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1 Introduction
Let D be the open unit disk in the complex plane C, B the open unit ball of the complex
vector space Cn, H(D) the class of all holomorphic functions on D and H(B) the class of
all holomorphic functions on B.
For f ∈ C(B), the invariant gradient ∇̃f is defined by

(∇̃f )(z) = ∇(f ◦ ϕz)(),

where

∇f (z) =
(

∂f
∂z

(z), . . . ,
∂f
∂zn

(z)
)

is the complex gradient of f .
A holomorphic function f in D is said to belong to the Bloch space B(D) if

‖f ‖B =
∣∣f ()∣∣ + sup

z∈D

(
 – |z|)∣∣f ′(z)

∣∣ < ∞.

Under the above norm, B(D) is a Banach space (see, e.g. []). On the unit ball, the Bloch
space B(B), which was introduced by Hahn in [], is the space of all f ∈H(B) such that

‖f ‖B = sup
z∈B

sup
w∈Cn\{}

|〈∇f (z),w〉|√
n+


(–|z|)|w|+|〈w,z〉|
(–|z|)

< ∞.

For some classical results on Bloch spaces see [] and [].
It is well known that f ∈ B(B) if and only if (see, e.g. [])

sup
z∈B

(
 – |z|)∣∣∇f (z)

∣∣ < ∞.
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For α > , an f ∈H(B) is said to belong to the α-Bloch space, denoted by Bα(B), if

sup
z∈B

(
 – |z|)α∣∣∇f (z)

∣∣ < ∞.

When α = , the α-Bloch space is the classical Bloch space.
It is of some importance to give new characterizations for a function space, since, for

example, it can be useful in the study of operators acting on the space. For example, by
using the last expression, it is difficult to study composition operators on α-Bloch space.
However, in [] Zhang and Xu introduced the metric

Fα
z (w) =

√
n + 


√
λα(|z|)|w| + ( – λα(|z|))|〈w, z〉|/|z|

( – |z|)α

and proved that f ∈ Bα(B) if and only if

sup
z,w∈Cn\{}

|∇f (z)w|
Fα
z (w)

<∞, ()

and by using (), they completely characterized the boundedness and compactness of com-
position operators on α-Bloch spaces. For some other results on operators on Bloch-type
spaces see, for example, [–] and the references therein.
For f ∈H(B), in [] was proved that f ∈ B(B) if and only if

M = sup
z,w∈B
z 
=w

(
 – |z|)/( – |w|)/ · |f (z) – f (w)|

|w – Pwz – swQwz| <∞. ()

Somewhat later, in [] it was proved that f ∈ B(B) if and only if

M = sup
z,w∈B
z 
=w

(
 – |z|)/( – |w|)/ · |f (z) – f (w)|

|z –w| < ∞, ()

while in [] it was proved that f ∈ B(B) if and only if

M = sup
z,w∈B

(
 – |z|)/( – |w|)/ · |f (z) – f (w)|

| – 〈z,w〉| <∞.

These characterizations can be seen as derivative-free characterizations of the Bloch
space on the unit ball. For the case of the unit polydisk, see [] and []. For more char-
acterizations of Bloch-type spaces in the unit disk, unit polydisk and unit ball, see, for
example, [, –, –].
In this paper, we give some new characterizations for the Bloch space. In Section , we

give somepreliminary resultswhich are used in the proofs of ourmain results. In Section ,
we give two new characterizations for the Bloch space onD. In Section , we give four new
characterizations for the Bloch space in the unit ball B, which, among others, generalize
the corollaries in Section .
Throughout this paper, constants are denoted byC, they are positive andmay differ from

one occurrence to the next. We say that two quantities K(x) and K(x) are comparable, if

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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there are positive constants C and C independent of variable x such that

CK(x)≤ K(x) ≤ CK(x).

2 Preliminaries and auxiliary results
Let z = (z, . . . , zn) andw = (w, . . . ,wn) be points in the complex vector spaceCn and 〈z,w〉 =
zw + · · · + znwn. Let Aut(B) be the group of all biholomorphic selfmaps of B. It is well
known that Aut(B) is generated by the unitary operators on C

n and the involutions ϕa of
the form

ϕa(z) =
a – Paz – saQaz

 – 〈z,a〉 ,

where sa = ( – |a|)/, Pa is the orthogonal projection into the space spanned by a ∈ B,
i.e.,

Paz =
〈z,a〉a
|a| , |a| = 〈a,a〉, Pz = 

and Qa = I – Pa. See [, ] for more properties of ϕa(z).
Recall that the weighted Bergman space Ap

α(B), where  < p < ∞ and α > –, consists of
those functions f ∈H(B) for which

‖f ‖p
Ap

α
=

∫
B

∣∣f (z)∣∣p dvα(z) = cα
∫
B

∣∣f (z)∣∣p( – |z|)α dv(z) < ∞,

where cα = �(n+α+)
n!�(α+) , dv is the normalized Lebesgue measure of B (i.e. v(B) = ). When

n = , we denote dvα by dAα . When α = , we get the classical Bergman space, which will
be denoted by Ap = Ap(B).
Let

dλ(z) =
dv(z)

( – |z|)n+ .

For any ψ ∈ Aut(B) and f ∈ L(B),

∫
B

f (z)dλ(z) =
∫
B

f ◦ ψ(z)dλ(z). ()

Thus dλ(z) is a Möbius invariant measure (see, e.g. []).
Next, we quote some well-known results that will be used in the proofs of our main

results. We begin with the following characterization of the Bloch space in the unit ball
(see [, , ]).

Lemma . Let  < p < ∞. A holomorphic function f is in the Bloch space B(B) if and only
if

sup
a∈B

∥∥f ◦ ϕa – f (a)
∥∥
Ap < ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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In [], are proved the following two characterizations for the weighted Bergman space
in the unit ball.

Lemma . Assume that  < p < ∞, α > – and f ∈ H(B). If β and γ are real parameters
such that

β + γ = α + p – (n + ) ()

and

– < β < p – (n + ), – < γ < p – (n + ), ()

then the following statements are equivalent:
(a) f ∈ Ap

α(B);
(b)

Q(f ) :=
∫
B

∫
B

|f (z) – f (w)|p
|z –w|p dvβ (z)dvγ (w) < ∞; ()

(c)

Q(f ) :=
∫
B

∫
B

|f (z) – f (w)|p
| – 〈z,w〉|p dvβ (z)dvγ (w) < ∞. ()

Moreover, the quantities Q(f ), Q(f ), and ‖f ‖p
Ap

α
are comparable.

Lemma . [] Assume that f ∈ H(B),  < p < ∞, – < q < ∞,  ≤ s < ∞,  ≤ t < p + n,
and p + s > n. Then for a ∈ B,

∫
B

|f (z) – f ()|p
|z|t

(
 – |z|)q( – ∣∣ϕa(z)

∣∣)s dv(z)
≤ C

∫
B

|∇̃f |p( – |z|)q( – ∣∣ϕa(z)
∣∣)s dv(z). ()

Lemma . [] Assume that f ∈H(B) and  < p < ∞. Then f ∈ B(B) if and only if

sup
a∈B

∫
B

∣∣∇̃f (z)
∣∣p( – ∣∣ϕa(z)

∣∣)n+ dλ(z) < ∞. ()

The following well-known result can be found in [] or [].

Lemma . Let – < t <∞ and c ∈ R. Then there is a positive constant C such that

∫
B

( – |z|)t
| – 〈z,w〉|n++t+c dv(z)

⎧⎪⎨
⎪⎩

≤ C
(–|w|)c , if c > ,

≤ C log e
–|w| , if c = ,

is bounded, if c < ,

for all w ∈ B.

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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3 Characterizations of the Bloch space in the unit disk
In this section, we give two characterizations for the Bloch space in the unit disk as follows.

Theorem . Assume that f ∈H(D) and  < p < ∞. If β and γ are real parameters satis-
fying the following conditions:

β + γ = p – , – < β < p – , – < γ < p – , ()

then the following statements are equivalent:
(a) f ∈ B(D);
(b)

sup
a∈D

∫
D

∫
D

|f (z) – f (w)|p
|z –w|p

( – |a|)( – |z|)β ( – |w|)γ
| – az|β–γ+| – aw|γ–β+ dA(z)dA(w) <∞;

(c)

sup
a∈D

∫
D

∫
D

|f (z) – f (w)|p
| – zw|p

( – |a|)( – |z|)β ( – |w|)γ
| – az|β–γ+| – aw|γ–β+ dA(z)dA(w) <∞.

Proof By taking n = , α =  in Lemma ., we see that f ∈ Ap(D) if and only if

∫
D

∫
D

|f (z) – f (w)|p
|z –w|p

(
 – |z|)β(

 – |w|)γdA(z)dA(w) <∞ ()

and if and only if

∫
D

∫
D

|f (z) – f (w)|p
| – zw|p

(
 – |z|)β(

 – |w|)γdA(z)dA(w) <∞, ()

when the conditions in () hold.
Replacing f by f ◦ ϕa – f (a) in () and (), and using Lemma ., we conclude that

f ∈ B(D) if and only if

sup
a∈D

∫
D

∫
D

|f ◦ ϕa(z) – f ◦ ϕa(w)|p
|z –w|p

(
 – |z|)β(

 – |w|)γdA(z)dA(w) <∞, ()

which is equivalent to

sup
a∈D

∫
D

∫
D

|f ◦ ϕa(z) – f ◦ ϕa(w)|p
| – zw|p

(
 – |z|)β(

 – |w|)γdA(z)dA(w) <∞. ()

Using the change of variables z �→ ϕa(z), w �→ ϕa(w) and the following equalities (see, e.g.
[]):

∣∣ϕa(z) – ϕa(w)
∣∣ = |z –w|( – |a|)

| – aw|| – az|

and

∣∣ – ϕa(z)ϕa(w)
∣∣ = | – zw|( – |a|)

| – aw|| – az| ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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we see that the double integrals on the left side of () and () are equivalent to

sup
a∈D

∫
D

∫
D

|f (z) – f (w)|p
|z –w|p

( – |a|)( – |z|)β ( – |w|)γ
| – az|β–γ+| – aw|γ–β+ dA(z)dA(w)

and

sup
a∈D

∫
D

∫
D

|f (z) – f (w)|p
| – zw|p

( – |a|)( – |z|)β ( – |w|)γ
| – az|β–γ+| – aw|γ–β+ dA(z)dA(w),

respectively. Therefore, f ∈ B(D) if and only if (b) holds, and if and only if (c) holds, as
desired. �

Taking β = γ = p/ –  in Theorem ., we easily get the following corollary.

Corollary . Assume that f ∈ H(D) and  < p < ∞. Then the following statements are
equivalent:
(a) f ∈ B(D);
(b)

sup
a∈D

∫
D

∫
D

( |f (z) – f (w)|
|z –w|

)p(
 –

∣∣ϕa(z)
∣∣)( – ∣∣ϕa(w)

∣∣)dAt(z)dAt(w) < ∞;

(c)

sup
a∈D

∫
D

∫
D

( |f (z) – f (w)|
| – zw|

)p(
 –

∣∣ϕa(z)
∣∣)( – ∣∣ϕa(w)

∣∣)dAt(z)dAt(w) < ∞,

where t = (p – )/.

Taking β = p/ – , γ = p/ in Theorem ., we can easily get the following result.

Corollary . Assume that f ∈ H(D) and  < p < ∞. Then the following statements are
equivalent:
(a) f ∈ B(D);
(b)

sup
a∈D

∫
D

∫
D

( |f (z) – f (w)|
|z –w|

)p(
 –

∣∣ϕa(w)
∣∣) dAt(z)dAt(w) < ∞;

(c)

sup
a∈D

∫
D

∫
D

( |f (z) – f (w)|
| – zw|

)p(
 –

∣∣ϕa(w)
∣∣) dAt(z)dAt(w) < ∞,

where t = (p – )/.

4 Characterizations of the Bloch space in the unit ball
In this section, we generalize Corollaries . and . in the setting of the unit ball.

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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Theorem . Assume that f ∈H(B) and n +  < p <∞. Then f ∈ B(B) if and only if

sup
a∈B

∫
B

∫
B

( |f (z) – f (w)|
| – 〈z,w〉|

)p(
 –

∣∣ϕa(z)
∣∣) n+


(
 –

∣∣ϕa(w)
∣∣) n+

 dvt(z)dvt(w) < ∞,

where t = (p – (n + ))/.

Proof Let α =  and β = γ = (p–(n+))/ in Lemma ..We see that f ∈ Ap
α(B) if and only

if
∫
B

∫
B

( |f (z) – f (w)|
| – 〈z,w〉|

(
 – |z|)/( – |w|)/)p

dvk(z)dvk(w) < ∞,

where k = –(n + )/.
From this and by Lemma . we see that f ∈ B(B) if and only if

sup
a∈B

∫
B

∫
B

( |f ◦ ϕa(z) – f ◦ ϕa(w)|
| – 〈z,w〉|

(
 – |z|) 


(
 – |w|) 



)p

dvk(z)dvk(w) < ∞.

Using the change of variables z �→ ϕa(z), w �→ ϕa(w) and (), we see that the left side of the
last inequality is equivalent to

sup
a∈B

∫
B

∫
B

|f (z) – f (w)|p( – |ϕa(z)|) p+n+ ( – |ϕa(w)|) p+n+

| – 〈ϕa(z),ϕa(w)〉|p dλ(z)dλ(w). ()

The result follows by using the equalities (see, e.g. [])

 –
〈
ϕa(z),ϕa(w)

〉
=
( – 〈a,a〉)( – 〈z,w〉)
( – 〈z,a〉)( – 〈a,w〉)

and

 –
∣∣ϕa(z)

∣∣ = ( – |a|)( – |z|)
| – 〈z,a〉| ,

in (). �

Theorem . Assume that f ∈H(B) and n < p < ∞. Then f ∈ B(B) if and only if

sup
a∈B

∫
B

∫
B

( |f (z) – f (w)|
|w – Pwz – swQwz|

)p(
 –

∣∣ϕa(z)
∣∣) n+


(
 –

∣∣ϕa(w)
∣∣) n+

 dvt(z)dvt(w) < ∞,

()

where t = (p – (n + ))/.

Proof Suppose that () holds. Since


| – 〈z,w〉| ≤ 

|w – Pwz – swQwz| , z,w ∈ B. ()

Then by Theorem . and () we see that f ∈ B(B).

http://www.journalofinequalitiesandapplications.com/content/2014/1/459


Li and Stević Journal of Inequalities and Applications 2014, 2014:459 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/459

Conversely, suppose that f ∈ B(B). By using the change of variables z → ϕw(u),
Lemma . and the following equality (see []):


 – 〈ϕw(u),w〉 =

 – 〈u,w〉
 – |w| , u,w ∈ B,

we have

∫
B

∫
B

|f (z) – f (w)|p( – |ϕa(z)|) n+ ( – |ϕa(w)|) n+
|w – Pwz – swQwz|p dvt(z)dvt(w)

=
∫
B

∫
B

|f (z) – f (w)|p( – |ϕa(z)|) n+ ( – |ϕa(w)|) n+
|ϕw(z)|p| – 〈w, z〉|p dvt(z)dvt(w)

=
∫
B

∫
B

|f ◦ ϕw(u) – f ◦ ϕw()|p
|u|p

(
 –

∣∣ϕa
(
ϕw(u)

)∣∣) n+
 dvt(u)

(
 –

∣∣ϕa(w)
∣∣) n+

 dλ(w)

≤ C
∫
B

∫
B

∣∣∇̃f ◦ ϕw(u)
∣∣p( – ∣∣ϕa

(
ϕw(u)

)∣∣) n+
 dvt(u)

(
 –

∣∣ϕa(w)
∣∣) n+

 dλ(w)

≤ C
∫
B

∫
B

∣∣∇̃f (z)
∣∣p( – ∣∣ϕw(z)

∣∣)n++t( – ∣∣ϕa(z)
∣∣) n+

 dλ(z)
(
 –

∣∣ϕa(w)
∣∣) n+

 dλ(w)

≤ CK
∫
B

∣∣∇̃f (z)
∣∣p( – ∣∣ϕa(z)

∣∣)n+ dλ(z), ()

where

K = sup
a,z∈B

∫
B


( – |ϕa(z)|) n+

(
 –

∣∣ϕw(z)
∣∣)n++t( – ∣∣ϕa(w)

∣∣) n+
 dλ(w).

Employing the change of variables w �→ ϕz(u) and using the fact that |ϕz(w)| = |ϕw(z)| we
have

K = sup
a,z∈B

∫
B


( – |ϕz(a)|) n+

(
 – |u|)n++t( – ∣∣ϕa

(
ϕz(u)

)∣∣) n+
 dλ(u).

It follows from Lemma . and the fact that |(ϕa ◦ ϕz)(u)| = |ϕϕz(a)(u)| (see []) that

K = sup
a,z∈B

∫
B


( – |ϕz(a)|) n+

(
 –

∣∣ϕϕz(a)(u)
∣∣) n+

 dvt(u)

= sup
a,z∈B

∫
B

( – |u|) n+
| – 〈u,ϕz(a)〉|n+ dvt(u) = sup

w∈B

∫
B

( – |u|) n+
| – 〈u,w〉|n+ dvt(u) <∞. ()

Combining () with (), the result follows from Lemma .. �

By choosing α = , γ = p/, and β = p/ – (n + ) in Lemma ., similarly to the proof of
Theorem . is obtained the following result.

Theorem . Assume that f ∈ H(B) and (n + ) < p < ∞. Then f ∈ B(B) if and only if

sup
a∈B

∫
B

∫
B

( |f (z) – f (w)|
| – 〈z,w〉|

)p(
 –

∣∣ϕa(w)
∣∣)n+ dvt(z)dvt(w) < ∞,

where t = (p – (n + ))/.

http://www.journalofinequalitiesandapplications.com/content/2014/1/459
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Using Theorem ., similarly to the proof of Theorem . is proved the following re-
sult.

Theorem . Assume that f ∈H(B) and (n + ) < p < ∞. Then f ∈ B(B) if and only if

sup
a∈B

∫
B

∫
B

( |f (z) – f (w)|
|w – Pwz – swQwz|

)p(
 –

∣∣ϕa(w)
∣∣)n+ dvt(z)dvt(w) < ∞,

where t = (p – (n + ))/.
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