RESEARCH

Open Access

Sharp bounds for Neuman means in terms of one-parameter family of bivariate means

Zhi-Hua Shao¹, Wei-Mao Qian² and Yu-Ming Chu^{1*}

*Correspondence: chuyuming2005@126.com ¹School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

Abstract

We present the best possible parameters $p_1, p_2, p_3, p_4, q_1, q_2, q_3, q_4 \in [0, 1]$ such that the double inequalities $G_{p_1}(a, b) < S_{HA}(a, b) < G_{q_1}(a, b), Q_{p_2}(a, b) < S_{CA}(a, b) < Q_{q_2}(a, b),$ $H_{p_3}(a, b) < S_{AH}(a, b) < H_{q_3}(a, b), C_{p_4}(a, b) < S_{AC}(a, b) < C_{q_4}(a, b)$ hold for all a, b > 0 with $a \neq b$, where $S_{HA}, S_{CA}, S_{AH}, S_{AC}$ are the Neuman means, and G_p, Q_p, H_p, C_p are the one-parameter means. **MSC:** 26E60

Keywords: Neuman means; one-parameter mean; harmonic mean; geometric mean; arithmetic mean; quadratic mean; contraharmonic mean

1 Introduction

Let a, b > 0 with $a \neq b$. Then the Schwab-Borchardt mean SB(a, b) [1–3], and the Neuman means $S_{HA}(a, b)$, $S_{AH}(a, b)$, $S_{CA}(a, b)$, and $S_{AC}(a, b)$ [4, 5] of a and b are given by

$$\begin{split} SB(a,b) &= \frac{\sqrt{b^2 - a^2}}{\cos^{-1}(a/b)} \quad (a < b), \qquad SB(a,b) = \frac{\sqrt{a^2 - b^2}}{\cosh^{-1}(a/b)} \quad (a > b), \\ S_{HA}(a,b) &= SB\big[H(a,b),A(a,b)\big], \qquad S_{AH}(a,b) = SB\big[A(a,b),H(a,b)\big], \\ S_{CA}(a,b) &= SB\big[C(a,b),A(a,b)\big], \qquad S_{AC}(a,b) = SB\big[A(a,b),C(a,b)\big], \end{split}$$

respectively. Here, $\cos^{-1}(x)$ and $\cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})$ are, respectively, the inverse cosine and inverse hyperbolic cosine functions, and H(a, b) = 2ab/(a + b), A(a, b) = (a + b)/2, and $C(a, b) = (a^2 + b^2)/(a + b)$ are, respectively, the classical harmonic, arithmetic, and contraharmonic means of *a* and *b*.

Let $v = (a - b)/(a + b) \in (-1, 1)$, and $p \in (0, \infty)$, $q \in (0, \pi/2)$, $r \in (0, \log(2 + \sqrt{3}))$, and $s \in (0, \pi/3)$ be the parameters such that $1/\cosh(p) = \cos(q) = 1 - v^2$ and $\cosh(r) = 1/\cosh(s) = 1 + v^2$. Then the following explicit formulas were found by Neuman [4]:

$$S_{AH}(a,b) = A(a,b) \frac{\tanh(p)}{p}, \qquad S_{HA}(a,b) = A(a,b) \frac{\sin(q)}{q},$$
 (1.1)

$$S_{CA}(a,b) = A(a,b) \frac{\sinh(r)}{r}, \qquad S_{AC}(a,b) = A(a,b) \frac{\tan(s)}{s}.$$
 (1.2)

©2014 Shao et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $p \in [0,1]$ and N be a bivariate symmetric mean. Then the one-parameter bivariate mean $N_p(a, b)$ was defined by Neuman [6] as follows:

$$N_p(a,b) = N \left[\frac{(1+p)}{2}a + \frac{(1-p)}{2}b, \frac{(1+p)}{2}b + \frac{(1-p)}{2}a \right].$$
 (1.3)

Recently, the Neuman means S_{AH} , S_{HA} , S_{CA} , and S_{AC} , and the one-parameter bivariate mean N_p have been the subject of intensive research. He *et al.* [7] found the greatest values $\alpha_1, \alpha_2 \in [0, 1/2]$, and $\alpha_3, \alpha_4 \in [1/2, 1]$, and the least values $\beta_1, \beta_2 \in [0, 1/2]$, and $\beta_3, \beta_4 \in [1/2, 1]$ such that the double inequalities

$$\begin{split} &H[\alpha_1 a + (1 - \alpha_1)b, \alpha_1 b + (1 - \alpha_1)a] < S_{AH}(a, b) < H[\beta_1 a + (1 - \beta_1)b, \beta_1 b + (1 - \beta_1)a], \\ &H[\alpha_2 a + (1 - \alpha_2)b, \alpha_2 b + (1 - \alpha_2)a] < S_{HA}(a, b) < H[\beta_2 a + (1 - \beta_2)b, \beta_2 b + (1 - \beta_2)a], \\ &C[\alpha_3 a + (1 - \alpha_3)b, \alpha_3 b + (1 - \alpha_3)a] < S_{CA}(a, b) < C[\beta_3 a + (1 - \beta_3)b, \beta_3 b + (1 - \beta_3)a], \\ &C[\alpha_4 a + (1 - \alpha_4)b, \alpha_4 b + (1 - \alpha_4)a] < S_{AC}(a, b) < C[\beta_4 a + (1 - \beta_4)b, \beta_4 b + (1 - \beta_4)a] \end{split}$$

hold for all a, b > 0 with $a \neq b$.

In [4, 5], Neuman proved that the inequalities

$$\begin{split} H(a,b) &< S_{AH}(a,b) < L(a,b) < S_{HA}(a,b) < P(a,b), \\ T(a,b) &< S_{CA}(a,b) < Q(a,b) < S_{AC}(a,b) < C(a,b), \\ H^{1/3}(a,b)A^{2/3}(a,b) &< S_{HA}(a,b) < \frac{1}{3}H(a,b) + \frac{2}{3}A(a,b), \\ C^{1/3}(a,b)A^{2/3}(a,b) &< S_{CA}(a,b) < \frac{1}{3}C(a,b) + \frac{2}{3}A(a,b), \\ A^{1/3}(a,b)H^{2/3}(a,b) &< S_{AH}(a,b) < \frac{1}{3}A(a,b) + \frac{2}{3}H(a,b), \\ A^{1/3}(a,b)C^{2/3}(a,b) &< S_{AC}(a,b) < \frac{1}{3}A(a,b) + \frac{2}{3}C(a,b) \end{split}$$

hold for all a, b > 0 with $a \neq b$, where $L(a, b) = (a - b)/(\log a - \log b)$, $P(a, b) = (a - b)/[2 \arcsin((a - b)/(a + b))]$, $Q(a, b) = \sqrt{(a^2 + b^2)/2}$, and $T(a, b) = (a - b)/[2 \arctan((a - b)/(a + b))]$ are, respectively, the logarithmic, first Seiffert, quadratic, and second Seiffert means of *a* and *b*.

Qian and Chu [8] proved that the double inequalities

$$\begin{aligned} &\alpha_1 A(a,b) + (1-\alpha_1) G(a,b) < S_{HA}(a,b) < \beta_1 A(a,b) + (1-\beta_1) G(a,b), \\ &\alpha_2 A(a,b) + (1-\alpha_2) Q(a,b) < S_{CA}(a,b) < \beta_2 A(a,b) + (1-\beta_2) Q(a,b) \end{aligned}$$

hold for all a, b > 0 with $a \neq b$ if and only if $\alpha_1 \leq 1/3$, $\beta_1 \geq \pi/2$, $\alpha_2 \geq 1/3$, and $\beta_2 \leq [\sqrt{2}\log(2+\sqrt{3})-\sqrt{3}]/[(\sqrt{2}-1)\log(2+\sqrt{3})] = 0.2394\cdots$, where $G(a,b) = \sqrt{ab}$ is the geometric mean of a and b.

$$\begin{split} &\alpha_1 \left[\frac{H(a,b)}{3} + \frac{2A(a,b)}{3} \right] + (1-\alpha_1)H^{1/3}(a,b)A^{2/3}(a,b) < S_{HA}(a,b) \\ &< \beta_1 \left[\frac{H(a,b)}{3} + \frac{2A(a,b)}{3} \right] + (1-\beta_1)H^{1/3}(a,b)A^{2/3}(a,b), \\ &\alpha_2 \left[\frac{C(a,b)}{3} + \frac{2A(a,b)}{3} \right] + (1-\alpha_2)C^{1/3}(a,b)A^{2/3}(a,b) < S_{CA}(a,b) \\ &< \beta_2 \left[\frac{C(a,b)}{3} + \frac{2A(a,b)}{3} \right] + (1-\beta_2)C^{1/3}(a,b)A^{2/3}(a,b), \\ &\alpha_3 \left[\frac{A(a,b)}{3} + \frac{2H(a,b)}{3} \right] + (1-\alpha_3)A^{1/3}(a,b)H^{2/3}(a,b) < S_{AH}(a,b) \\ &< \beta_3 \left[\frac{A(a,b)}{3} + \frac{2H(a,b)}{3} \right] + (1-\beta_3)A^{1/3}(a,b)H^{2/3}(a,b), \\ &\alpha_4 \left[\frac{A(a,b)}{3} + \frac{2C(a,b)}{3} \right] + (1-\alpha_4)A^{1/3}(a,b)C^{2/3}(a,b) < S_{AC}(a,b) \\ &< \beta_4 \left[\frac{A(a,b)}{3} + \frac{2C(a,b)}{3} \right] + (1-\beta_4)A^{1/3}(a,b)C^{2/3}(a,b) \\ \end{aligned}$$

hold for all a, b > 0 with $a \neq b$ if and only if $\alpha_1 \le 4/5$, $\beta_1 \ge 3/\pi$, $\alpha_2 \le 3[\sqrt[3]{2}\log(2+\sqrt{3}) - \sqrt{3}]/[(3\sqrt[3]{2}-4)\log(2+\sqrt{3})] = 0.7528\cdots$, $\beta_2 \ge 4/5$, $\alpha_3 \le 0$, $\beta_3 \ge 4/5$, $\alpha_4 \le 4/5$, and $\beta_4 \ge 3(3\sqrt{3} - \sqrt[3]{4\pi})/[(5-3\sqrt[3]{4\pi})\pi] = 0.8400\cdots$.

Let $p, p_i, q_i, \alpha_j, \beta_j \in [0, 1]$ (i, j = 1, 2, ..., 8). Then Neuman [6, 10] proved that the inequalities

$$\begin{split} H_{p_1}(a,b) < P(a,b) < H_{q_1}(a,b), & G_{p_2}(a,b) < P(a,b) < G_{q_2}(a,b), \\ Q_{p_3}(a,b) < T(a,b) < Q_{q_3}(a,b), & C_{p_4}(a,b) < T(a,b) < C_{q_4}(a,b), \\ Q_{p_5}(a,b) < M(a,b) < Q_{q_5}(a,b), & C_{p_6}(a,b) < M(a,b) < C_{q_6}(a,b), \\ H_{p_7}(a,b) < L(a,b) < H_{q_7}(a,b), & G_{p_8}(a,b) < L(a,b) < G_{q_8}(a,b), \\ \alpha_1A(a,b) + (1-\alpha_1)G_p(a,b) < P_p(a,b) < \beta_1A(a,b) + (1-\beta_1)G_p(a,b), \\ \alpha_2Q_p(a,b) + (1-\alpha_2)A(a,b) < T_p(a,b) < \beta_2Q_p(a,b) + (1-\beta_2)A(a,b), \\ \alpha_3Q_p(a,b) + (1-\alpha_3)A(a,b) < M_p(a,b) < \beta_3Q_p(a,b) + (1-\beta_3)A(a,b), \\ \alpha_4A(a,b) + (1-\alpha_4)G_p(a,b) < L_p(a,b) < \beta_4A(a,b) + (1-\beta_4)G_p(a,b), \\ A^{\alpha_5}(a,b)G_p^{1-\alpha_5}(a,b) < P_p(a,b) < Q_p^{\beta_6}(a,b)A^{1-\beta_6}(a,b), \\ Q_p^{\alpha_7}(a,b)A^{1-\alpha_7}(a,b) < M_p(a,b) < Q_p^{\beta_7}(a,b)A^{1-\beta_7}(a,b), \\ A^{\alpha_8}(a,b)G_p^{1-\alpha_8}(a,b) < L_p(a,b) < A^{\beta_8}(a,b)G_p^{1-\beta_8}(a,b), \end{split}$$

hold for all a, b > 0 with $a \neq b$ if and only if $p_1 \ge \sqrt{1 - 2/\pi}$, $q_1 \le \sqrt{6}/6$, $p_2 \ge \sqrt{1 - 4/\pi^2}$, $q_2 \le \sqrt{3}/3$, $p_3 \le \sqrt{16/\pi^2 - 1}$, $q_3 \ge \sqrt{6}/3$, $p_4 \le \sqrt{4/\pi - 1}$, $q_4 \ge \sqrt{3}/3$, $p_5 \le \sqrt{1/\log^2(1 + \sqrt{2}) - 1}$,

 $\begin{aligned} q_5 &\geq \sqrt{3}/3, \ p_6 &\leq \sqrt{1/\log(1+\sqrt{2})-1}, \ q_6 &\geq \sqrt{6}/6, \ p_7 = 1, \ q_7 &\leq \sqrt{3}/3, \ p_8 = 1, \ q_8 &\leq \sqrt{6}/3, \\ \alpha_1 &\leq 2/\pi, \ \beta_1 &\geq 2/3, \ \alpha_2 &\leq (4-\pi)/[(\sqrt{2}-1)\pi], \ \beta_2 &\geq 2/3, \ \alpha_3 &\leq [1-\log(1+\sqrt{2})]/[(\sqrt{2}-1)\log(1+\sqrt{2})], \ \beta_3 &\geq 1/3, \ \alpha_4 &= 0, \ \beta_4 &\geq 1/3, \ \alpha_5 &\leq 2/3, \ \beta_5 &= 1, \ \alpha_6 &\leq 2/3, \ \beta_6 &\geq (4\log 2-2\log \pi)/\log 2, \ \alpha_7 &\leq 1/3, \ \beta_7 &\geq -\log[\log(1+\sqrt{2})]/\log[\cosh(\log(1+\sqrt{2}))], \ \alpha_8 &\leq 1/3, \ \beta_8 &= 1, \\ \text{where } M(a,b) &= (a-b)/[2\sinh^{-1}((a-b)/(a+b))] \text{ is the Neuman-Sándor mean of } a \text{ and } b. \end{aligned}$

The main purpose of this paper is to present the best possible parameters p_1 , p_2 , p_3 , p_4 , q_1 , q_2 , q_3 , q_4 on the interval [0,1] such that the double inequalities

$$\begin{split} G_{p_1}(a,b) &< S_{HA}(a,b) < G_{q_1}(a,b), \qquad Q_{p_2}(a,b) < S_{CA}(a,b) < Q_{q_2}(a,b), \\ H_{p_3}(a,b) &< S_{AH}(a,b) < H_{q_3}(a,b), \qquad C_{p_4}(a,b) < S_{AC}(a,b) < C_{q_4}(a,b) \end{split}$$

hold for all a, b > 0 with $a \neq b$.

2 Main results

Theorem 2.1 Let $p_1, q_1 \in [0, 1]$. Then the double inequality

$$G_{p_1}(a,b) < S_{HA}(a,b) < G_{q_1}(a,b)$$
(2.1)

holds for all a, b > 0 with $a \neq b$ if and only if $p_1 \ge \sqrt{6}/3$ and $q_1 \le \sqrt{1 - 4/\pi^2}$.

Proof Without loss of generality, we assume that a > b. Let v = (a - b)/(a + b), $\lambda = v\sqrt{2 - v^2}$, $x = \sqrt{1 - \lambda^2}$ and $p \in [0, 1]$. Then $v, \lambda, x \in (0, 1)$, and (1.1) and (1.3) lead to

$$S_{HA}(a,b) - G_p(a,b) = A(a,b) \left[\frac{\lambda}{\arcsin(\lambda)} - \sqrt{1 - p^2 \left(1 - \sqrt{1 - \lambda^2}\right)} \right]$$
$$= \frac{A(a,b)\sqrt{1 - p^2 \left(1 - \sqrt{1 - \lambda^2}\right)}}{\arcsin(\lambda)} F(x), \tag{2.2}$$

where

$$F(x) = \frac{\sqrt{1 - x^2}}{\sqrt{1 - p^2(1 - x)}} - \arcsin\left(\sqrt{1 - x^2}\right),\tag{2.3}$$

$$F(0) = \frac{1}{\sqrt{1-p^2}} - \frac{\pi}{2}, \qquad F(1) = 0, \tag{2.4}$$

$$F'(x) = -\frac{(1-x)f(x)}{2\sqrt{1-x^2}(p^2x+1-p^2)^{3/2}[2(p^2x+1-p^2)^{3/2}+p^2x+2(1-p^2)x+p^2]},$$
 (2.5)

where

$$f(x) = -p^{4}x^{3} + (4p^{6} + 3p^{4} - 4p^{2})x^{2} + (-8p^{6} + 9p^{4} + 4p^{2} - 4)x + (4p^{6} - 11p^{4} + 12p^{2} - 4),$$
(2.6)

$$f'(x) = -3p^4x^2 + 2(4p^6 + 3p^4 - 4p^2)x + (-8p^6 + 9p^4 + 4p^2 - 4).$$
(2.7)

We divide the discussion into two cases.

Case 1 $p = \sqrt{6}/3$. Then (2.6) becomes

$$f(x) = \frac{4}{27}(1-x)\left(3x^2 + 4x + 2\right).$$
(2.8)

From (2.5) and (2.8) we clearly see that F(x) is strictly decreasing on [0,1], then (2.4) leads to the conclusion that

$$F(x) > 0 \tag{2.9}$$

for all $x \in (0, 1)$.

Therefore,

$$S_{HA}(a,b) > G_{\sqrt{6}/3}(a,b)$$
 (2.10)

for all a, b > 0 with $a \neq b$ follows from (2.2) and (2.9).

Case 2 $p = \sqrt{1 - 4/\pi^2}$. Then numerical computations lead to

$$4p^{6} + 3p^{4} - 4p^{2} = \frac{3\pi^{6} - 56\pi^{4} + 240\pi^{2} - 256}{\pi^{6}} < 0,$$
(2.11)

$$-8p^{6} + 9p^{4} + 4p^{2} - 4 = \frac{\pi^{6} + 8\pi^{4} - 240\pi^{2} + 512}{\pi^{6}} < 0,$$
(2.12)

$$f(0) = 4p^{6} - 11p^{4} + 12p^{2} - 4 = \frac{\pi^{6} - 8\pi^{4} + 16\pi^{2} - 256}{\pi^{6}} > 0,$$
(2.13)

$$f(1) = 4(3p^2 - 2) = -\frac{4(12 - \pi^2)}{\pi^2} < 0.$$
(2.14)

It follows from (2.7) and (2.11) together with (2.12) that f(x) is strictly decreasing on [0,1]. Then inequalities (2.13) and (2.14) together with (2.5) lead to the conclusion that there exists $\lambda_1 \in (0,1)$ such that F(x) is strictly decreasing on $[0, \lambda_1]$ and strictly increasing on $[\lambda_1, 1]$.

Note that inequality (2.4) becomes

$$F(0) = F(1) = 0. (2.15)$$

From (2.2), (2.15), and the piecewise monotonicity of F(x) we clearly see that the inequality

$$S_{HA}(a,b) < G_{\sqrt{1-4/\pi^2}}(a,b)$$
 (2.16)

holds for all a, b > 0 with $a \neq b$.

Note that

$$\lim_{\lambda \to 0^+} \frac{\sqrt{\arcsin^2(\lambda) - \lambda^2}}{\arcsin(\lambda)\sqrt{1 - \sqrt{1 - \lambda^2}}} = \frac{\sqrt{6}}{3},\tag{2.17}$$

$$\lim_{\lambda \to 1} \frac{\sqrt{\arcsin^2(\lambda) - \lambda^2}}{\arcsin(\lambda)\sqrt{1 - \sqrt{1 - \lambda^2}}} = \sqrt{1 - \frac{4}{\pi^2}}.$$
(2.18)

Therefore, Theorem 2.1 follows from (2.10) and (2.16)-(2.18) together with the fact that inequality (2.1) is equivalent to the inequality (2.19) as follows:

$$q_1 < \frac{\sqrt{\arcsin^2(\lambda) - \lambda^2}}{\arcsin(\lambda)\sqrt{1 - \sqrt{1 - \lambda^2}}} < p_1.$$
(2.19)

Theorem 2.2 Let $p_2, q_2 \in [0, 1]$. Then the double inequality

$$Q_{p_2}(a,b) < S_{CA}(a,b) < Q_{q_2}(a,b)$$
(2.20)

holds for all a, *b* > 0 *with a* \neq *b if and only if* $p_2 \leq \sqrt{6/3}$ *and* $q_2 \geq \sqrt{3/\log^2(2+\sqrt{3})-1} = 0.8542\cdots$

Proof Without loss of generality, we assume that a > b. Let v = (a-b)/(a+b), $\mu = v\sqrt{2+v^2}$, $x = \sqrt{1+\mu^2}$, and $p \in [0,1]$. Then $v \in (0,1)$, $\mu \in (0,\sqrt{3})$, $x \in (1,2)$, and (1.2) and (1.3) lead to

$$S_{CA}(a,b) - Q_p(a,b) = A(a,b) \left[\frac{\mu}{\sinh^{-1}(\mu)} - \sqrt{1 + p^2 \left(\sqrt{1 + \mu^2} - 1\right)} \right]$$
$$= \frac{A(a,b)\sqrt{1 + p^2 \left(\sqrt{1 + \mu^2} - 1\right)}}{\sinh^{-1}(\mu)} G(x),$$
(2.21)

where

$$G(x) = \frac{\sqrt{x^2 - 1}}{\sqrt{1 + p^2(x - 1)}} - \sinh^{-1}(\sqrt{x^2 - 1}),$$

$$G(1) = 0, \qquad G(2) = \frac{\sqrt{3}}{\sqrt{1 + p^2}} - \log(2 + \sqrt{3}),$$
(2.22)

$$G'(x) = -\frac{(x-1)f(x)}{2\sqrt{x^2 - 1}(p^2x + 1 - p^2)^{3/2}[p^2x^2 + 2(p^2x + 1 - p^2)^{3/2} + 2(1 - p^2)x + p^2]},$$
 (2.23)

where f(x) is defined by (2.6).

We divide the discussion into two cases.

Case 1 $p = \sqrt{6}/3$. Then it follows from (2.6) that

$$f(x) = -\frac{4}{27}(x-1)(3x^2+4x+2) < 0$$
(2.24)

for all $x \in (1, 2)$.

Therefore,

$$S_{CA}(a,b) > Q_{\sqrt{6}/3}(a,b)$$
 (2.25)

for all a, b > 0 with $a \neq b$ follows easily from (2.21)-(2.24). Case 2 $p = \sqrt{3/\log^2(2 + \sqrt{3}) - 1}$. Then numerical computations lead to

$$4p^6 + 3p^4 - 4p^2 = 0.2329 \dots > 0, \tag{2.26}$$

$$-8p^{6} + 9p^{4} + 4p^{2} - 4 = 0.6027 \dots > 0, \qquad (2.27)$$

$$3p^4 - p^2 - 1 = -0.1322 \dots < 0, \tag{2.28}$$

$$f(1) = 4(3p^2 - 2) = 0.7567 \dots > 0, \tag{2.29}$$

$$f(2) = 4p^{6} + 11p^{4} + 4p^{2} - 12 = -1.669 \dots < 0.$$
(2.30)

It follows from (2.7) and (2.26)-(2.28) that

$$f'(x) < -3p^{4}x^{2} + 2(4p^{6} + 3p^{4} - 4p^{2})x^{2} + (-8p^{6} + 9p^{4} + 4p^{2} - 4)x^{2}$$
$$= 4(3p^{4} - p^{2} - 1)x^{2} < 0$$
(2.31)

for $x \in (1, 2)$.

Equation (2.23) and inequalities (2.29)-(2.31) lead to the conclusion that there exists $\lambda_2 \in (1, 2)$ such that G(x) is strictly decreasing on $[0, \lambda_2]$ and strictly increasing on $[\lambda_2, 1]$. Note that (2.22) becomes

$$G(1) = G(2) = 0. (2.32)$$

Therefore,

$$S_{CA}(a,b) < Q_{\sqrt{3/\log^2(2+\sqrt{3})-1}}(a,b)$$
(2.33)

for all a, b > 0 with $a \neq b$ follows from (2.21) and (2.32) together with the piecewise monotonicity of G(x).

Note that

$$\lim_{\mu \to 0^+} \frac{\sqrt{\mu^2 - [\sinh^{-1}(\mu)]^2}}{\sinh^{-1}(\mu)\sqrt{\sqrt{1 + \mu^2} - 1}} = \frac{\sqrt{6}}{3},$$
(2.34)

$$\lim_{\mu \to \sqrt{3}} \frac{\sqrt{\mu^2 - [\sinh^{-1}(\mu)]^2}}{\sinh^{-1}(\mu)\sqrt{\sqrt{1 + \mu^2} - 1}} = \sqrt{\frac{3}{\log^2(2 + \sqrt{3})} - 1}.$$
(2.35)

Therefore, Theorem 2.2 follows from (2.25) and (2.33)-(2.35) together with the fact that inequality (2.20) is equivalent to the inequality (2.36) as follows:

$$p_2 < \frac{\sqrt{\mu^2 - [\sinh^{-1}(\mu)]^2}}{\sinh^{-1}(\mu)\sqrt{\sqrt{1 + \mu^2} - 1}} < q_2.$$
(2.36)

Theorem 2.3 Let $p_3, q_3 \in [0, 1]$. Then the double inequality

$$H_{p_3}(a,b) < S_{AH}(a,b) < H_{q_3}(a,b)$$
(2.37)

holds for all a, b > 0 with $a \neq b$ if and only if $p_3 = 1$ and $q_3 \leq \sqrt{6}/3$.

Proof Without loss of generality, we assume that a > b. Let v = (a-b)/(a+b), $\lambda = v\sqrt{2-v^2}$, $x = \sqrt{1-\lambda^2}$ and $p \in [0,1]$. Then $v, \lambda, x \in (0,1)$, and (1.1) and (1.3) lead to

$$S_{AH}(a,b) - H_p(a,b) = A(a,b) \left[\frac{\lambda}{\tanh^{-1}(\lambda)} + p^2 \left(1 - \sqrt{1 - \lambda^2} \right) - 1 \right]$$
$$= \frac{A(a,b) [1 - p^2 (1 - \sqrt{1 - \lambda^2})]}{\tanh^{-1}(\lambda)} H(x),$$
(2.38)

where

$$H(x) = \frac{\sqrt{1 - x^2}}{p^2 x + (1 - p^2)} - \tanh^{-1}(\sqrt{1 - x^2}),$$

$$H(1) = 0,$$
(2.39)

$$H'(x) = -\frac{1-x}{x\sqrt{1-x^2}[p^2x + (1-p^2)]^2}g(x),$$
(2.40)

where

$$g(x) = (p^4 + p^2 - 1)x - p^4 + 2p^2 - 1.$$
(2.41)

We divide the discussion into two cases. Case 1 $p = \sqrt{6}/3$. Then (2.41) leads to

$$g(x) = -\frac{1}{9}(1-x) < 0 \tag{2.42}$$

for $x \in (0, 1)$.

Therefore,

$$S_{AH}(a,b) < H_{\sqrt{6}/3}(a,b)$$
 (2.43)

for all a, b > 0 with $a \neq b$ follows easily from (2.38)-(2.40) and (2.42).

Case 2 p = 1. Then it follows from (1.3) and (1.4) that

$$S_{AH}(a,b) > H(a,b) = H_1(a,b)$$
 (2.44)

for all a, b > 0 with $a \neq b$.

Note that

$$\lim_{\lambda \to 0^+} \sqrt{\frac{\tanh^{-1}(\lambda) - \lambda}{\tanh^{-1}(\lambda)(1 - \sqrt{1 - \lambda^2})}} = \frac{\sqrt{6}}{3},$$
(2.45)

$$\lim_{\lambda \to 1} \sqrt{\frac{\tanh^{-1}(\lambda) - \lambda}{\tanh^{-1}(\lambda)(1 - \sqrt{1 - \lambda^2})}} = 1.$$
(2.46)

Therefore, Theorem 2.3 follows from (2.43)-(2.46) and the fact that inequality (2.37) is equivalent to

$$q_3 < \sqrt{\frac{\tanh^{-1}(\lambda) - \lambda}{\tanh^{-1}(\lambda)(1 - \sqrt{1 - \lambda^2})}} < p_3.$$

Theorem 2.4 Let $p_4, q_4 \in [0,1]$. Then the double inequality

$$C_{p_4}(a,b) < S_{AC}(a,b) < C_{q_4}(a,b)$$
 (2.47)

holds for all a, b > 0 with $a \neq b$ if and only if $p_4 \leq \sqrt{3\sqrt{3}/\pi - 1}$ and $q_4 \geq \sqrt{6}/3$.

Proof Without loss of generality, we assume that a > b. Let v = (a-b)/(a+b), $\mu = v\sqrt{2+v^2}$, $x = \sqrt{1+\mu^2}$, and $p \in [0,1]$. Then $v \in (0,1)$, $\mu \in (0,\sqrt{3})$, $x \in (1,2)$, and (1.2) and (1.3) lead to

$$S_{AC}(a,b) - C_p(a,b) = A(a,b) \left[\frac{\mu}{\arctan(\mu)} - p^2 \left(\sqrt{1 + \mu^2} - 1 \right) - 1 \right]$$
$$= \frac{A(a,b) [1 + p^2 (\sqrt{1 + \mu^2} - 1)]}{\arctan(\mu)} J(x),$$
(2.48)

where

$$J(x) = \frac{\sqrt{x^2 - 1}}{p^2 x + (1 - p^2)} - \arctan(\sqrt{x^2 - 1}),$$

$$J(1) = 0, \qquad J(2) = \frac{\sqrt{3}}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1} - \frac{\pi}{3},$$

$$I(x) = \frac{x - 1}{p^2 + 1$$

$$J'(x) = -\frac{x-1}{x\sqrt{x^2-1}[p^2x+(1-p^2)]^2}g(x),$$
(2.50)

where g(x) is defined by (2.41).

We divide the discussion into two cases. Case 1 $p = \sqrt{6}/3$. Then (2.41) leads to

$$g(x) = \frac{1}{9}(x-1) > 0 \tag{2.51}$$

for $x \in (1, 2)$.

Therefore,

$$S_{AC}(a,b) < C_{\sqrt{6}/3}(a,b)$$
 (2.52)

for all a, b > 0 with $a \neq b$ follows easily from (2.48)-(2.51).

Case 2 $p = \sqrt{3\sqrt{3}/\pi - 1}$. Then numerical computations lead to

$$p^{4} + p^{2} - 1 = \frac{27 - \pi^{2} - 3\sqrt{3}\pi}{\pi^{2}} > 0,$$
(2.53)

$$g(1) = 3p^2 - 2 = \frac{9\sqrt{3} - 5\pi}{\pi} < 0,$$
(2.54)

$$g(2) = p^4 + 4p^2 - 3 = \frac{27 - 6\pi^2 + 6\sqrt{3}\pi}{\pi^2} > 0.$$
 (2.55)

From (2.41) and (2.50) together with (2.53)-(2.55) we clearly see that there exists $\lambda_3 \in$ (1, 2) such that J(x) is strictly increasing on $[1, \lambda_3]$ and strictly decreasing on $[\lambda_3, 2]$.

Note that (2.49) becomes

$$J(1) = J(2) = 0. (2.56)$$

It follows from (2.56) and the piecewise monotonicity of J(x) that

$$J(x) > 0 \tag{2.57}$$

for all $x \in (1, 2)$.

Therefore,

$$S_{AC}(a,b) > C_{\sqrt{3\sqrt{3}/\pi - 1}}(a,b)$$
 (2.58)

for all a, b > 0 with $a \neq b$ follows from (2.48) and (2.58).

Note that

$$\lim_{\mu \to 0^+} \sqrt{\frac{\mu - \arctan(\mu)}{\arctan(\mu)(\sqrt{1 + \mu^2} - 1)}} = \frac{\sqrt{6}}{3},$$
(2.59)

$$\lim_{\mu \to 1} \sqrt{\frac{\mu - \arctan(\mu)}{\arctan(\mu)(\sqrt{1 + \mu^2} - 1)}} = \sqrt{\frac{3\sqrt{3}}{\pi}} - 1.$$
(2.60)

Therefore, Theorem 2.4 follows from (2.52) and (2.58)-(2.60) together with the fact that inequality (2.47) is equivalent to

$$p_4 < \sqrt{\frac{\mu - \arctan(\mu)}{\arctan(\mu)(\sqrt{1 + \mu^2} - 1)}} < q_4.$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Z-HS provided the main idea and carried out the proof of Theorem 2.1. W-MQ carried out the proof of Theorem 2.2. Y-MC carried out the proof of Theorems 2.3 and 2.4. All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China. ²School of Distance Education, Huzhou Broadcast and TV University, Huzhou, 313000, China.

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 61374086 and 11171307, the Natural Science Foundation of the Open University of China under Grant Q1601E-Y and the Natural Science Foundation of Zhejiang Broadcast and TV University under Grant XKT-13Z04.

Received: 12 September 2014 Accepted: 12 November 2014 Published: 26 Nov 2014

References

- 1. Neuman, E, Sándor, J: On the Schwab-Borchardt mean. Math. Pannon. 14(2), 253-266 (2003)
- 2. Neuman, E, Sándor, J: On the Schwab-Borchardt mean II. Math. Pannon. 17(1), 49-59 (2006)
- 3. Neuman, E: Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal. 5(4), 601-609 (2011)
- 4. Neuman, E: On some means derived from the Schwab-Borchardt mean. J. Math. Inequal. 8(1), 171-183 (2014)
- 5. Neuman, E: On some means derived from the Schwab-Borchardt mean II. J. Math. Inequal. 8(2), 361-370 (2014)
- 6. Neuman, E: A one-parameter family of bivariate means. J. Math. Inequal. 7(3), 399-412 (2013)
- 7. He, Z-Y, Chu, Y-M, Wang, M-K: Optimal bounds for Neuman means in terms of harmonic and contraharmonic means. J. Appl. Math. **2013**, Article ID 807623 (2013)

- 8. Qian, W-M, Chu, Y-M: Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means. J. Inequal. Appl. 2014, Article ID 175 (2014)
- 9. Chu, Y-M, Qian, W-M: Refinements of bounds for Neuman means. Abstr. Appl. Anal. 2014, Article ID 354132 (2014)
- 10. Neuman, E: Sharp inequalities involving Neuman-Sándor and logarithmic means. J. Math. Inequal. 7(3), 413-419 (2013)

10.1186/1029-242X-2014-468

Cite this article as: Shao et al.: Sharp bounds for Neuman means in terms of one-parameter family of bivariate means. Journal of Inequalities and Applications 2014, 2014:468

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com