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Abstract
In this paper, we present a fuzzy semi-infinite optimization problem. Moreover, we
will deduce the Fritz-John and Kuhn-Tucker necessary conditions of this problem.
Finally, a numerical example is given to illustrate the results.
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1 Introduction
In many practical problems, we might have information containing some uncertainty,
which is treated in this paper as fuzzy information; the considered semi-infinite optimiza-
tion problem with fuzzy information is a fuzzy semi-infinite optimization problem.
Fuzzy set theory was introduced into conventional linear programming by Zimmer-

mann [], fuzzymathematical programmingwas presented in [], and fuzzy programming
and linear programming with several objective functions were presented by [].
Optimality conditions of a nonlinear programming problem with fuzzy parameters are

established, and a fuzzy function is defined, with its differentiability, convexity, and some
important properties being studied in []; the fuzzy solution of optimization problems
and the incentive solution of the optimization problems are presented which explain that
the solution of optimization problems is a generalization of the solutions in the case of
crisp optimization problems []. As regards fuzzy mathematical programming: theory,
application, and an extension are presented in [].
This paper is organized as follows: In Section , the formulation of the problem of semi-

infinite optimization is considered. In Section , the main section of the paper, we will
study a fuzzy semi-infinite optimization problem, and the Fritz-John and Kuhn-Tucker
necessary conditions. Finally, the conclusion is drawn in Section .

2 A semi-infinite programming problem
A semi-infinite programming problem is an optimization problem in which finitely many
variables appear with infinitely many constraints [, ], and we consider a generalized
semi-infinite optimization problem (GSIP) [, ] of the form

min
x

f (x) s.t. x ∈M,

M =

{
x ∈ Rn/hi(x) = , i ∈ I,G(x, y) ≥ 

for all y ∈ Y (x)

}
,

where Y (x) =
{
y ∈ Rr/uk(x, y) = ,k ∈ K , vl(x, y) ≥ , l ∈ L

}
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (.)
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I ,K , and L are finite index sets with |l| < n and |K | < r (where | · | denotes the cardinality),
all appearing functions are real valued and continuously differentiable, and the set Y (x) is
compact for each x ∈ Rn, and the set-valued mapping Y : x ∈ Rn → Y (x) ⊂ Rn is upper
semi-continuous at each x ∈ Rn.
For the special case that the set Y (x) = Y does not depend on the variable x, this prob-

lem is a common semi-infinite problem (SIP). The generalized semi-infinite and bi-level
optimization problem are presented by Stein and Still []. Bi-level problems are of the
following form.
(BL):

min
x

f (x) s.t. x ∈ M and y is a solution of (.)

min
y

G(x, y)

s.t. y ∈ Y (x).

The generalized semi-infinite programming on generic localminimizers was introduced
byGunzel et al. []. The feasible set in generalized semi-infinite optimization is presented
by Jongen et al. in []. Furthermore, the linear and linearized generalized semi-infinite
optimization problems were introduced by Rukmann []. In [], a first-order optimal-
ity condition in generalized semi-infinite programming is introduced. Still discussed the
optimality conditions for generalized semi-infinite programming problems in [].

3 A fuzzy semi-infinite programming problem
3.1 Problem formulation
A fuzzy semi-infinite programming problem is defined as

m̃in
x

f (x) s.t. x ∈ M,

whereM =

{
x ∈ Rn/hi(x) = , i ∈ I,G(x, y) ≥ 

for all y ∈ Y (x)

}
,

Y (x) =
{
y ∈ Rr/uk(x, y) = ,k ∈ K , vl(x, y) ≥ , l ∈ L

}
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (.)

All functions of this problem have the same properties as the problem (.). For x ∈ M
denote the index sets of the active inequality constraints by

Y(x) =
{
y ∈ Y (x)/G(x, y) = 

}
, (.)

L(x, y) =
{
l ∈ L/vl(x, y) =  for y ∈ Y (x)

}
.

3.2 Lower level problem
Consider the following lower level problem:

m̃in
y

G(x, y)

s.t. y ∈ Y (x).

⎫⎬⎭ (.)

The fuzzy requirements of the lower level problem (.) can be quantified by electing
a membership function μ(G(x, y)) (Figure ) which is differentiable in the open interval
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Figure 1 Themembership function μ(G(x,y)).

G(x, y) <G(x, y) <G(x, y), where μ(G(x, y)) is defined by

μ
(
G(x, y)

)
=

⎧⎪⎨⎪⎩
, G(x, y) ≤G(x, y),
G(x,y)–G(x,y)
G(x,y)–G(x,y) , G(x, y) ≤G(x, y) ≤G(x, y),
, G(x, y) ≥G(x, y),

(.)

where G(x, y) and G(x, y) denote the values of the objective function of the lower level
problem (.) with the degree of the membership function  and , respectively, i.e.,
G(x, y) is an undesirable value and G(x, y) is a desirable value of the objective function
G(x, y).

Definition  The α-level set of the fuzzy goal G(x, y) is defined as the ordinary set
Lα(G(x, y)); for the value of G(x, y) the degree of its membership function exceeds the
level α, i.e.

Lα

(
G(x, y)

)
=

{
G(x, y)/μ

(
G(x, y)

) ≥ α,α ∈ (, )
}
,

where α is the least acceptable degree of the required value. For certain degrees α the
problem (.) can be transformed into the following equivalent form:

min
y

G(x, y)

s.t. y ∈ Y (x),
μ(G(x, y)) ≥ α.

⎫⎪⎪⎬⎪⎪⎭ (.)

If x ∈ M and y ∈ Y(x), then y is a minimizer of the problem (.).
By the Fritz-John conditions there exist coefficients λ,β = (βk ,k ∈ K ), γ = (γ l, l ∈

L(x, y)), and ν satisfying

DyL(x,y)(x, y,λ,β ,γ ,ν) =  and λ + ν +
∑
k∈K

|βk| +
∑

l∈L(x,y)
γ l = , (.)

λ ≥ ,γ l ≥ ,ν ≥ , l ∈ L(x, y),

where

L(x,y)(x, y,λ,β ,γ ,ν) = λG(x, y) – v
(
μ

(
G(x, y)

)
– α

)
–

∑
k∈K

βiuk(x, y) –
∑

l∈L(x,y)
γlvl.

In other words, for x ∈M and y ∈ Y(x) the set F(x, y) = {(λ,β ,γ , v) ∈ R×R|k| ×R|L(x,y)| ×
R/(λ,β ,γ , v) satisfies (.)} is nonempty and, furthermore, is also compact.
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4 Fritz-John conditions
Firstly, we will give some lemmas, definitions, and a proposition which will be used in the
proof of the Fritz-John conditions.

Lemma  [] Let xt ∈M, yt ∈ Y (xt) and xt → x. Then the set {‖yt‖, t ∈N} is bounded, and
y ∈ Y (x) whenever yt → y.

Lemma  [] Let l = φ, and for x ∈ M let Y(x) = φ. Then x is an interior point of M.

Definition  For x ∈M define

V (x) =
⋃

y∈Y(x)

{
DxL(x,y)(x, y,λ,β ,γ ,ν)/(α,β ,γ ) ∈ F(x, y)

}
. (.)

Lemma  [] Let x ∈M. Then the set V (x) is compact.

Definition  [] For a set V , we define Conv(V ) to denote the convex hull of V , i.e.
x ∈ Conv(V ) if and only if

x =
n∑
i=

λixi, xi ∈ V ,
n∑
i=

λi = ,λi ≥ , (.)

i.e. Conv(V ) consists of all finite convex combinations of the elements of V .

Lemma  [] Let V ⊂ Rn be a nonempty compact set. Then there exists a ξ ∈ Rn with
sTξ >  for all s ∈ V if and only if  /∈ Conv(V ).

Lemma  [] Let I, I be finite index sets and si ∈ Rn, i ∈ I, and zj ∈ Rn, j ∈ I. Then
either (i) or (ii) holds.

(i) There are real numbers ai, i ∈ I, bj ≥ , j ∈ I, satisfying∑
i∈I

aisi +
∑
j∈I

bjzj = ,

∑
i∈I

|ai| +
∑
j∈I

bj = .
(.)

(ii) The set {si, i ∈ I} is linearly independent and there exists a ξ ∈ Rn with

(
si
)T

ξ = , i ∈ I,
(
zj

)T
ξ > , j ∈ I. (.)

Proposition  [] For t ∈ R and y ∈ Rr , we define the following functions:

uk(t, y) = uk(x + tξ , y), k ∈ K ,

vl(t, y) = vl(x + tξ , y), l ∈ L,

G(t, y) =G(x + tξ , y).

Then the following conditions are satisfied.
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Figure 2 Themembership function μ(f (x)).

(i) The set {Duk(, y),k ∈ K} (= {[Dxuk(x, y)ξ ,Dyuk(x, y)],k ∈ K}) is linearly
independent.

(ii) There is a w ∈ Rr+ satisfying

DG(, y)w > ,
Duk(, y)w = ,k ∈ K ,

Dvk(, y)w < , l ∈ L(Ex, y).

⎫⎪⎬⎪⎭ (.)

The fuzzy requirements of the problem (.) can be quantified by electing amembership
function μ(f (x)) (Figure ) which is differentiable in the open interval f (x) < f (x) < f (x)
where μ(f (x)) is defined by

μ
(
f (x)

)
=

⎧⎪⎨⎪⎩
, f (x)≤ f (x),
f (x)–f (x)
f (x)–f (x) , f (x) ≤ f (x)≤ f (x),
, f (x)≥ f (x),

(.)

where f (x) and f (x) denote the values of the objective function of the problem (.) with
the degree of membership function  and , respectively, i.e., f (x) is an undesirable value
and f (x) is a desirable value of the objective function f (x). For a certain degree α the
defuzzification of the problem (.) is

min
x

f (x) s.t. x ∈M,

whereM =

{
x ∈ Rn/hi(x) = , i = , . . . ,m,G(x, y) ≥ 

for all y ∈ Y (x)

}
,

Y (x) =
{
y ∈ Rr/uk(x, y) = ,k ∈ K , vl(x, y)≥ , l ∈ L

}
,

μ
(
f (x)

) ≥ α, α ∈ (, ),

μ
(
G(x, y)

) ≥ α, α ∈ (, ).

(.)

Theorem  Let x be a local minimizer of the problem (.). Then either Y(x) �= φ and
there exist

yj ∈ Y(x), j = , . . . ,p,
(λj,β j,γ j, vj) ∈ F(x, yj), j = , . . . ,p,

k ≥ ,η ≥ ,ρi, i ∈ I, ζj ≥ , j = , . . . ,p,

⎫⎪⎬⎪⎭ (.)
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satisfying

k + η +
∑

i∈I |ρi| +∑p
j= ζj > 

as well as
kDf (x) – ηD(μ(f (x) – α)) –

∑
i∈I ρiDhi(x)

–
∑p

j= ζjDxL(x,yj)(x, yj,λj,β j,γ j,ν j) = ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (.)

or Y(x) = φ and there exist k ≥ , η ≥ , ρi, i ∈ I , satisfying

k + η +
∑

i∈I |ρi| > ,
kDf (x) – ηD(μ(f (x) – α)) –

∑
i∈I ρiDhi(x) = .

}
(.)

Proof Let x be a local minimizer of the problem (.). We distinguish three cases.
Case : The set {Dhi(x), i ∈ I} is linearly dependent. Then we are done by choosing k = ,

η = , ζ =  in (.) (if Y(x) �= φ), or k = , η =  in (.) (if Y(x) = φ) as well as a linear
combination

∑
i∈I ρiDhi(x) =  with

∑
i∈I |ρi| > .

Case : There exists a y ∈ Y(x) and the set {Duk(x, y) = ,k ∈ K} is linearly dependent.
Then there exists a linear combination

∑
k∈K βkDuk(x, y) = ,

∑
k∈K |βk| =  and therefore

we have
∑

k∈K βkDyuk(x, y) = , (,β , , ) ∈ F(x, y) (with β = (βk ,k ∈ K )), and

DxL(x,y)(x, y, , ,β , ) =
∑
k∈K

βkDuk(x, y) = . (.)

Case : Neither Case  nor Case  holds. Then the proof is similar to Theorem . in
[]. �

5 A constraint qualification
Definition  TheMangasarian-Fromovitz constraint qualification (MFCQ) of the prob-
lem (.) is said to hold at x if:
() the set {Dhi(x), i ∈ I} is linearly independent and
() there exists a � ∈ Rn such that

for all i ∈ I :Dhi(x)� = ,
for all y ∈ Y(x) :DxL(x,y)(x, y,λ,β ,γ ,ν)� > ,

for all (λ,β ,γ , v) ∈ F(x, y).

⎫⎪⎬⎪⎭ (.)

Theorem  Let x be a local minimizer of the problem (.) and (MFCQ) be satisfied.
Then either Y(x) �= φ and there exist

yj ∈ Y(x), j = , . . . ,p,
(λj,β j,γ j, vj) ∈ F(x, yj), j = , . . . ,p,

k ≥ ,η ≥ ,ρi, i ∈ I, ζj ≥ , j = , . . . ,p,

⎫⎪⎬⎪⎭ (.)

satisfying

k + η +
∑

i∈I |ρi| +∑p
j= ζj > 

as well as
kDf (x) – ηD(μ(f (x) – α)) –

∑
i∈I ρiDhi(x)

–
∑p

j= ζjDxL(x,yj)(x, yj,λj,β j,γ j,ν j) = ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/457
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or Y(x) = φ and there exist k ≥ , η ≥ , ρi, i ∈ I , satisfying the set

k + η +
∑

i∈I |ρi| > ,
kDf (x) – ηD(μ(f (x) – α)) –

∑
i∈I ρiDhi(x) = .

}
(.)

The proof is similar to the proof of Theorem  if we choose k = .

Example

m̃in f (x) =
(
x –




)

+ x,

subject to G(x, y) = y + x,

V (x, y) = x – y.

The lower level problem is

m̃inG(x, y) = y + x,

subject to V (x, y) = x – y.

The optimal solution of the crisp problem is (x,x) = (  , ), y = , and (λ,γ ) = (, ); and
f (  , ) = , G(x, y) = .
Let f (x) =  and G(x, y) =  be undesirable values of the problem, the membership

functions of f and G are defined by

μ(f ) =
f – f 

f  – f 
= –

[(
x –




)

+ x – 
]
,

μ(G) =
G –G

G –G =  – y – x.

The new problem is

min f (x) =
(
x –




)

+ x,

subject to G(x, y) = y + x,

V (x, y) = x – y,

–
[(

x –



)

+ x – 
]

≥ α, α ∈ (, ),

 – y – x ≥ α, α ∈ (, ).

The lower level problem is

minG(x, y) = y + x,

V (x, y) = x – y,

 – y – x ≥ α,

http://www.journalofinequalitiesandapplications.com/content/2014/1/457
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then

L(x, y,α,γ,γ) = λ(y + x) – γ
(
x – y

)
– γ(–y – x +  – α),

DyL(x, y,α,γ,γ) = λ + yγ + γ = , then y = –
λ + γ

γ
,λ + γ + γ = .

Since

kDf (x) – γD
(
μ

(
f (x) – α

))
– βDxL(x, y,λ,γ,γ) = ,

we have

k
(
x –




)
+ γ

(
x –




)
+ βγ = , x =



–

βγ

k + γ
,

kx + γx – β(λ + γ) = , x =
β(λ + γ)
k + γ

;

the solution is⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

β = .,k = .,γ = .,λ = .,
γ = .,γ = .,

α = .,α = .,x = .,
x = ., y = –.

⎤⎥⎥⎥⎦ , f = .,G = .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

6 Conclusion
In this work, we discussed a fuzzy semi-infinite optimization problem, by considering that
the minimum of the objective function is fuzzy (m̃in). The Fritz-John conditions and the
constraint qualification are discussed for this problem. Finally, an illustrative example is
given to clarify the results.
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