristic function E{exp(– 
η

t)}.

Proof of Theorem . Expanding ∂
∂θ
Q(θ̂n) about θ , we have

∂

∂θ
Q(θ̂n) =

∂

∂θ
Q(θ ) + (θ̂n – θ )

∂

∂θT ∂θ
Q(θ ) +



[
R̃nl(θ̄ , θ̂n, θ )

]
≤l≤d+, (.)

where θ̄ = sθ̂n + ( – s)θ for some ≤ s ≤  and

[
R̃nl(θ̄ , θ̂n, θ )

]
≤l≤d+ =

{
(θ̂n – θ )Rn(θ̄ )(θ̂n – θ )T , . . . , (θ̂n – θ )Rn,d+(θ̄ )(θ̂n – θ )T

}
.

By (.)-(.) and (.), (.), we have

 = Sn(θ ) + (θ̂n – θ )Fn(θ ) +


[
R̃nl(θ̄ , θ̂n, θ )

]
≤l≤d+. (.)

By (.), we have

(θ̂n – θ )Dn(θ ) = –Sn(θ ) – (θ̂n – θ )
(
Dn(θ ) – Fn(θ )

)
–


[
R̃nl(θ̄ , θ̂n, θ )

]
≤l≤d+. (.)
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() |a| < . By Lemma .(), Lemma .(), (.)-(.), and θ ∈ �, we have

n–

 (θ̂n – θ )Dn(θ ) = – n–


 Sn(θ ) + op()

= n–



{ n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

χ

(
ηt

σ

)
–An,

n∑
t=

ψ

(
ηt

σ

)
εt–

}
+ op()

= n–



{ n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

(
χ

(
ηt

σ

)
–A

)
,

n∑
t=

ψ

(
ηt

σ

)
εt–

}
+ op(). (.)

Note that Var(Sn(θ )) =O(n), so we have

(θ̂n – θ )Dn(θ )Var–


(
Sn(θ )

)
= –Sn(θ )Var–



(
Sn(θ )

)
+ op()

=

{
–
[
Sn(θ )

]
β ,σ

[
Var–



(
Sn(θ )

)]
β ,σ ,

n∑
t=

ψ

(
ηt

σ

)
εt–

(
Eψ

(
η

σ

)
�n(a,σ )

)– 

}

+ op(). (.)

By Lemma  of Silvapullé [], we easily obtain

–
[
Sn(θ )

]
β ,σ

[
Var–



(
Sn(θ )

)]
β ,σ →D N(, Id+), n→ ∞. (.)

In the following, we will prove that

n∑
t=

ψ

(
ηt

σ

)
εt–

(
Eψ

(
η

σ

)
�n(a,σ )

)– 
 →N(, ), n→ ∞. (.)

Note that {ψ( ηt
σ
)εt–(Eψ( η

σ
)�n(a,σ ))–


 ,Ht} is amartingale differences sequence, sowe

will verify the Lindeberg conditions for their convergence to normality.
From (.), we have

(
 – a

) n∑
t=

εt– + εn – ε =
n∑
t=

(
εt – aεt–

)

=
n∑
t=

(εt – aεt–)(εt + aεt–)

=
n∑
t=

ηt(ηt + aεt–)

=
n∑
t=

η
t + a

n∑
t=

ηtεt–. (.)
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By Var(
∑n

t= ηtεt–) = σ �n(a,σ ) = σ n and Chebyshev inequality, we have

n∑
t=

ηtεt– =Op
(
n



)
. (.)

Obviously, n–
∑n

t= η
t →p Eη

 . By (.) and max≤t≤n
εt
n = op(), we have

n∑
t=

εt– =Op(n). (.)

By (.), we have

n∑
t=

E
((

Eψ
(

η

σ

)
�n(a,σ )

)–

ψ
(

ηt

σ

)
εt–

∣∣∣Ht–

)

=
(
Eψ

(
η

σ

)
�n(a,σ )

)– n∑
t=

εt–E
(

ψ
(

ηt

σ

))

=
(
�n(a,σ )

)– n∑
t=

εt– =  + op(). (.)

For given δ > , there is a set whose probability approaches  as n → ∞ on which
max≤t≤n | εt√

n | ≤ δ. In this event, for any c > ,

n∑
t=

E
{
ψ

(
ηt

σ

)
εt–
n

I
(∣∣∣∣ψ

(
ηt

σ

)
εt–√
n

∣∣∣∣ > c
)∣∣∣Ht–

}

=
n∑
t=

∫ ∞

c
y dP

{∣∣∣∣ψ
(

ηt

σ

)
εt–√
n

∣∣∣∣≤ y
∣∣∣Ht–

}

=
n∑
t=

εt–
n

∫ ∞

c
εt–√

n

y dP
{∣∣∣∣ψ

(
ηt

σ

)∣∣∣∣≤ y
∣∣∣Ht–

}

≤
n∑
t=

εt–
n

∫ ∞

c
δ

y dP
{∣∣∣∣ψ

(
ηt

σ

)∣∣∣∣≤ y
∣∣∣Ht–

}

= oδ

n∑
t=

εt–
n

= oδOp()→ , n→ ∞. (.)

Here oδ →  as δ → . This verifies the Lindeberg conditions, hence (.) follows from
Lemma ..
Note that –[Sn(θ )]β ,σ [Var–


 (Sn(θ ))]β ,σ are asymptotic independent of

n∑
t=

ψ

(
ηt

σ

)
εt–

(
Eψ

(
η

σ

)
�n(a,σ )

)– 

.

Therefore, we obtain Theorem .() from (.)-(.).
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() For |a| = . By Lemma .(), Lemma .(), (.)-(.), (.), and θ ∈ �, we have

(θ̂n – θ )Dn(θ ) = Sn(θ ) +
(
Op(),Op

(
n



))

+
(
Op

(
n–



)
,Op

(
n



))

=

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

χ

(
ηt

σ

)
–An,

n∑
t=

ψ

(
ηt

σ

)
εt–

)
+
(
Op(),Op

(
n



))

=

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

(
χ

(
ηt

σ

)
–A

)
,

n∑
t=

ψ

(
ηt

σ

)
εt–

)
+
(
Op(),Op

(
n



))
. (.)

Note that Var(Sn(θ )) = diag(O(n),O(n)), so we have

(θ̂n – θ )Dn(θ )Var–


(
Sn(θ )

)
=

{
–
[
Sn(θ )

]
β ,σ

[
Var–



(
Sn(θ )

)]
β ,σ ,

n∑
t=

ψ

(
ηt

σ

)
εt–

(
Eψ

(
η

σ

)
�n(a,σ )

)– 

}

+ op(). (.)

Similarly to the proof of (.) and (.), we have

n∑
t=

E
((

Eψ
(

η

σ

)
�n(a,σ )

)–

ψ
(

ηt

σ

)
εt–

∣∣∣Ht–

)
=  + op() (.)

and
n∑
t=

E
{
ψ

(
ηt

σ

)
εt–
n

I
(∣∣∣∣ψ

(
ηt

σ

)
εt–

n

∣∣∣∣ > c
)∣∣∣Ht–

}
→ , n→ ∞. (.)

This verifies the Lindeberg conditions, hence (.) follows from Lemma .. Similarly to
the proof of Theorem .(), we easily prove Theorem .().
() For |a| > . By Lemma .(), Lemma .(), (.)-(.), (.), and θ ∈ �, we have

(θ̂n – θ )Dn(θ ) = Sn(θ ) +
(
Op(),Op

(
ann–



))

+
(
Op

(
n–



)
,Op

(
ann–

))
=

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

χ

(
ηt

σ

)
–An,

n∑
t=

ψ

(
ηt

σ

)
εt–

)
+
(
Op(),Op

(
ann–



))

=

( n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T ,
n∑
t=

(
χ

(
ηt

σ

)
–A

)
,

n∑
t=

ψ

(
ηt

σ

)
εt–

)
+
(
Op(),Op

(
ann–



))
. (.)
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Note that Var(Sn(θ )) = diag(O(n),O(an)), so we have

(θ̂n – θ )Dn(θ )Var–


(
Sn(θ )

)
=

{
–
[
Sn(θ )

]
β ,σ

[
Var–



(
Sn(θ )

)]
β ,σ ,

n∑
t=

ψ

(
ηt

σ

)
εt–

(
Eψ

(
η

σ

)
�n(a,σ )

)– 

}

+ op(). (.)

Similarly to the proof of Theorem .(), we easily prove Theorem .(). The proof of
Theorem . is now complete. �

Proof of Theorem .
Case . For |a| < . A first step towards (.) is to show that

n–



n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)T

→ N
(
,
(
n–Xn(a) +

(
 + a

)
σ 

ζ Id
)
E
(

ψ
(

η

σ

)))
, n→ ∞. (.)

Let u ∈ Rd with |u| = . Then

sn = Var

{
n–




n∑
t=

ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)Tu
}

=
(
n–uTXn(a)u +

(
 + a

)
σ 

ζ

)
E
(

ψ
(

η

σ

))
=O(). (.)

Thus,

s–(+δ)
n

n∑
t=

E
∣∣∣∣n– 

 ψ

(
ηt

σ

)(
Xt – aXt– – (ζt – aζt–)

)Tu∣∣∣∣
+δ

= s–(+δ)
n n–

+δ
 E

∣∣∣∣ψ
(

ηt

σ

)∣∣∣∣
+δ n∑

t=

(∣∣(Xt – aXt–)Tu
∣∣+δ + E

∣∣(ζt – aζt–)Tu
∣∣+δ)

=O()n–
δ
 E
∣∣∣∣ψ

(
ηt

σ

)∣∣∣∣
+δ(

max
≤t≤n

∣∣(Xt – aXt–)Tu
∣∣+δ +O()

)

→ , n→ ∞. (.)

By Lemma . and the Cramer-Wold device, (.) follows from (.).
Next we need to show that

n–



n∑
t=

(
χ

(
ηt

σ

)
–A

)
→N

(
,Var

(
χ

(
η

σ

)))
, n→ ∞. (.)
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In fact,

(
Var

(
χ

(
η

σ

)))– +δ
 n∑

t=

E
∣∣∣∣n– 



(
χ

(
ηt

σ

)
–A

)∣∣∣∣
+δ

=
(
Var

(
χ

(
η

σ

)))– +δ

n–

δ
 E
∣∣∣∣χ
(

ηt

σ

)
–A

∣∣∣∣
+δ

→ , n→ ∞. (.)

By Lemma ., (.) follows from (.).
Finally, by (.), we easily prove that

n–



n∑
t=

ψ

(
ηt

σ

)
εt– →N

(
,

σ 

 – a
E
(

ψ
(

η

σ

)))
, n → ∞. (.)

Case . For |a| ≥ . Similarly to the proof of Case , we easily prove this case.
This completes the proof of Theorem .. �

5 Numerical example
In the section, we will simulate a simple linear regression model (.) with (.), where
Xt =  cos( π t ), β = , n = , ζt and ηt ∼N(, ).
We take ρ(u) = u(�(u) – ) + �(u) – √

π , ψ(u) = �(u) – , χ (u) = √
π – �′(u),

An = (
√
–)n√

π
, where �(·) and �′(·) are the distribution and density function of standard

normal N(, ), respectively Hu []. In the following, we calculate by using our method
and the quasi-Newton line search method.
Case . For a = ., we have β̂n = ., ân = ., and σ̂n = .. β̂n and σ̂n ap-

proximately equal β and σ , respectively.
Case . For a = –, we have β̂n = ., ân = –. and σ̂n = .. For a = , we

have β̂n = ., ân = ., and σ̂n = .. β̂n and ân approximately equal β and a,
respectively.
Case . For a = ., we have β̂n = ., ân = ., and σ̂n = .. β̂n and ân approx-

imately equal β and a, respectively.
The above results show that our estimation method is valid in some cases.
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