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Abstract
We present the best possible parameters p1,p2,p3,p4,q1,q2,q3,q4 ∈ [0, 1] such that
the double inequalities Gp1 (a,b) < SHA(a,b) < Gq1 (a,b), Qp2 (a,b) < SCA(a,b) < Qq2 (a,b),
Hp3 (a,b) < SAH(a,b) < Hq3 (a,b), Cp4 (a,b) < SAC(a,b) < Cq4 (a,b) hold for all a,b > 0 with
a �= b, where SHA, SCA , SAH , SAC are the Neuman means, and Gp, Qp, Hp, Cp are the
one-parameter means.
MSC: 26E60
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1 Introduction
Let a,b >  with a �= b. Then the Schwab-Borchardt mean SB(a,b) [–], and the Neuman
means SHA(a,b), SAH(a,b), SCA(a,b), and SAC(a,b) [, ] of a and b are given by

SB(a,b) =
√
b – a

cos–(a/b)
(a < b), SB(a,b) =

√
a – b

cosh–(a/b)
(a > b),

SHA(a,b) = SB
[
H(a,b),A(a,b)

]
, SAH (a,b) = SB

[
A(a,b),H(a,b)

]
,

SCA(a,b) = SB
[
C(a,b),A(a,b)

]
, SAC(a,b) = SB

[
A(a,b),C(a,b)

]
,

respectively. Here, cos–(x) and cosh–(x) = log(x +
√
x – ) are, respectively, the inverse

cosine and inverse hyperbolic cosine functions, and H(a,b) = ab/(a + b), A(a,b) = (a +
b)/, and C(a,b) = (a + b)/(a + b) are, respectively, the classical harmonic, arithmetic,
and contraharmonic means of a and b.
Let v = (a – b)/(a + b) ∈ (–, ), and p ∈ (,∞), q ∈ (,π/), r ∈ (, log( +

√
)), and s ∈

(,π/) be the parameters such that / cosh(p) = cos(q) =  – v and cosh(r) = / cosh(s) =
 + v. Then the following explicit formulas were found by Neuman []:

SAH (a,b) = A(a,b)
tanh(p)

p
, SHA(a,b) = A(a,b)

sin(q)
q

, (.)

SCA(a,b) = A(a,b)
sinh(r)

r
, SAC(a,b) = A(a,b)

tan(s)
s

. (.)
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Let p ∈ [, ] and N be a bivariate symmetric mean. Then the one-parameter bivariate
mean Np(a,b) was defined by Neuman [] as follows:

Np(a,b) =N
[
( + p)


a +

( – p)


b,
( + p)


b +

( – p)


a
]
. (.)

Recently, the Neuman means SAH , SHA, SCA, and SAC , and the one-parameter bivari-
ate mean Np have been the subject of intensive research. He et al. [] found the great-
est values α,α ∈ [, /], and α,α ∈ [/, ], and the least values β,β ∈ [, /], and
β,β ∈ [/, ] such that the double inequalities

H
[
αa + ( – α)b,αb + ( – α)a

]
< SAH(a,b) <H

[
βa + ( – β)b,βb + ( – β)a

]
,

H
[
αa + ( – α)b,αb + ( – α)a

]
< SHA(a,b) <H

[
βa + ( – β)b,βb + ( – β)a

]
,

C
[
αa + ( – α)b,αb + ( – α)a

]
< SCA(a,b) < C

[
βa + ( – β)b,βb + ( – β)a

]
,

C
[
αa + ( – α)b,αb + ( – α)a

]
< SAC(a,b) < C

[
βa + ( – β)b,βb + ( – β)a

]

hold for all a,b >  with a �= b.
In [, ], Neuman proved that the inequalities

H(a,b) < SAH (a,b) < L(a,b) < SHA(a,b) < P(a,b),

T(a,b) < SCA(a,b) <Q(a,b) < SAC(a,b) < C(a,b),

H/(a,b)A/(a,b) < SHA(a,b) <


H(a,b) +



A(a,b),

C/(a,b)A/(a,b) < SCA(a,b) <


C(a,b) +



A(a,b),

A/(a,b)H/(a,b) < SAH (a,b) <


A(a,b) +



H(a,b),

A/(a,b)C/(a,b) < SAC(a,b) <


A(a,b) +



C(a,b)

(.)

hold for all a,b >  with a �= b, where L(a,b) = (a – b)/(loga – logb), P(a,b) = (a –
b)/[ arcsin((a – b)/(a + b))], Q(a,b) =

√
(a + b)/, and T(a,b) = (a – b)/[ arctan((a –

b)/(a + b))] are, respectively, the logarithmic, first Seiffert, quadratic, and second Seiffert
means of a and b.
Qian and Chu [] proved that the double inequalities

αA(a,b) + ( – α)G(a,b) < SHA(a,b) < βA(a,b) + ( – β)G(a,b),

αA(a,b) + ( – α)Q(a,b) < SCA(a,b) < βA(a,b) + ( – β)Q(a,b)

hold for all a,b >  with a �= b if and only if α ≤ /, β ≥ π/, α ≥ /, and β ≤
[
√
 log( +

√
) –

√
]/[(

√
 – ) log( +

√
)] = . · · · , where G(a,b) = √

ab is the ge-
ometric mean of a and b.
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In [], the authors proved that the double inequalities

α

[
H(a,b)


+
A(a,b)



]
+ ( – α)H/(a,b)A/(a,b) < SHA(a,b)

< β

[
H(a,b)


+
A(a,b)



]
+ ( – β)H/(a,b)A/(a,b),

α

[
C(a,b)


+
A(a,b)



]
+ ( – α)C/(a,b)A/(a,b) < SCA(a,b)

< β

[
C(a,b)


+
A(a,b)



]
+ ( – β)C/(a,b)A/(a,b),

α

[
A(a,b)


+
H(a,b)



]
+ ( – α)A/(a,b)H/(a,b) < SAH (a,b)

< β

[
A(a,b)


+
H(a,b)



]
+ ( – β)A/(a,b)H/(a,b),

α

[
A(a,b)


+
C(a,b)



]
+ ( – α)A/(a,b)C/(a,b) < SAC(a,b)

< β

[
A(a,b)


+
C(a,b)



]
+ ( – β)A/(a,b)C/(a,b)

hold for all a,b >  with a �= b if and only if α ≤ /, β ≥ /π , α ≤ [ √ log( +
√
) –√

]/[( √ – ) log( +
√
)] = . · · · , β ≥ /, α ≤ , β ≥ /, α ≤ /, and β ≥

(
√
 – √π )/[( –  √)π ] = . · · · .

Let p,pi,qi,αj,βj ∈ [, ] (i, j = , , . . . , ). Then Neuman [, ] proved that the inequal-
ities

Hp (a,b) < P(a,b) <Hq (a,b), Gp (a,b) < P(a,b) <Gq (a,b),

Qp (a,b) < T(a,b) <Qq (a,b), Cp (a,b) < T(a,b) < Cq (a,b),

Qp (a,b) <M(a,b) <Qq (a,b), Cp (a,b) <M(a,b) < Cq (a,b),

Hp (a,b) < L(a,b) <Hq (a,b), Gp (a,b) < L(a,b) <Gq (a,b),

αA(a,b) + ( – α)Gp(a,b) < Pp(a,b) < βA(a,b) + ( – β)Gp(a,b),

αQp(a,b) + ( – α)A(a,b) < Tp(a,b) < βQp(a,b) + ( – β)A(a,b),

αQp(a,b) + ( – α)A(a,b) <Mp(a,b) < βQp(a,b) + ( – β)A(a,b),

αA(a,b) + ( – α)Gp(a,b) < Lp(a,b) < βA(a,b) + ( – β)Gp(a,b),

Aα (a,b)G–α
p (a,b) < Pp(a,b) < Aβ (a,b)G–β

p (a,b),

Qα
p (a,b)A–α (a,b) < Tp(a,b) <Qβ

p (a,b)A–β (a,b),

Qα
p (a,b)A–α (a,b) <Mp(a,b) <Qβ

p (a,b)A–β (a,b),

Aα (a,b)G–α
p (a,b) < Lp(a,b) < Aβ (a,b)G–β

p (a,b),

hold for all a,b > with a �= b if and only if p ≥ √
 – /π , q ≤ √

/, p ≥ √
 – /π, q ≤√

/, p ≤ √
/π – , q ≥ √

/, p ≤ √
/π – , q ≥ √

/, p ≤
√
/ log( +

√
) – ,
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q ≥ √
/, p ≤

√
/ log( +

√
) – , q ≥ √

/, p = , q ≤ √
/, p = , q ≤ √

/,
α ≤ /π , β ≥ /, α ≤ ( – π )/[(

√
 – )π ], β ≥ /, α ≤ [ – log( +

√
)]/[(

√
 –

) log( +
√
)], β ≥ /, α = , β ≥ /, α ≤ /, β = , α ≤ /, β ≥ ( log –

 logπ )/ log, α ≤ /, β ≥ – log[log( +
√
)]/ log[cosh(log( +

√
))], α ≤ /, β = ,

whereM(a,b) = (a – b)/[ sinh–((a – b)/(a + b))] is the Neuman-Sándor mean of a and b.
The main purpose of this paper is to present the best possible parameters p, p, p, p,

q, q, q, q on the interval [, ] such that the double inequalities

Gp (a,b) < SHA(a,b) <Gq (a,b), Qp (a,b) < SCA(a,b) <Qq (a,b),

Hp (a,b) < SAH (a,b) <Hq (a,b), Cp (a,b) < SAC(a,b) < Cq (a,b)

hold for all a,b >  with a �= b.

2 Main results
Theorem . Let p,q ∈ [, ]. Then the double inequality

Gp (a,b) < SHA(a,b) <Gq (a,b) (.)

holds for all a,b >  with a �= b if and only if p ≥ √
/ and q ≤ √

 – /π.

Proof Without loss of generality, we assume that a > b. Let v = (a–b)/(a+b), λ = v
√
 – v,

x =
√
 – λ and p ∈ [, ]. Then v,λ,x ∈ (, ), and (.) and (.) lead to

SHA(a,b) –Gp(a,b) = A(a,b)
[

λ

arcsin(λ)
–

√
 – p

(
 –

√
 – λ

)]

=
A(a,b)

√
 – p( –

√
 – λ)

arcsin(λ)
F(x), (.)

where

F(x) =
√
 – x√

 – p( – x)
– arcsin

(√
 – x

)
, (.)

F() =
√

 – p
–

π


, F() = , (.)

F ′(x) = –
( – x)f (x)


√
 – x(px +  – p)/[(px +  – p)/ + px + ( – p)x + p]

, (.)

where

f (x) = –px +
(
p + p – p

)
x

+
(
–p + p + p – 

)
x +

(
p – p + p – 

)
, (.)

f ′(x) = –px + 
(
p + p – p

)
x +

(
–p + p + p – 

)
. (.)

We divide the discussion into two cases.
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Case  p =
√
/. Then (.) becomes

f (x) =



( – x)
(
x + x + 

)
. (.)

From (.) and (.) we clearly see that F(x) is strictly decreasing on [, ], then (.)
leads to the conclusion that

F(x) >  (.)

for all x ∈ (, ).
Therefore,

SHA(a,b) >G√
/(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.).
Case  p =

√
 – /π. Then numerical computations lead to

p + p – p =
π – π + π – 

π < , (.)

–p + p + p –  =
π + π – π + 

π < , (.)

f () = p – p + p –  =
π – π + π – 

π > , (.)

f () = 
(
p – 

)
= –

( – π)
π < . (.)

It follows from (.) and (.) together with (.) that f (x) is strictly decreasing on
[, ]. Then inequalities (.) and (.) together with (.) lead to the conclusion that
there exists λ ∈ (, ) such that F(x) is strictly decreasing on [,λ] and strictly increasing
on [λ, ].
Note that inequality (.) becomes

F() = F() = . (.)

From (.), (.), and the piecewise monotonicity of F(x) we clearly see that the in-
equality

SHA(a,b) <G√
–/π (a,b) (.)

holds for all a,b >  with a �= b.
Note that

lim
λ→+

√
arcsin(λ) – λ

arcsin(λ)
√
 –

√
 – λ

=
√



, (.)

lim
λ→

√
arcsin(λ) – λ

arcsin(λ)
√
 –

√
 – λ

=
√
 –


π . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/468
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Therefore, Theorem . follows from (.) and (.)-(.) together with the fact that
inequality (.) is equivalent to the inequality (.) as follows:

q <
√
arcsin(λ) – λ

arcsin(λ)
√
 –

√
 – λ

< p. (.)
�

Theorem . Let p,q ∈ [, ]. Then the double inequality

Qp (a,b) < SCA(a,b) <Qq (a,b) (.)

holds for all a,b >  with a �= b if and only if p ≤ √
/ and q ≥

√
/ log( +

√
) –  =

. · · · .

Proof Without loss of generality, we assume that a > b. Let v = (a–b)/(a+b),μ = v
√
 + v,

x =
√
 +μ, and p ∈ [, ]. Then v ∈ (, ), μ ∈ (,

√
), x ∈ (, ), and (.) and (.) lead to

SCA(a,b) –Qp(a,b) = A(a,b)
[

μ

sinh–(μ)
–

√
 + p

(√
 +μ – 

)]

=
A(a,b)

√
 + p(

√
 +μ – )

sinh–(μ)
G(x), (.)

where

G(x) =
√
x – √

 + p(x – )
– sinh–

(√
x – 

)
,

G() = , G() =
√
√

 + p
– log( +

√
), (.)

G′(x) = –
(x – )f (x)


√
x – (px +  – p)/[px + (px +  – p)/ + ( – p)x + p]

, (.)

where f (x) is defined by (.).
We divide the discussion into two cases.
Case  p =

√
/. Then it follows from (.) that

f (x) = –



(x – )
(
x + x + 

)
<  (.)

for all x ∈ (, ).
Therefore,

SCA(a,b) >Q√
/(a,b) (.)

for all a,b >  with a �= b follows easily from (.)-(.).

Case  p =
√
/ log( +

√
) – . Then numerical computations lead to

p + p – p = . · · · > , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/468
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–p + p + p –  = . · · · > , (.)

p – p –  = –. · · · < , (.)

f () = 
(
p – 

)
= . · · · > , (.)

f () = p + p + p –  = –. · · · < . (.)

It follows from (.) and (.)-(.) that

f ′(x) < –px + 
(
p + p – p

)
x +

(
–p + p + p – 

)
x

= 
(
p – p – 

)
x <  (.)

for x ∈ (, ).
Equation (.) and inequalities (.)-(.) lead to the conclusion that there exists

λ ∈ (, ) such that G(x) is strictly decreasing on [,λ] and strictly increasing on [λ, ].
Note that (.) becomes

G() =G() = . (.)

Therefore,

SCA(a,b) <Q√
/ log(+

√
)–(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.) together with the piecewise mono-
tonicity of G(x).
Note that

lim
μ→+

√
μ – [sinh–(μ)]

sinh–(μ)
√√

 +μ – 
=

√



, (.)

lim
μ→√



√
μ – [sinh–(μ)]

sinh–(μ)
√√

 +μ – 
=

√


log( +
√
)

– . (.)

Therefore, Theorem . follows from (.) and (.)-(.) together with the fact that
inequality (.) is equivalent to the inequality (.) as follows:

p <
√

μ – [sinh–(μ)]

sinh–(μ)
√√

 +μ – 
< q. (.)

�

Theorem . Let p,q ∈ [, ]. Then the double inequality

Hp (a,b) < SAH (a,b) <Hq (a,b) (.)

holds for all a,b >  with a �= b if and only if p =  and q ≤ √
/.

http://www.journalofinequalitiesandapplications.com/content/2014/1/468
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Proof Without loss of generality, we assume that a > b. Let v = (a–b)/(a+b), λ = v
√
 – v,

x =
√
 – λ and p ∈ [, ]. Then v,λ,x ∈ (, ), and (.) and (.) lead to

SAH (a,b) –Hp(a,b) = A(a,b)
[

λ

tanh–(λ)
+ p

(
 –

√
 – λ

)
– 

]

=
A(a,b)[ – p( –

√
 – λ)]

tanh–(λ)
H(x), (.)

where

H(x) =
√
 – x

px + ( – p)
– tanh–

(√
 – x

)
,

H() = , (.)

H ′(x) = –
 – x

x
√
 – x[px + ( – p)]

g(x), (.)

where

g(x) =
(
p + p – 

)
x – p + p – . (.)

We divide the discussion into two cases.
Case  p =

√
/. Then (.) leads to

g(x) = –


( – x) <  (.)

for x ∈ (, ).
Therefore,

SAH (a,b) <H√
/(a,b) (.)

for all a,b >  with a �= b follows easily from (.)-(.) and (.).
Case  p = . Then it follows from (.) and (.) that

SAH (a,b) >H(a,b) =H(a,b) (.)

for all a,b >  with a �= b.
Note that

lim
λ→+

√
tanh–(λ) – λ

tanh–(λ)( –
√
 – λ)

=
√



, (.)

lim
λ→

√
tanh–(λ) – λ

tanh–(λ)( –
√
 – λ)

= . (.)

Therefore, Theorem . follows from (.)-(.) and the fact that inequality (.) is
equivalent to

q <

√
tanh–(λ) – λ

tanh–(λ)( –
√
 – λ)

< p. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/468
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Theorem . Let p,q ∈ [, ]. Then the double inequality

Cp (a,b) < SAC(a,b) < Cq (a,b) (.)

holds for all a,b >  with a �= b if and only if p ≤
√

√
/π –  and q ≥ √

/.

Proof Without loss of generality, we assume that a > b. Let v = (a–b)/(a+b),μ = v
√
 + v,

x =
√
 +μ, and p ∈ [, ]. Then v ∈ (, ), μ ∈ (,

√
), x ∈ (, ), and (.) and (.) lead to

SAC(a,b) –Cp(a,b) = A(a,b)
[

μ

arctan(μ)
– p

(√
 +μ – 

)
– 

]

=
A(a,b)[ + p(

√
 +μ – )]

arctan(μ)
J(x), (.)

where

J(x) =
√
x – 

px + ( – p)
– arctan

(√
x – 

)
,

J() = , J() =
√


p + 
–

π


, (.)

J ′(x) = –
x – 

x
√
x – [px + ( – p)]

g(x), (.)

where g(x) is defined by (.).
We divide the discussion into two cases.
Case  p =

√
/. Then (.) leads to

g(x) =


(x – ) >  (.)

for x ∈ (, ).
Therefore,

SAC(a,b) < C√
/(a,b) (.)

for all a,b >  with a �= b follows easily from (.)-(.).
Case  p =

√

√
/π – . Then numerical computations lead to

p + p –  =
 – π – 

√
π

π > , (.)

g() = p –  =

√
 – π
π

< , (.)

g() = p + p –  =
 – π + 

√
π

π > . (.)

From (.) and (.) together with (.)-(.) we clearly see that there exists λ ∈
(, ) such that J(x) is strictly increasing on [,λ] and strictly decreasing on [λ, ].

http://www.journalofinequalitiesandapplications.com/content/2014/1/468
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Note that (.) becomes

J() = J() = . (.)

It follows from (.) and the piecewise monotonicity of J(x) that

J(x) >  (.)

for all x ∈ (, ).
Therefore,

SAC(a,b) > C√

√
/π–

(a,b) (.)

for all a,b >  with a �= b follows from (.) and (.).
Note that

lim
μ→+

√
μ – arctan(μ)

arctan(μ)(
√
 +μ – )

=
√



, (.)

lim
μ→

√
μ – arctan(μ)

arctan(μ)(
√
 +μ – )

=

√

√


π
– . (.)

Therefore, Theorem . follows from (.) and (.)-(.) together with the fact that
inequality (.) is equivalent to

p <

√
μ – arctan(μ)

arctan(μ)(
√
 +μ – )

< q. �
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