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Abstract
Let L = –� + V be a Schrödinger operator on R

d , d ≥ 3, where the nonnegative
potential V belongs to the reverse Hölder class RHq for q≥ d/2. Suppose that b
belongs to a new BMO space which is larger than the classical BMO space. We obtain
the Lp boundedness of higher order commutators Tmb defined by T0b = T ,
Tmb = [Tm–1

b ,b],m = 1, 2, . . . , and T is any of the Riesz transforms or their conjugates
associated to the Schrödinger operator –� + V . The range of p is related to the
index q. Moreover, we prove that Tmb is bounded from the Hardy space H1

L (R
d) into the

space L1weak(R
d) when T is the Riesz transform associated to the Schrödinger operator.
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1 Introduction
Let L = –� + V be a Schrödinger operator on R

d , d ≥ , where V �=  is a nonnegative
potential belonging to a reverse Hölder class RHq for q > d/. Let b ∈ BMO∞(ρ), which is
larger than the space BMO(Rd). In this paper, we consider the Riesz transforms associated
with the Schrödinger operator L defined byR =∇L–/ and the higher order commutator

Rm
b f (x) =

∫
Rd

(
b(x) – b(y)

)mK(x, y)f (y)dy,

where K(x, y) is the kernel ofR andm = , , . . . .
We also consider its dual transforms associated with the Schrödinger operator L defined

by R̃ = L–/∇ and the higher order commutator

R̃m
b f (x) =

∫
Rd

(
b(x) – b(y)

)mK̃(x, y)f (y)dy,

where K̃(x, y) is the kernel of R̃ andm = , , . . . .
The commutators of singular integral operators have always been one of the hottest

problems in harmonic analysis. Recently, some scholars have extended these results to
the case of higher order commutators. Please refer to [–] and so on. Furthermore, the
commutators of singular integral operators related to Schrödinger operators have been
brought to many scholars’ attention. See, for example, [–] and the references therein.
Motivated by the references, in this paper we aim to investigate the Lp estimates and end-
point estimates forRm

b when b ∈ BMO∞(ρ).
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Note that a nonnegative locally Lq integrable function V (x) ( < q < ∞) on R
d is said to

belong to RHq if there exists a constant C >  such that

(


|B|
∫
B
V (x)q dx

) 
q

≤ C
|B|

∫
B
V (x)dx ()

holds for every ball B ⊂ R
d . It is known that V ∈ RHq implies V ∈ RHq+ε for some ε > .

Therefore, under the assumption V ∈ RHq , we may conclude q > d/.
We introduce the auxiliary function ρ defined as, for x ∈ R

d ,

ρ(x) =


m(x,V )
= sup

r>

{
r :


rd–

∫
B(x,r)

V (y)dy ≤ 
}
.

The class BMOθ (ρ) of locally integrable functions b is defined as follows:


|B(x, r)|

∫
B(x,r)

∣∣b(y) – bB
∣∣dy≤ C

(
 +

r
ρ(x)

)θ

, ()

for all x ∈ R
d and r > , where θ >  and bB = 

|B|
∫
B b. A norm for b ∈ BMOθ (ρ) denoted

by [b]θ is given by the infimum of the constants satisfying () after identifying functions
that differ upon a constant. Denote that BMO∞(ρ) =

⋃
θ> BMOθ (ρ). It is easy to see that

BMO(Rd) ⊂ BMOθ (ρ)⊂ BMO′
θ (ρ) for  < θ < θ ′. Bongioanni et al. [] gave some examples

to clarify that the space BMO(Rd) is a subspace of BMO∞(ρ).

Because V ≥  and V ∈ L
d

loc(R

d), the Schrödinger operator L generates a (C) con-
traction semigroup {TL

s : s > } = {e–sL : s > }. The maximal function associated with
{TL

s : s > } is defined by MLf (x) = sups> |TL
s f (x)|. The Hardy space H

L(Rd) associated
with the Schrödinger operator L is defined as follows in terms of the maximal function
mentioned.

Definition  A function f ∈ L(Rd) is said to be in H
L(Rd) if the maximal function MLf

belongs to L(Rd). The norm of such a function is defined by

‖f ‖H
L
=

∥∥MLf
∥∥
L .

Definition  Let  < q ≤ ∞. A measurable function a is called a (,q)ρ-atom associated
to the ball B(x, r) if r < ρ(x) and the following conditions hold:
() suppa ⊂ B(x, r);
() ‖a‖Lq(Rd) ≤ |B(x, r)|/q–;
() if r < ρ(x)/,

∫
Rd a(x)dx = .

The space H
L(Rn) admits the following atomic decomposition (cf. []).

Proposition  Let f ∈ L(Rd).Then f ∈H
L(Rd) if and only if f can bewritten as f =

∑
j λjaj,

where aj are (,q)ρ-atoms and
∑

j |λj| < ∞.Moreover,

‖f ‖H
L
∼ inf

{∑
j

|λj|
}
,

where the infimum is taken over all atomic decompositions of f into H
L-atoms.
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Before stating the main theorems, we introduce the definition of the reverse Hölder
index of V as q = sup{q : V ∈ RHq} (cf. []). In what follows, we state our main results in
this paper.

Theorem  Let V ∈ RHd/, b ∈ BMO∞(ρ) and p such that /p = (/q – /d)+, where q
is the reverse Hölder index of V . If p′

 < p < ∞, then

∥∥R̃m
b f

∥∥
Lp �

( m∑
α=

[b]αθ

)
‖f ‖Lp ,

where (/p) + (/p′
) = .

By duality, we immediately have the following theorem.

Theorem  Let V ∈ RHd/, b ∈ BMO∞(ρ) and p such that /p = (/q – /d)+, where q
is the reverse Hölder index of V . If  < p < p, then

∥∥Rm
b f

∥∥
Lp �

( m∑
α=

[b]αθ

)
‖f ‖Lp ,

where (/p) + (/p′
) = .

Theorem  Suppose that V ∈ RHq for some q ≥ d
 . Let b ∈ BMO∞(ρ). Then, for any λ > ,

we have

∣∣{x ∈R
d :

∣∣Rm
b (f )(x)

∣∣ > λ
}∣∣� (

∑m
α=[b]αθ )
λ

‖f ‖H
L(R

d), ∀f ∈H
L
(
R

d).
Namely, the commutatorRm

b is bounded from H
L(Rd) into Lweak(R

d).

The proofs of Theorems  and  can be given by iterating m times starting from Lem-
mas  and . Please refer to Section  for details.
Throughout this paper, unless otherwise indicated, we always assume that  �= V ∈ RHq

for some q > d/. We will use C to denote a positive constant, which is not necessarily the
same at each occurrence. By A ∼ B and A � B, we mean that there exist some positive
constants C, C′ such that /C ≤ A/B ≤ C and A≤ C′B, respectively.

2 Some lemmas
In this section, we collect some known results about the auxiliary function ρ(x) and some
necessary estimates for the kernel of the Riesz transform in the paper (cf. [] or []). In
the end, we recall some propositions and lemmas for the BMO spaces BMOθ (ρ) in [].

Lemma  V ∈ RHq for some q > d/ implies that V satisfies the doubling condition; that
is, there exists a constant C >  such that

∫
B(x,r)

V (y)dy ≤ C
∫
B(x,r)

V (y)dy.

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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Especially, there exist constants μ ≥  and C such that

∫
B(x,tr)

V (y)dy ≤ Ctdμ

∫
B(x,r)

V (y)dy ()

holds for every ball B(x, r) and t > .

Lemma  Let V ∈ RHd/. For the auxiliary function ρ , there exist C >  and l ≥  such
that

C–ρ(x)
(
 +

|x – y|
ρ(x)

)–l
≤ ρ(y)≤ Cρ(x)

(
 +

|x – y|
ρ(x)

) l
l+

()

for all x, y ∈R
d .

In particular, ρ(y) ∼ ρ(x) if |x – y| < Cρ(x).

Lemma  If V ∈ RHd/, then there exists C >  such that

∫
B(x,R)

V (y)dy
|x – y|d– ≤ C

Rd–

∫
B(x,R)

V (y)dy. ()

Moreover, if V ∈ RHd , then there exists C >  such that

∫
B(x,R)

V (y)dy
|x – y|d– ≤ C

Rd–

∫
B(x,R)

V (y)dy.

Lemma  For  < r < R < ∞,


rd–

∫
B(x,r)

V (y)dy ≤ C
(
r
R

)–d/q 
Rd–

∫
B(x,R)

V (y)dy. ()

It is easy to see that


rd–

∫
B(x,r)

V (y)dy ∼  if r ∼ ρ(x).

Lemma  There exist constants C >  and l′ >  such that


Rd–

∫
B(x,R)

V (y)dy ≤ C
(
 +

R
ρ(x)

)l′
.

Lemma  Let θ >  and ≤ s < ∞. If b ∈ BMOθ (ρ), then

(


|B|
∫
B
|b – bB|s

)/s

� [b]θ
(
 +

r
ρ(x)

)θ ′

()

for all B = B(x, r),with x ∈R
d and r > ,where θ ′ = (l + )θ and l is the constant appearing

in ().

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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Lemma  Let b ∈ BMOθ (ρ), B = B(x, r) and s ≥ . Then

(


|kB|
∫
kB

|b – bB|s
)/s

� [b]θk
(
 +

kr
ρ(x)

)θ ′

for all k ∈N with θ ′ = (l + )θ .

Lemma  If V ∈ RHs for s > d
 , then we have the following:

(i) for every N , there exists a constant CN >  such that

∣∣K(x, y)
∣∣ ≤ CN

( + |x – y|ρ(x)–)N
(


|x – y|d–

∫
B(y,|x–y|)

V (z)dz
|z – y|d– +


|x – y|d

)
; ()

and
(ii) for every N , there exists a constant CN >  such that

∣∣K(x, y + h) –K(x, y)
∣∣

≤ CN

( + |x – y|ρ(x)–)N
|h|δ

|x – y|d–+δ

(∫
B(y,|x–y|)

V (z)dz
|z – y|d– +


|x – y|

)
()

for some δ > , whenever |h| < 
 |x – y|.

Lemma  If V ∈ RHd/, then we have the following:
(i) For every N , there exists a constant CN >  such that

∣∣K̃(x, z)
∣∣ ≤ CN ( + |x–z|

ρ(x) )
–N

|x – z|d–
(∫

B(z,|x–z|/)
V (u)

|u – z|d– du +


|x – z|
)
. ()

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
(ii) For every N , there exists a constant CN >  such that

∣∣K̃(x, y + h) – K̃(x, y)
∣∣ ≤ CN |h|δ( + |x–y|

ρ(x) )
–N

|x – y|d–+δ

(∫
B(y,|x–y|/)

V (u)
|u – y|d– du +


|x – y|

)
, ()

whenever |h| < 
 |x – y|.Moreover, the last inequality also holds with ρ(x) replaced by ρ(y).

(iii) If K∗ denotes theRd vector-valued kernel of the adjoint of the classical Riesz operator,
then for some  < δ <  – d

s ,

∣∣K̃(x, z) –K∗(x, z)
∣∣ ≤ C

|x – z|d–
(∫

B(z,|x–z|/)
V (u)

|u – z|d– du +


|x – z|
( |x – z|

ρ(x)

)δ)
, ()

whenever |x – z| < ρ(x).
(iv)When s > d, the term involving V can be dropped from inequalities (), () and ().

Proposition  (cf. Theorem . in []) Suppose that V ∈ RHs for some s > d/, then
(i) R̃ is bounded on Lp(Rd) for p′

 < p < ∞;
(ii) R is bounded on Lp(Rd) for  < p < p,

where /p = (/s – /d)+.

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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Proposition  (cf. Theorem  in []) Suppose that V ∈ RHs for some s > d/ and b ∈
BMO∞(ρ), then

(i) R̃b is bounded on Lp(Rd) for p′
 < p < ∞;

(ii) Rb is bounded on Lp(Rd) for  < p < p,
where /p = (/s – /d)+.

A ball B(x,ρ(x)) is called critical. In [], Dziubański and Zienkiewicz gave the following
covering lemma on R

d .

Lemma  There exists a sequence of points {xk}∞k= in R
d such that the family of critical

balls Qk = B(xk ,ρ(xk)), k ≥ , satisfies the following:
(i)

⋃
k Qk =R

d .
(ii) There exists N =N(ρ) such that for every k ∈ N ,

card{j : Qj ∩ Qk �= ∅} ≤N .

Given that α > , we define the following maximal functions for g ∈ Lloc(R
d) and x ∈R

d :

Mρ,αg(x) = sup
x∈B∈Bρ,α


|B|

∫
B
|g|,

M#
ρ,αg(x) = sup

x∈B∈Bρ,α


|B|

∫
B
|g – gB|,

where Bρ,α = {B(y, r) : y ∈R
d, r ≤ αρ(y)}.

Also, given a ball Q ⊂R
d , for g ∈ Lloc(R

d) and y ∈Q, we define

MQg(x) = sup
x∈B∈F (Q)


|B∩Q|

∫
B∩Q

|g|,

M#
Qg(x) = sup

x∈B∈F (Q)


|B∩Q|

∫
B∩Q

|g – gB∩Q|,

where F (Q) = {B(y, r) : y ∈Q, r > }.

Lemma  (Fefferman-Stein type inequality, cf. Lemma  in []) For  < ρ <∞, there exist
β and γ such that if {Qk}∞k= is a sequence of balls as in Lemma , then

∫
Rd

∣∣Mρ,β (g)
∣∣p � ∫

Rd

∣∣M#
ρ,γ (g)

∣∣p +∑
k

|Qk|
(


|Qk|

∫
Qk

|g|
)p

for all g ∈ Lloc(R
d).

3 Proofs of themain results
Firstly, in order to prove the main theorems, we need the following lemmas. As usual, for
f ∈ Lloc(R

d), we denote byMp the p-maximal function which is defined as

Mpf (x) = sup
r>

(


|B(x, r)|
∫
B(x,r)

∣∣f (y)∣∣p dy)/p

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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Lemma  Let V ∈ RHs for some s ≥ d/, /p = (/s – /d)+, and b ∈ BMOθ (ρ). Then, for
any p > p′

, there exists a constant Cm >  such that


|Q|

∫
Q

∣∣R̃m
b f

∣∣ ≤ Cm

( m∑
α=

[b]αθ

)[
inf
y∈QMpf (y) + inf

y∈QMp
(
R̃α

b f
)
(y)

]

for all f ∈ Lploc(R
d) and every ball Q = B(x,ρ(x)).

Proof We only consider the case of d
 < s < d because the proof of the case of s > d can be

easily deduced from that of the case of d
 < s < d.

Following (.) in [], we expand b(x) – b(y) = (b(x) – λ) – (b(y) – λ), where λ is an arbi-
trary constant, as follows:

R̃m
b f (x) =

∫
Rd

(
b(x) – b(y)

)mK̃(x – y)f (y)dy

=
m∑
j=

Cj,m
(
b(x) – λ

)j ∫
Rd

(
b(y) – λ

)m–jK̃(x – y)f (y)dy

=
m∑
j=

Cj,m
(
b(x) – λ

)j ∫
Rd

(
b(y) – λ

)m–jK̃(x – y)f (y)dy

+ R̃
(
(b – λ)mf

)
(x)

=
m∑
j=

Cj,m
(
b(x) – λ

)j ∫
Rd

(
b(y) – b(x) + b(x) – λ

)m–jK̃(x – y)f (y)dy

+ R̃
(
(b – λ)mf

)
(x)

=
m∑
j=

m–j∑
h=

Cj,m,h
(
b(x) – λ

)j+h ∫
Rd

(
b(x) – b(y)

)m–j–hK̃(x – y)f (y)dy

+ R̃
(
(b – λ)mf

)
(x)

=
m–∑
α=

Cα,m
(
b(x) – λ

)m–αR̃α
b f (x) + R̃

(
(b – λ)mf

)
(x)

= I + I.

Let f ∈ Lp(Rd) and Q = B(x,ρ(x)) with λ = bB, then we have to deal with the average
on Q of each term.
Firstly, by the Hölder inequality with p > p′

 and Lemma ,


|Q|

∫
Q

|I| �
m–∑
α=


|Q|

∫
Q

∣∣(b(y) – bB
)m–αR̃α

b f (y)
∣∣dy

�
m–∑
α=

(


|Q|
∫
Q

∣∣(b(y) – bB
)(m–α)p′ ∣∣dy)/p′(


|Q|

∫
Q

∣∣R̃α
b f

∣∣p)/p

�
(m–∑

α=

(
[b]θ

)m–α

)
inf
y∈QMp

(
R̃α

b f
)
(y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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As for I, we split f = f + f. Choosing p′
 < p̃ < p and denoting 

p̃′ + 
p̃ =  and ν = p̃p

p–p̃ ,
using the boundedness of R̃ on Lp̃(Rd) and the Hölder inequality, we obtain


|Q|

∫
Q

∣∣R̃((
b(x) – bB

)mf)∣∣ �
(


|Q|

∫
Q

∣∣R̃((
b(x) – bB

)mf)∣∣p̃
)/p̃

�
(


|Q|

∫
Q

∣∣(b(x) – bB
)mf ∣∣p̃)/p̃

�
(


|Q|

∫
Q

|f |p
)/p( 

|Q|
∫
Q

∣∣(b(x) – bB
)∣∣mν

)/ν

� [b]mθ inf
y∈QMpf (y),

where in the last inequality we have used Lemma  for the remaining term.We firstly note
the fact that ρ(x)∼ ρ(x) and |x – z| ∼ |x – z|. Then we have to deal with

∣∣R̃(
(b – bB)mf

)∣∣ = ∣∣∣∣
∫

|x–z|>ρ(x)
K̃(x – z)

(
b(z) – bB

)mf (z)dz∣∣∣∣� Ĩ(x) + Ĩ(x),

where

Ĩ(x) =
∫

|x–z|>ρ(x)
|b(z) – bB|m|f (z)|
( + |x–z|

ρ(x)
)N |x – z|d dz,

Ĩ(x) =
∫

|x–z|>ρ(x)
|b(z) – bB|m|f (z)|

( + |x–z|
ρ(x)

)N |x – z|d–
∫
B(z,|x–z|/)

|V (u)|
|u – z|d– dudz.

For Ĩ(x), we have

Ĩ(x) �
∞∑
j=

(
 + j

)–N(
j–ρ(x)

)–d ∫
jρ(x)<|x–z|≤j+ρ(x)

∣∣b(z) – bB
∣∣m∣∣f (z)∣∣dz

�
(
[b]θ

)m
inf
y∈QMsf (y)

∞∑
j=

jmj(–N+mθ ′)

�
(
[b]θ

)m
inf
y∈QMsf (y),

where we have used the following inequality:

∥∥f (b – bB)mχB(x,jρ(x))
∥∥
 ≤ ‖f χB(x,jρ(x))‖p

∥∥(b – bB)mχB(x,jρ(x))
∥∥
p′

�
(
jρ(x)

)d
inf
y∈QMpf (y)

(
jjθ ′ [b]θ

)m

by using Lemma , and we choose N large enough. As for Ĩ(x),

Ĩ(x) �
∞∑
j=

(
 + j

)–Njρ(x) 
|B(x, jρ(x))|

×
∫
jρ(x)<|x–z|≤j+ρ(x)

∣∣b(z) – bB
∣∣m∣∣f(z)∣∣

∫
B(z,j+ρ(x))

|V (u)|
|u – z|d– dudz

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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�
∞∑
j=

(
 + j

)–Njρ(x) 
|B(x, jρ(x))|

×
∫
jρ(x)<|x–z|≤j+ρ(x)

∣∣b(z) – bB
∣∣m∣∣f(z)∣∣F

(|V |χB(z,j+ρ(x))
)
dz.

Using theHölder inequality and the boundedness of the fractional integralF with /p′ =
/s – /d, we obtain

∫
jρ(x)<|x–z|≤j+ρ(x)

∣∣b(z) – bB
∣∣m∣∣f(z)∣∣F

(|V |χB(z,j+ρ(x))
)
dz

�
∥∥f(z)(b – bB)mχB(z,j+ρ(x))

∥∥
p

∥∥F
(|V |χB(z,j+ρ(x))

)∥∥
p′

�
∥∥f(z)(b – bB)mχB(z,j+ρ(x))

∥∥
p

∥∥|V |χB(z,j+ρ(x))
∥∥
s.

Since V ∈ RHs,

∥∥|V |χB(z,j+ρ(x))
∥∥
s �

(
jρ(x)

)–d/s′ ∫
B(z,jρ(x))

∣∣V (z)
∣∣dz

�
(
jρ(x)

)d––d/s′ 
(jρ(x))d–

∫
B(z,jρ(x))

∣∣V (z)
∣∣dz

�
(
jρ(x)

)d––d/s′(j)–d/s.
And when ν = p̃p

p–p̃ and /p′ = /s – /d, we also have

∥∥f(z)(b – bB)mχB(z,j+ρ(x))
∥∥
p ≤ ‖f χB(x,jρ(x))‖p̃

∥∥(b – bB)mχB(x,jρ(x))
∥∥

ν

�
(
jρ(x)

)d/p
inf
y∈QMpf (y)

(
jjθ

′
[b]θ

)m
�

(
jjθ

′
[b]θ

)m(
jρ(x)

)d/p
inf
y∈QMpf (y).

Choosing N large enough, we get

Ĩ(x) �
∞∑
j=

(
 + j

)–Njρ(x) 
|B(x, jρ(x))|

(
jjθ

′
[b]θ

)m(
jρ(x)

)d/p

× inf
y∈QMpf (y)

(
jρ(x)

)d––d/s′(j)–d/s

�
∞∑
j=

jmj(–N+mθ ′–d++d/p)([b]θ)m inf
y∈QMpf (y)

�
(
[b]θ

)m
inf
y∈QMpf (y).

Therefore, this completes the proof. �

Remark  It is easy to check that if the critical ball Q is replaced by Q, the last lemma
also holds.
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Lemma  Let V ∈ RHd

and b ∈ BMOθ (ρ). Then, for any s > p′

 and γ ≥ , there exists a
constant C >  such that

∫
(B)c

∣∣K̃(x, z) – K̃(y, z)
∣∣∣∣b(z) – bB

∣∣m∣∣f (z)∣∣dz ≤ C[b]mθ inf
u∈BMsf (u) ()

for all f and x, y ∈ B = B(x, r) with r < γρ(x). Additionally, if q > d, the above estimate
also holds for K instead of K̃.

Because the proof of this lemma is very similar to that of Lemma  in [], we omit the
details.

Proofs of Theorem  and Theorem  Wewill prove Theorem  via themathematical induc-
tion andTheorem follows by duality.Whenm = , we conclude that Theorem  is valid by
Theorem  in []. Suppose that the Lp boundedness of R̃α

b f holds when α = , , . . . ,m– ,
where p′

 < p < ∞. In what follows, we will prove that it is valid for k =m.
We start with a function f ∈ Lp(Rd) for p′

 < s < ∞, and we notice that due to Lemma 
we have R̃m

b f ∈ Lloc(R
d).

By using Lemma , Lemma  with p′
 < p < s and Remark , we have

∥∥R̃m
b f

∥∥q
Lq ≤

∫
Rd

∣∣Mρ,β
(
R̃m

b f
)
(x)

∣∣q dx
�

∫
Rd

∣∣M#
ρ,γ

(
R̃m

b f
)
(x)

∣∣q dx +∑
k

|Qk|
(


|Qk|

∫
Qk

∣∣R̃m
b f (x)

∣∣dx)q

�
∫
Rd

∣∣M#
ρ,γ

(
R̃m

b f
)
(x)

∣∣q dx +
( m∑

α=

[b]αθ

)q[∑
k

(∫
Qk

∣∣Mpf (x)
∣∣dx)q

+
∑
k

(∫
Qk

∣∣Mp
(
R̃α

b f
)
(x)

∣∣dx)q]

�
∫
Rd

∣∣M#
ρ,γ

(
R̃m

b f
)
(x)

∣∣q dx +
( m∑

α=

[b]αθ

)q(‖f ‖qLq + ∥∥R̃α
b f

∥∥q
Lq

)

�
∫
Rd

∣∣M#
ρ,γ

(
R̃m

b f
)
(x)

∣∣q dx +
( m∑

α=

[b]αθ

)q

‖f ‖qLq ,

where we use the finite overlapping property given by Lemma , the assumption on R̃α
b

and the boundedness ofMp in Lq(Rd) for p < q.
Next, we consider the term

∫
Rd |M#

ρ,γ (R̃m
b f )(x)|q dx. Our goal is to find a pointwise esti-

mate ofM#
ρ,γ (R̃m

b f )(x). Let x ∈R
d andB = (x, r) with r < γρ(x) such that x ∈ B. If f = f + f

with f = f χQ, then we write

R̃m
b f (x) =

m–∑
α=

Cα,m
(
b(x) – λ

)m–αR̃α
b f (x) + R̃

(
(b – λ)mf

)
(x).

Therefore, we need to control the mean oscillation on B of each term that we callO,O.
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Let p > p′
, by using the Hölder inequality and Lemma , we obtain

O �
m–∑
α=


|B|

∫
B

∣∣(b(x) – λ
)m–αRα

b f (x)
∣∣dx

�
m–∑
α=

(


|B|
∫
B

∣∣(b(x) – bB
)∣∣(m–α)p′

dx
)/p′(


|B|

∫
B

∣∣Rα
b f (x)

∣∣p dx)/p

�
m–∑
α=

(
[b]θ

)m–αMp
(
Rα

b f
)
(x),

since r < γρ(x).
As for O, let  < p̃ < p. We split again f = f + f. Choose p′

 < p̃ < p and denote (/p̃′) +
(/p̃) =  and ν = p̃p

p–p̃ . Using the boundedness of R̃ on Lp̃(Rd) and the Hölder inequality,
we then get

O, �


|B|
∫
B

∣∣R̃b
(
(b – bB)mf

)
(x)

∣∣dx
�

(


|B|
∫
B

∣∣R̃b
(
(b – bB)mf

)
(x)

∣∣p̃ dx)/p̃

�
(


|B|

∫
B
R̃b

(∣∣(b – bB)mf(x)
∣∣s̃)dx)/s̃

�
(


|B|

∫
B

∣∣(b(x) – bB
)∣∣mν dx

)/ν( 
|B|

∫
B

∣∣f (x)∣∣p dx)/p

�
(
[b]θ

)mMp(f )(x).

For O,, by Lemma , we obtain

O, �


|B|
∫ ∫

B

∣∣R̃b
(
(b – bB)mf

)
(u) – R̃b

(
(b – bB)mf

)
(y)

∣∣dudy
�

(
[b]θ

)mMpf (x),

since the integral is clearly bounded by the left-hand side of ().
Therefore, we have proved that

∣∣M#
ρ,γ

(
R̃m

b f
)
(x)

∣∣ ≤ C
m–∑
α=

(
[b]θ

)m–α[
Mp(f )(x) +Mp

(
Rα

b f
)
(x)

]
.

By the assumption on Rα
b and the Lp boundedness of Mp, we obtain the desired result.

�

Proof of Theorem  We will prove Theorem  using the mathematical induction. When
m = , we conclude that Theorem  is valid by Theorem  in []. Suppose that Theorem 
holds when α = , , . . . ,m – . In what follows, we will prove that it is valid for k =m.
Similarly, we only consider the case of d

 < s < d. For f ∈ H
L(Rd), we can write f =∑∞

j=–∞ λjaj, where each aj is a (,q)ρ atom and
∑∞

j=–∞ |λj| ≤ ‖f ‖H
L
. Suppose that supaj ⊆
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Bj = B(xj, rj) with rj < ρ(xj). Write

Rm
b f (x) = λjRm

b

( ∞∑
j=–∞

aj

)
(x)

= λj

m–∑
α=

Cα,m
(
b(x) – bBj

)m–αRα
b

( ∞∑
j=–∞

aj

)
(x) +R

(
λj(b – bBj )

m
∞∑

j=–∞
aj

)
(x)

=
m–∑
α=

∞∑
j=–∞

Cα,mλj
(
b(x) – bBj

)m–αRα
bajχBj (x)

+
m–∑
α=

∑
j:rj≥

ρ(xj)


Cα,mλj
(
b(x) – bBj

)m–αRα
bajχ(Bj)c (x)

+
m–∑
α=

∑
j:rj<

ρ(xj)


Cα,mλj
(
b(x) – bBj

)m–αRα
bajχ(Bj)c (x)

+R
( ∞∑
j=–∞

λj(b – bBj )
maj

)
(x)

= A(x) +A(x) +A(x) +A(x).

For the term A(x), by Lemma  and Theorem , we obtain

∥∥(
b(x) – bBj

)m–αRα
bajχBj (x)

∥∥
L(Rd)

�
(∫

Bj

∣∣(b(x) – bBj
)m–α∣∣q′

dx
)/q′∥∥Rα

baj
∥∥
Lq(Rd)

�
(∫

Bj

∣∣(b(x) – bBj
)m–α∣∣q′

dx
)/q′

‖aj‖Lq(Rd)

�
(


|Bj|

∫
Bj

∣∣(b(x) – bBj
)m–α∣∣q′

dx
)/q′

� [b]m–α
θ ,

since rj < ρ(xj).
Secondly, we consider the term A(x). It is easy to see that |x – xj| ∼ |x – y| and

(
 +

|x – y|
ρ(x)

)
≥ C

(
 +

|x – xj|
ρ(x)

)
≥ Cc

(
 +

|x – xj|
ρ(xj)

) 
l+

.

Note that ρ(xj) > rj ≥ ρ(xj)
 . By the Hölder inequality and inequality (), we obtain, for

some t > ,∫
krj≤|x–xj|<k+rj

(
b(x) – bBj

)m–α∣∣K(x, y)
∣∣dx

≤
(∫

krj≤|x–xj|<k+rj

(
b(x) – bBj

)t′(m–α) dx
) 

t
′(∫

krj≤|x–xj|<k+rj

∣∣K(x, y)
∣∣t dx) 

t

http://www.journalofinequalitiesandapplications.com/content/2014/1/466
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� [b]m–α
θ

(∫
krj≤|x–xj|<k+rj

∣∣K(x, y)
∣∣t dx) 

t (
k+rj

) d
t′

� [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+ (k+rj)

d
t′

(krj)d–

×
(∫

krj≤|x–xj|<k+rj

∣∣∣∣
(∫

B(xj ,k+rj)

V (z)
|z – xj|d– dz

)∣∣∣∣
t

dx
) 

t

+ [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+ (

k+rj
) d
t′
(∫

krj≤|x–xj|<k+rj


|x – xj|(d+δ)t dx

) 
t

� [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+ (k+rj)

d
t′

(krj)d–

((∫
B(xj ,k+rj)

Vq(z)dz
) 

q
+ 

)

� [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+ (k+rj)

d
t′

(krj)d–

((
k+rj

)d(∫
B(xj ,k+rj)

V (z)dz
)(

k+rj
) d
q + 

)

� [b]m–α
θ

(
 + krjρ(xj)

)– N
l+

+l
(
(k+rj)

d
t′

(krj)d–
(
krj

)–+ d
q + 

)

� [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+

+l
,

where 
t =


q –


d . Via the above estimate, we have

∥∥(
b(x) – bBj

)m–αRα
bajχ(Bj)c (x)

∥∥
L(Rd)

≤
∫

|x–xj|≥Bj

(
b(x) – bBj

)m–α

∣∣∣∣
∫
Bj
K (x, y)aj(y)dy

∣∣∣∣dx
≤

∫
Bj

∣∣aj(y)∣∣ ∞∑
k=

∫
krj≤|x–xj|<k+rj

(
b(x) – bBj

)m–α∣∣K (x, y)
∣∣dxdy

�
∫
Bj

∣∣aj(y)∣∣ ∞∑
k=

[b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+

+l
dy

� [b]m–α
θ

if we choose N large enough.
Thirdly, we consider the term A(x). Via the Hölder inequality and (), we get, for some

t > ,

∫
krj≤|x–xj|<k+rj

(
b(x) – bBj

)m–α∣∣K(x, y) –K(x,xj)
∣∣dx

≤
(∫

krj≤|x–xj|<k+rj

(
b(x) – bBj

)t′(m–α) dx
) 

t
′

×
(∫

krj≤|x–xj|<k+rj

∣∣K(x, y) –K(x,xj)
∣∣t dx) 

t

http://www.journalofinequalitiesandapplications.com/content/2014/1/466


Wang and Liu Journal of Inequalities and Applications 2014, 2014:466 Page 14 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/466

� [b]m–α
θ

(∫
krj≤|x–xj|<k+rj

∣∣K(x, y) –K(x,xj)
∣∣t dx) 

t (
k+rj

) d
t′

� [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+ (rj)δ(k+rj)

d
t′

(krj)d–+δ

×
(∫

krj≤|x–xj|<k+rj

∣∣∣∣
(∫

B(xj ,k+rj)

V (z)
|z – xj|d– dz

)∣∣∣∣
t

dx
) 

t

+ [b]m–α
θ

(
 +

krj
ρ(xj)

)– N
l+

(rj)δ
(
k+rj

) d
t′

×
(∫

krj≤|x–xj|<k+rj


|x – xj|(d+δ)t dx

) 
t

� [b]m–α
θ



{ + krj
ρ(xj)

} N
l+

{ rδj (k+rj)
d
t′

(krj)d–+δ

(∫
B(xj ,k+rj)

V (z)q dz
) 

q
+ –kδ

}

� [b]m–α
θ



{ + krj
ρ(xj)

} N
l+

×
{ rδj (k+rj)

d
t′

(krj)d–+δ

(


(k+rj)d

∫
B(xj ,k+rj)

V (z)dz
)(

krj
) d
q + –kδ

}

� [b]m–α
θ



{ + krj
ρ(xj)

} N
l+

–l

(
rδj

(k+rj)
d
t′

(krj)d–+δ

(
krj

)–+ d
q + –kδ

)

� [b]m–α
θ



{ + krj
ρ(xj)

} N
l+

–l
–kδ ,

where 
t =


q –


d .

Similarly, via the above estimate and the vanishing moment of aj, we have

∥∥(
b(x) – bBj

)m–αRα
bajχ(Bj)c (x)

∥∥
L(Rd)

≤
∫

|x–xj|≥Bj

(
b(x) – bBj

)m–α

∣∣∣∣
∫
Bj

[
K(x, y) –K(x,xj)

]
aj(y)dy

∣∣∣∣dx
≤

∫
Bj

∣∣aj(y)∣∣ ∞∑
k=

∫
krj≤|x–xj|<k+rj

(
b(x) – bBj

)m–α∣∣[K(x, y) –K(x,xj)
]∣∣dxdy

� [b]m–α
θ

∫
Bj

∣∣aj(y)dy∣∣ ∞∑
k=



{ + krj
ρ(xj)

} N
l+

–l
–kδ

� [b]m–α
θ .

Thus, we have

∣∣∣∣
{
x ∈R

d :
∣∣Ai(x)

∣∣ > λ



}∣∣∣∣ ≤ C
λ

∥∥Ai(x)
∥∥
L
�

∑m
α=[b]αθ
λ

∞∑
j=–∞

|λj|, i = , , .
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Moreover, note that

∥∥(b – bBj )
maj

∥∥
L ≤

(∫
Bj

(
b(x) – bBj

)mq′
dy

)/q′

‖aj‖Lq

≤
(


|Bj|

∫
Bj

(
b(x) – bBj

)mq′
dy

)/q′

≤ [b]mθ

(
 +

rj
ρ(xj)

)θ ′m

� [b]mθ ,

where rj < ρ(xj).
By the weak (, ) boundedness ofR, we get

∣∣∣∣
{
x ∈R

d :
∣∣A(x)

∣∣ > λ



}∣∣∣∣ � 
λ

∥∥∥∥∥
∞∑

j=–∞
λj

(
b – b(xj)

)
aj

∥∥∥∥∥
L

� [b]mθ
λ

∞∑
j=–∞

|λj|.

Therefore,

∣∣∣∣
{
x ∈R

d :
∣∣Rm

b f (x)
∣∣ > λ



}∣∣∣∣ �
∑
i=

∣∣∣∣
{
x ∈R

d : |Ai| > λ



}∣∣∣∣
�

∑m
α=[b]αθ
λ

∞∑
j=–∞

|λj|

�
∑m

α=[b]αθ
λ

‖f ‖H
L
.

This completes the proof of Theorem . �
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