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Abstract
In this paper, the stability of a class of time-delay Takagi-Sugeno (T-S) fuzzy Markovian
jumping partial differential equations (PDEs) with p-Laplace and probabilistic
time-varying delays is investigated, and the robust exponential stability criterion is
obtained by way of some variational methods in Sobolev spaceW1,p(�), the
Lyapunov functional method and the linear matrix inequalities technique. Moreover,
a numerical example shows the effectiveness of the proposed methods due to the
large allowable variation range of time delay.
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1 Introduction and preparation
Given a complete probability space (�,F ,P) with a natural filtration {Ft}t≥, where �

is a sample space, F is σ -algebra of a subset of the sample space, and P is the probability
measure defined onF . Let S = {, , . . . ,N} and the random formprocess {r(t), t ∈ [, +∞)}
be a homogeneous, finite-state Markovian process with right continuous trajectories with
generator � = (πij)N×N and transition probability from mode i at time t to mode j at time
t + �t, i, j ∈ S, P(r(t + δ) = j | r(t) = i) = πijδ + o(δ) if j �= i, and P(r(t + δ) = j | r(t) = i) =
 + πijδ + o(δ) if j = i, where πij ≥  is transition probability rate from i to j (j �= i) and
πii = –

∑s
j=,j �=i πij, δ >  and limδ→ o(δ)/δ = .

Let us consider the following delayed Markovian jumping PDEs:

du(t,x) =
[∇ · (D(t,x,u) ◦ ∇pu(t,x)

)
– B

(
u(t,x)

)
+C

(
r(t), t

)
f
(
u(t,x)

)
+D

(
r(t), t

)
× g

(
u
(
t – τ

(
r(t), t

)
,x

))]
dt + σ

(
u(t,x),u

(
t – τ

(
r(t), t

)
,x

))
dw(t),

t ≥ ,x ∈ � (.)

equippedwith the initial condition u(θ ,x) = φ(θ ,x), (θ ,x) ∈ [–τ , ]×� and zero-boundary
condition

B
[
ui(t,x)

]
= , (t,x) ∈ [–τ , +∞)× ∂�, i = , , . . . ,n, (.a)

where w(t) is a standard one-dimensional Brownian motion defined on the probability
space. p >  is a positive scalar, � ∈ Rm is a bounded domain with a smooth boundary
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∂� of class C by �, u(t,x) = (u(t,x),u(t,x), . . . ,un(t,x))T ∈ Rn. In what follows, u(t,x)
is always denoted by u for convenience sake. D(t,x,u) ◦ ∇pu(t,x) denotes the Hadamard
product of matrix D(t,x,u) and ∇pu (see [] or []), and D(t,x, v) = (Djk(t,x,u))n×m sat-
isfies Djk(t,x,u) ≥  for all j, k, (t,x,u). In mode r(t) = i ∈ S = {, , . . . ,N}, we denote
Ci(t) = C(r(t), t) and Di(t) = D(r(t), t). Denote by τi(t) the time delay τ (r(t), t) which sat-
isfies  ≤ τi(t) ≤ τ for any mode i ∈ S. Functions B(u) = (B(u),B(u), . . . ,Bn(un))T ∈ Rn,
f (u) = (f(u), f(u), . . . , fn(un))T ∈ Rn, g(u) = (g(u), g(u), . . . , gn(un))T ∈ Rn. The bound-
ary condition (.a) is called Dirichlet boundary condition ifB[ui(t,x)] = ui(t,x) and Neu-
mann boundary condition ifB[ui(t,x)] = ∂ui(t,x)

∂ν
. Here, ∂ui(t,x)

∂ν
= ( ∂ui(t,x)

∂x
, ∂ui(t,x)

∂x
, . . . , ∂ui(t,x)

∂xm )T

denotes the outward normal derivative on ∂�.
For mode i ∈ S, PDEs (.) is simply denoted as

du =
[∇ · (D(t,x,u) ◦ ∇pu

)
– B(u) +Ci(t)f (u) +Di(t)g

(
u
(
t – τi(t),x

))]
dt

+ σ
(
u,u

(
t – τi(t),x

))
dw(t), t ≥ ,x ∈ �. (.)

The T-S fuzzy mathematical model with time delay is described as follows.
Fuzzy rule j:
IF ω(t) is μj and . . .ωs(t) is μjs THEN

du =
[∇ · (D(t,x,u) ◦ ∇pu

)
– B(u) +Cij(t)f (u) +Dij(t)g

(
u
(
t – τi(t),x

))]
dt

+ σ
(
u,u

(
t – τi(t),x

))
dw(t), (.)

where ωk(t) (k = , , . . . , s) is the premise variable, μjk (j = , , . . . , r; k = , , . . . , s) is
the fuzzy set that is characterized by membership function, r is the number of the
IF-THEN rules, and s is the number of the premise variables.

For any mode r(t) = i ∈ S, we assume that Cij, Dij are real constant matrices of appro-
priate dimensions, and �Cij, �Dij are real-valued matrix functions which stand for time-
varying parameter uncertainties, satisfying

Cij(t) = Cij +�Cij(t), Dij(t) =Dij +�Dij(t). (.)

By way of a standard fuzzy inference method, system (.) is inferred as follows:

du =

{
∇ · (D(t,x,u) ◦ ∇pu

)
– B(u)

+
r∑
j=

hj
(
ω(t)

)[
Cij(t)f (u) +Dij(t)g

(
u
(
t – τi(t),x

))]}
dt

+ σ
(
u,u

(
t – τi(t),x

))
dw(t), (.)

where ω(t) = [ω(t),ω(t), . . . ,ωs(t)], hj(ω(t)) =
wj(ω(t))∑r
k= wk (ω(t))

, wj(ω(t)) : Rs → [, ] (j =
, , . . . , r) is the membership function of the system with respect to the fuzzy rule j. hj can
be regarded as the normalized weight of each IF-THEN rule, satisfying hj(ω(t)) ≥  and∑r

j= hj(ω(t)) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/469


Wang and Rao Journal of Inequalities and Applications 2014, 2014:469 Page 3 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/469

Next, we consider the following information for probability distribution of time delays
τi(t) for all i ∈ S:

P
(
 ≤ τi(t)≤ τi

)
= c, P

(
τi < τi(t) ≤ τi

)
=  – c.

Here the nonnegative scalar c ≤ . Define a random variable as follows:

C (t) =

{
,  ≤ τi(t) ≤ τi;
, τi < τi(t) ≤ τi.

So, in this paper, we consider the following delayed Takagi-Sugeno (T-S) fuzzy Marko-
vian jumping p-Laplace partial differential equations (PDEs) with probabilistic time-
varying delays:

du =∇ · (D(t,x,u) ◦ ∇pu
)
dt

–A(u)

{
B(u) –

r∑
j=

hj
(
ω(t)

)[
Cij(t)f (u) + cDij(t)g

(
u
(
t – τi(t),x

))
+ ( – c)Dij(t)g

(
u
(
t – τi(t),x

))
+

(
C (t) – c

)(
Dij(t)g

(
u
(
t – τi(t),x

))
–Dij(t)g

(
u
(
t – τi(t),x

)))]}
dt

+ σ
(
u,u

(
t – τi(t),x

)
,u

(
t – τi(t),x

)
, i
)
dw(t), (.)

where  ≤ τi(t) ≤ τi, τi < τi(t) ≤ τi, and C (t) is the Bernoulli distributed sequence,
satisfying P(C (t) = ) = P( ≤ τi(t) ≤ τi) = E(C (t)) = c, and P(C (t) = ) = P(τi < τi(t) ≤
τi) =  – E(C (t)) =  – c. Here, E(C (t)) denotes the mathematical expectation of C (t).
Note that the global existence of the solution of system (.) was investigated in []. To
study the stability of (.), we need to assume
(A) Let A(u) = diag(a(u(t,x)),a(u(t,x)), . . . ,an(un(t,x))), A = diag(a,a, . . . ,an),

and A = diag(a,a, . . . ,an) such that  < aj ≤ aj(r) ≤ aj, j = , , . . . ,n;
(A) Let B(u) = (B(u),B(u), . . . ,Bn(un))T ∈ Rn, there exists a positive definite

diagonal matrix B = diag(b,b, . . . ,bn) such that Bj(r)
r ≥ bj, ∀j = , , . . . ,n, and

 �= r ∈ R;
(A) There exist constant diagonal matrices Gk = diag(G(k)

 ,G(k)
 , . . . ,G(k)

n ),
Fk = diag(F (k)

 ,F (k)
 , . . . ,F (k)

n ), k = ,  with |F ()
j | ≤ F ()

j , |G()
j | ≤G()

j , j = , , . . . ,n,
such that F ()

j ≤ fj(r)
r ≤ F ()

j , G()
j ≤ gj(r)

r ≤G()
j , ∀j = , , . . . ,n, and r ∈ R.

(A) There exist positive define symmetric matrices �i, �i, �i such that
Trace[σT (t)σ (t)]≤ uT�iu+uT (t– τi,x)�iu(t– τi,x)+uT (t– τi,x)�iu(t– τi,x),
i ∈ S.

(A) τ̇ki(t) +
∑

l∈S πilτkl(t) ≤ a <  for any mode i ∈ S, and k = , .
In addition, one can assume that u =  is a trivial solution of PDEs (.) provided that

B() = f () = g() = . For any mode i ∈ S, the parameter uncertainties considered here
are norm-bounded and of the following forms:

(
�Cij(t) �Dij(t)

)
= EijF(t)

(
Hij Mij

)
, ∀i ∈ S.
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Here F(t) is an unknown matrix function satisfying |FT (t)||F(t)| ≤ I , and Eij, Gij, Hij are
known real constant matrices. Throughout this paper, for a matrix C = (cij)n×n, we denote
the matrix |C| = (|cij|)n×n. In addition, we denote by I the identity matrix with compatible
dimension, and denote ‖u‖ =

∫
�
u(t,x)dx.

Lemma . Let ε >  be any given scalar, and M, E and K be matrices with appropriate
dimensions. If KTK ≤ I , then we haveMKE +ETKTMT ≤ ε–MMT + εETE.

Lemma . ([, Lemma ]) Let P = diag(p,p, . . . ,pn) be a positive definite matrix, and v
be a solution of system (.) with boundary condition (.a). Then we have

∫
�

vTP
(∇ · (D(t,x, v) ◦ ∇pv

))
dx = –

m∑
k=

n∑
j=

∫
�

pjDjk(t,x, v)|∇vj|p–
(

∂vj
∂xk

)

dx

=
∫

�

(∇ · (D(t,x, v) ◦ ∇pv
))TPvdx.

2 Main result

Theorem . Assume p > . PDEs (.) is global stochastic exponential robust stability in
the mean square if there exist a positive scalar β >  and positive definite diagonal matri-
ces Pi (i ∈ S), L, L and Q, Q such that for each i ∈ S, j = , , . . . , r, the following LMI
conditions hold:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


r ai   

r ai

r ai


r ai PiA|Eij| 

∗ 
r ai   

r (G +G)L   
∗ ∗ 

r ai   
r (G +G)L  

∗ ∗ ∗ –
r L    |HT

ij |
∗ ∗ ∗ ∗ –

r L   c|MT
ij |

∗ ∗ ∗ ∗ ∗ –
r L  ( – c)|MT

ij |
∗ ∗ ∗ ∗ ∗ ∗ –I 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< ,

(.)

where ai = –PiAB – FLF + βPi +
∑

l∈S πilPl + Pi�i + Q + Q; ai = Pi�i – ( –
a)e–τiβQ – GLG; ai = Pi�i – ( – a)e–τiβQ – GLG; ai =

∑r
j= PiA|Cij| + (F +

F)L; ai = c
∑r

j= PiA|Dij|; ai = ( – c)
∑r

j= PiA|Dij|.

Proof Consider the Lyapunov-Krasovskii functional V (t, i) = Vi + Vi, ∀i ∈ S, where
Vi = eβt ∫

�
uT (t,x)Piu(t,x)dx, and Vi = eβt[

∫
�

∫ 
–τi(t)

eβθuT (t + θ ,x)Qu(t + θ ,x)dθ dx +∫
�

∫ 
–τi(t)

eβθuT (t + θ ,x)Qu(t + θ ,x)dθ dx].
It follows immediately by Lemma . that

∫
�
uTPi(∇ · (D(t,x,u) ◦ ∇pu))dx ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/469


Wang and Rao Journal of Inequalities and Applications 2014, 2014:469 Page 5 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/469

Let L be the weak infinitesimal operator such that LV (t,u(t,x), i) = LVi +LVi for
any given i ∈ S. Then we have

LVi ≤ –eβt

{

∫

�

uTPiABudx – 
∫

�

r∑
j=

hj
(
ω(t)

)[
uTPiACij(t)f (u)

+ cuTPiADij(t)g
(
u
(
t – τi(t),x

))
+ ( – c)uTPiADij(t)g

(
u
(
t – τi(t),x

))]
dx +

∫
�

uT
(∑

l∈S
πilPl

)
udx

}

+ eβt
∫

�

[
uTPi�iu + uT

(
t – τi(t)

)
Pi�iu

(
t – τi(t)

)
+ uT

(
t – τi(t)

)
Pi�iu

(
t – τi(t)

)]
dx + βeβt

∫
�

uTPiudx,

LVi ≤ eβt
[∫

�

uT (Q +Q)udx

– ( – a)e–τiβ
∫

�

uT
(
t – τi(t),x

)
Qu

(
t – τi(t),x

)
dx

– ( – a)e–τiβ
∫

�

uT
(
t – τi(t),x

)
Qu

(
t – τi(t),x

)
dx

]
.

From (A), we have |f T (u)|L|f (u)| – |uT |(F + F)L|f (u)| + |uT |FLF|u| ≤ ,
|gT (u(t – τi(t),x))|L|g(u(t – τi(t),x))| + |uT (t – τi(t),x)|GLG|u(t – τi(t),x)| ≤
|uT (t – τi(t),x)|(G + G)L|g(u(t – τi(t),x))|, and |gT (u(t – τi(t),x))|L|g(u(t – τi(t),
x))| + |uT (t – τi(t),x)|GLG|u(t – τi(t),x)| ≤ |uT (t – τi(t),x)|(G + G)L|g(u(t –
τi(t),x))|.
Combining the above inequalities results in LV (t, i) ≤ eβt ∫

�
ζT (t,x)Aiζ (t,x)dx, where

ζ (t,x) = (|uT (t,x)|, |uT (t – τi(t),x)|, |uT (t – τi(t),x)|, |f T (u(t,x))|, |gT (u(t – τi(t),x))|,
|gT (u(t – τi(t),x))|)T ,

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai   ãi ãi ãi
ai   (G +G)L 
∗ ai   (G +G)L
∗ ∗ –L  
∗ ∗ ∗ –L 
∗ ∗ ∗ ∗ –L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and ãi =
∑r

j= hj(ω(t))PiA|Cij(t)| + (F + F)L, ãi = c
∑r

j= hj(ω(t))PiA|Dij(t)|, ãi = ( –
c)

∑r
j= hj(ω(t))PiA|Dij(t)|.

Further, we can apply the Schur complement [] to (.), and deriveAi <  by Lemma ..
Hence, LV (t, i) ≤ . Define V(t, i) =

∫
�
uT (t,x)Piu(t,x)dx +

∫
�

∫ 
–τi(t)

eβθuT (t + θ ,x)×
Qu(t + θ ,x)dθ dx. From the Dynkin formula, we can derive that eβt

EV(t) – EV() =
E

∫ t
 L (eβsV(s))ds ≤ . Now, for any φ(θ ,x) ∈ LF

([–τ , ] × �;Rn) and any system
mode i ∈ S, the solution u(t,x,φ, i) of system (.) with the initial value φ satisfies
mini∈S{αi}eβt

E(‖u(t,x,φ, i)‖) ≤ (maxi∈S{αi} + λmaxQ) sup–τ≤θ≤E(‖φ(θ )‖), ∀t ≥ , or
E(‖u(t,x;φ, i)‖) ≤ γ e–βt sup–τ≤θ≤E(‖φ(θ ,x)‖), ∀t ≥ , where positive scalars αi, αi sat-
isfy αiI ≤ Pi and αI ≥ Pi for any mode i ∈ S, scalars γ = 

mini∈S{αi} (maxi∈S{αi} + λmaxQ) > ,
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β > . Therefore, PDEs (.) is global stochastic exponential robust stability in the mean
square. �

Remark . As pointed out in [], diffusion effect exists really in the neural networks
when electrons are moving in asymmetric electromagnetic fields []. Strictly speaking,
reaction-diffusion terms should be considered in any neural networks model [–]. Usu-
ally, the diffusion behaviors were simulated by linear Laplace diffusion items [–]. But
not all diffusion behaviors can be simply considered as the linear reaction-diffusion. In-
deed, there are various works related to the nonlinear reaction-diffusion [–], and even
the nonlinear p-Laplace diffusion [, ]. So, in this paper, the stability of p-Laplace PDEs
was investigated.

Example . Consider PDEs (.) with the following parameters: A = I = A, B = .I,
F = G = , F = G = .I, β = ., r = , S = {, }, π = –., π = ., π = .,
π = –., c = ., a = .. Let i = , ; j = , ; k = , , , and Cij = Dij = .I, τi = ,
τi = , �ki ≡ .I, Eij =Hij =Mij = .I. By using Matlab LMI toolbox, we solve LMI
condition (.) and obtain tmin = –. < , which implies feasible (see [, Remark ()]
for details). Further, one can extract data as follows:

P =

(
. 

 .

)
, P =

(
. 

 .

)
,

Q =

(
. 

 .

)
, Q =

(
. 

 .

)
,

L =

(
. 

 .

)
, L =

(
. 

 .

)
.

Then Theorem . derives that PDEs (.) is global stochastic exponential robust stabil-
ity in the mean square with a large allowable variation range of time delay [, ].

Remark . To the best of our knowledge, it is the first attempt to investigate the robust
stability of T-S fuzzy Markovian jumping Itô-type stochastic dynamic equations with p-
Laplace and probabilistic time-varying delays (see [, , , –]). Example . shows
the effectiveness of the proposed methods due to the large allowable variation range of
time delay.

Remark . As pointed out in [], almost all the above related literature did not point
out the role that the nonlinear p-Laplace items play, except [] and []. In fact, when p = ,
-Laplace is the linear Laplace, and there are many papers (see, e.g., [–]) in which the
Laplace diffusion item plays its role in their stability criteria, for the linear Laplace PDEs
can be considered in the special Hilbert space H(�) that can be orthogonally decom-
posed into the direct sum of infinitely many eigenfunction spaces. However, the nonlinear
p-Laplace (p > , p �= ) brings great difficulties for the nonlinear p-Laplace PDEs should
be considered in the frame of the Sobolev space W ,p(�) that is only a reflexive Banach
space. Indeed, owing to the great difficulties, the authors only provide in [] and [] the
stability criterion in which the nonlinear p-Laplace items play roles in the case of  < p < 
and p >  under the Dirichlet boundary condition. So, a further profound study is very

http://www.journalofinequalitiesandapplications.com/content/2014/1/469
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interesting, which may call for some new mathematical methods, and even new math-
ematical theories. Under the Neumann boundary condition, the problem of the role of
the nonlinear p-Laplace (p > ) item in the stability criteria for fuzzy stochastic p-Laplace
PDEs with probabilistic delays still remains open and challenging.
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