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Abstract
In this paper, we study the existence of solutions for a boundary value problem
involving Hadamard type fractional differential inclusions and integral boundary
conditions. Some new existence results for convex as well as non-convex multivalued
maps are obtained by using standard fixed point theorems for multivalued maps. The
paper concludes with an illustrative example.
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1 Introduction
The intensive development of fractional calculus and its widespread applications in sev-
eral disciplines clearly indicate the interest of researchers and modelers in the subject.
As a matter of fact, the tools of fractional calculus have been effectively used in applied
and technical sciences such as physics, mechanics, chemistry, engineering, biomedical
sciences, control theory, etc. It has been mainly due to the fact that fractional-order oper-
ators can exhibit the hereditary properties of manymaterials and processes. For a detailed
account of applications and recent results on initial and boundary value problems of frac-
tional differential equations and inclusions, we refer the reader to a series of books and
papers [–]. However, it has been noticed that most of the work on the topic involves
Riemann-Liouville andCaputo type fractional differential operators. Another class of frac-
tional derivatives that appears side by side to Riemann-Liouville and Caputo derivatives
in the literature is the fractional derivative due to Hadamard, introduced in  []. This
derivative contains logarithmic function of arbitrary exponent in the kernel of the integral
in its definition. Preliminary concepts and properties of Hadamard fractional derivative
and integral can be found in [, –].
In this paper, we study the following boundary value problem with an integral nonlocal

boundary condition:

{
Dαx(t) ∈ F(t,x(t)),  < t < e,  < α ≤ ,
x() = , AIγ x(η) + Bx(e) = c,  < η < e,

(.)
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where Dα is the Hadamard fractional derivative of order α, Iγ is the Hadamard frac-
tional integral of order γ , F : [, e] × R → P(R) is a multivalued map, P(R) is the
family of all subsets of R and A, B, c are real constants. Further, it is assumed that
B + [A�(α)(logη)γ+α–/�(γ + α)] �= .
The present paper is motivated by a recent paper of the authors [], where problem

(.) was considered for a single-valued case.
We establish some existence results for the problem (.), when the right-hand side is

convex as well as non-convex valued. The first result relies on the nonlinear alternative
of Leray-Schauder type. In the second result, we shall combine the nonlinear alternative
of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan
and Colombo for lower semi-continuousmultivaluedmaps with nonempty closed and de-
composable values, while in the third result, we shall use the fixed point theorem for con-
traction multivalued maps due to Covitz and Nadler. The methods used are well known,
however, their exposition in the framework of problem (.) is new.

2 Preliminaries
Definition . ([]) The Hadamard derivative of fractional order q for a function g :
[,∞) →R is defined as

Dqg(t) =


�(n – q)

(
t
d
dt

)n ∫ t



(
log

t
s

)n–q– g(s)
s

ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition. ([]) TheHadamard fractional integral of order q for a function g is defined
as

Iqg(t) =


�(q)

∫ t



(
log

t
s

)q– g(s)
s

ds, q > ,

provided the integral exists.

Definition . A function x ∈ AC([, e],R) is called a solution of problem (.) if there
exists a function v ∈ L([, e],R) with v(t) ∈ F(t,x(t)), a.e. [, e] such that Dαx(t) = v(t),  <
α ≤ , a.e. [, e] and x() = , AIγ x(η) + Bx(e) = c,  < η < e.

Lemma . ([]) Given y ∈ C([, e],R), the unique solution of the problem

{
Dαx(t) = y(t),  < t < e,  < α ≤ ,
x() = , AIγ x(η) + Bx(e) = c,  < η < e,

(.)

is given by

x(t) = Iαy(t) + (log t)α–
c –AIγ+αy(η) – BIαy(e)
B + A�(α)

�(γ+α) (logη)γ+α–
. (.)
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Remark . Observe that solution (.) for α =  corresponds to the one for a boundary
value problem of a Cauchy-Euler type differential equation:

t
dx
dt

+ t
dx
dt

= y(t).

3 Existence results
Let us recall some basic definitions on multivalued maps [, ].
For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈

P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}. A multivalued map G : X → P(X) is convex (closed) valued
if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded sets if G(B) =⋃

x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is
called upper semi-continuous (u.s.c.) on X if for each x ∈ X, the set G(x) is a nonempty
closed subset of X, and if for each open set N of X containing G(x), there exists an open
neighborhood N of x such that G(N) ⊆ N . G is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of themultivalued operatorGwill be denoted
by FixG. A multivalued map G : [, e] →Pcl(R) is said to be measurable if for every y ∈R,
the function

t 
−→ d
(
y,G(t)

)
= inf

{|y – z| : z ∈G(t)
}

is measurable.
Let C([, e],R) denote a Banach space of continuous functions from [, e] intoRwith the

norm ‖x‖ = supt∈[,e] |x(t)|. Let L([, e],R) be the Banach space of measurable functions
x : [, e] →R which are Lebesgue integrable and normed by ‖x‖L =

∫ e
 |x(t)|dt.

3.1 The Carathéodory case
Definition . A multivalued map F : [, e]×R→P(R) is said to be Carathéodory if

(i) t 
−→ F(t,x) is measurable for each x ∈R;
(ii) x 
−→ F(t,x) is upper semi-continuous for almost all t ∈ [, e];

Further a Carathéodory function F is called L-Carathéodory if
(iii) for each ρ > , there exists ϕρ ∈ L([, e],R+) such that

∥∥F(t,x)∥∥ = sup
{|v| : v ∈ F(t,x)

} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [, e].

For each y ∈ C([, e],R), define the set of selections of F by

SF ,y :=
{
v ∈ L

(
[, e],R

)
: v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ [, e]

}
.

For the forthcoming analysis, we need the following lemmas.

Lemma . (Nonlinear alternative for Kakutani maps) [] Let E be a Banach space, C a
closed convex subset of E, U an open subset of C and  ∈U . Suppose that F :U →Pcp,c(C)
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is a upper semi-continuous compact map. Then either
(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . ([]) Let X be a Banach space. Let F : [, e] × X → Pcp,c(X) be an L-
Carathéodorymultivaluedmap and let
 be a linear continuousmapping from L([, e],X)
to C([, e],X). Then the operator


 ◦ SF : C
(
[, e],X

) →Pcp,c
(
C

(
[, e],X

))
, x 
→ (
 ◦ SF )(x) =
(SF ,x)

is a closed graph operator in C([, e],X)×C([, e],X).

Now we are in a position to prove the existence of the solutions for the boundary value
problem (.) when the right-hand side is convex valued.

Theorem . Assume that:

(H) F : [, e]×R →P(R) is Carathéodory and has nonempty compact and convex values;
(H) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a function

p ∈ L([, e],R+) such that

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤ p(t)ψ
(‖x‖) for each (t,x) ∈ [, e]×R;

(H) there exists a constantM >  such that

‖x‖
ψ(‖x‖)‖p‖ω + |c|

||
> ,

where

ω =


�(α + )
+


||

{ |A|(logη)γ+α

�(γ + α + )
+

|B|
�(α + )

}
, and

 = B +
A�(α)

�(γ + α)
(logη)γ+α–.

Then the boundary value problem (.) has at least one solution on [, e].

Proof Define the operator F : C([, e],R) →P(C([, e],R)) by

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C
(
[, e],R

)
:

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


�(α)

∫ t


(log

t
s
)α–

v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for v ∈ SF ,x. We will show that F satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type. The proof consists of several steps. As a first step, we show that F

is convex for each x ∈ C([, e],R). This step is obvious since SF ,x is convex (F has convex
values), and therefore we omit the proof.
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In the second step, we show that F maps bounded sets (balls) into bounded sets in
C([, e],R). For a positive number r, let Br = {x ∈ C([, e],R) : ‖x‖ ≤ r} be a bounded ball
in C([, e],R). Then, for each h ∈ F (x), x ∈ Br , there exists v ∈ SF ,x such that

h(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds +
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

Then, for t ∈ [, e], we have

∣∣h(t)∣∣ ≤ 
�(α)

∫ t



(
log

t
s

)α– |v(s)|
s

ds

+
(log t)α–

||
[
|c| + |A|

�(γ + α)

∫ η



(
log

η

s

)γ+α– |v(s)|
s

ds

+
|B|

�(α)

∫ e



(
log

e
s

)α– |v(s)|
s

ds
]

≤ ψ(‖x‖)‖p‖
�(α)

∫ t



(
log

t
s

)α– 
s
ds

+
(log t)α–

||
[
|c| + |A|ψ(‖x‖)‖p‖

�(γ + α)

∫ η



(
log

η

s

)γ+α– 
s
ds

+
|B|ψ(‖x‖)‖p‖

�(α)

∫ e



(
log

e
s

)α– 
s
ds

]

≤ ψ
(‖x‖)‖p‖[ 

�(α + )
+


||

{
A(logη)γ+α

�(γ + α + )
+

B
�(α + )

}]
+

|c|
||

≤ ψ
(‖x‖)‖p‖ω +

|c|
|| .

Consequently

‖h‖ ≤ ψ(r)‖p‖ω +
|c|
|| .

Now we show that F maps bounded sets into equicontinuous sets of C([, e],R). Let
t, t′ ∈ [, e] with t < t and x ∈ Br . For each h ∈ F (x), we obtain

∣∣h(t) – h(t)
∣∣ ≤ ψ(r)‖p‖

�(α)

∣∣∣∣
∫ τ



(
log

τ

s

)α– 
s
ds –

∫ τ



(
log

τ

s

)α– 
s
ds

∣∣∣∣
+

ψ(r)‖p‖|(log τ)α– – (log τ)α–|
||

×
[
|c| + |A|

�(γ + α)

∫ η



(
log

η

s

)γ+α– 
s
ds +

|B|
�(α)

∫ e



(
log

e
s

)α– 
s
ds

]

≤ ψ(r)‖p‖
�(α)

∣∣∣∣
∫ τ



[(
log

τ

s

)α–

–
(
log

τ

s

)α–]
s
ds

∣∣∣∣
+

ψ(r)‖p‖
�(α)

∣∣∣∣
∫ τ

τ

(
log

τ

s

)α– 
s
ds

∣∣∣∣
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+
ψ(r)‖p‖|(log τ)α– – (log τ)α–|

||

×
[
|c| + |A|

�(γ + α)

∫ η



(
log

η

s

)γ+α– 
s
ds +

|B|
�(α)

∫ e



(
log

e
s

)α– 
s
ds

]
.

Obviously the right-hand side of the above inequality tends to zero independently of
x ∈ Br as t–t → .AsF satisfies the above three assumptions, therefore it follows by the
Ascoli-Arzelá theorem that F : C([, e],R) →P(C([, e],R)) is completely continuous.
In our next step, we show that F has a closed graph. Let xn → x∗, hn ∈ F (xn) and

hn → h∗. Then we need to show that h∗ ∈ F (x∗). Associated with hn ∈ F (xn), there
exists vn ∈ SF ,xn such that for each t ∈ [, e],

hn(t) =


�(α)

∫ t



(
log

t
s

)α– vn(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– vn(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– vn(s)
s

ds
}
.

Thus it suffices to show that there exists v∗ ∈ SF ,x∗ such that for each t ∈ [, e],

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– v∗(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v∗(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v∗(s)
s

ds
}
.

Let us consider the linear operator 
 : L([, e],R)→ C([, e],R) given by

f 
→ 
(v)(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥ 
�(α)

∫ t



(
log

t
s

)α– (vn(s) – v∗(s))
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– (vn(s) – v∗(s))
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– (vn(s) – v∗(s))
s

ds
}∥∥∥∥ → ,

as n→ ∞.
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Thus, it follows by Lemma . that 
 ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ 
(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– v∗(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v∗(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v∗(s)
s

ds
}
,

for some v∗ ∈ SF ,x∗ .
Finally, we show there exists an open setU ⊆ C([, e],R) with x /∈ F (x) for any λ ∈ (, )

and all x ∈ ∂U . Let λ ∈ (, ) and x ∈ λF (x). Then there exists v ∈ L([, e],R) with v ∈ SF ,x
such that, for t ∈ [, e], we have

x(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

Using the computations of the second step above we have

‖x‖ ≤ ψ
(‖x‖)‖p‖ω +

|c|
|| ,

which implies that

‖x‖
ψ(‖x‖)‖p‖ω + |c|

||
≤ .

In view of (H), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ C

(
[, e],R

)
: ‖x‖ <M

}
.

Note that the operator F :U →P(C([, e],R)) is upper semi-continuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λF (x) for some λ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .),
we deduce that F has a fixed point x ∈ U which is a solution of the problem (.). This
completes the proof. �

3.2 The lower semi-continuous case
As a next result, we study the case when F is not necessarily convex valued. Our strategy
to deal with this problem is based on the nonlinear alternative of Leray-Schauder type
together with the selection theorem of Bressan and Colombo for lower semi-continuous
maps with decomposable values.

http://www.journalofinequalitiesandapplications.com/content/2014/1/454
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Let X be a nonempty closed subset of a Banach space E and G : X → P(E) be a multi-
valued operator with nonempty closed values.G is lower semi-continuous (l.s.c.) if the set
{y ∈ X : G(y) ∩ B �= ∅} is open for any open set B in E. Let A be a subset of [, e] × R. A is
L⊗ B measurable if A belongs to the σ -algebra generated by all sets of the form J ×D,
where J is Lebesgue measurable in [, e] and D is Borel measurable in R. A subset A of
L([, e],R) is decomposable if for all u, v ∈ A and measurable J ⊂ [, e] = J , the function
uχJ + vχJ–J ∈A, where χJ stands for the characteristic function of J .

Definition . Let Y be a separable metric space and let N : Y → P(L([, e],R)) be a
multivalued operator.We sayN has the property (BC) ifN is lower semi-continuous (l.s.c.)
and has nonempty closed and decomposable values.

Let F : [, e]×R →P(R) be a multivalued map with nonempty compact values. Define
a multivalued operator F : C([, e]×R)→P(L([, e],R)) associated with F as

F (x) =
{
w ∈ L

(
[, e],R

)
: w(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, e]

}
,

which is called the Nemytskii operator associated with F .

Definition . Let F : [, e]×R → P(R) be a multivalued function with nonempty com-
pact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated Ne-
mytskii operatorF is lower semi-continuous and has nonempty closed and decomposable
values.

Lemma . ([]) Let Y be a separable metric space and let N : Y → P(L([, e],R)) be
a multivalued operator satisfying the property (BC). Then N has a continuous selection,
that is, there exists a continuous function (single-valued) g : Y → L([, e],R) such that
g(x) ∈N(x) for every x ∈ Y .

Theorem . Assume that (H), (H), and the following condition holds:

(H) F : [, e]×R →P(R) is a nonempty compact-valued multivalued map such that
(a) (t,x) 
−→ F(t,x) is L⊗B measurable,
(b) x 
−→ F(t,x) is lower semi-continuous for each t ∈ [, e].

Then the boundary value problem (.) has at least one solution on [, e].

Proof It follows from (H) and (H) that F is of l.s.c. type. Then from Lemma ., there
exists a continuous function f : AC([, e],R) → L([, e],R) such that f (x) ∈ F (x) for all
x ∈ C([, e],R).
Consider the problem

{
Dαx(t) = f (x(t)),  < t < e,  < α ≤ ,
x() = , AIγ x(η) + Bx(e) = c,  < η < e.

(.)

Observe that if x ∈ AC([, e],R) is a solution of (.), then x is a solution to the problem
(.). In order to transform the problem (.) into a fixed point problem, we define the

http://www.journalofinequalitiesandapplications.com/content/2014/1/454


Ahmad et al. Journal of Inequalities and Applications 2014, 2014:454 Page 9 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/454

operator F as

Fx(t) =


�(α)

∫ t



(
log

t
s

)α– f (x(s))
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– f (x(s))
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– f (x(s))
s

ds
}
.

It can easily be shown that F is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem .. So we omit it. This completes the
proof. �

3.3 The Lipschitz case
Now we prove the existence of solutions for the problem (.) with a non-convex valued
right-hand side by applying a fixed point theorem for amultivaluedmap due to Covitz and
Nadler.
Let (X,d) be a metric space induced from the normed space (X;‖ · ‖). Consider Hd :

P(X)×P(X)→R∪ {∞} given by

Hd(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where d(A,b) = infa∈A d(a;b) and d(a,B) = infb∈B d(a;b). Then (Pb,cl(X),Hd) is a metric
space and (Pcl(X),Hd) is a generalized metric space (see []).

Definition . A multivalued operator N : X →Pcl(X) is called:
(a) γ -Lipschitz if and only if there exists γ >  such that

Hd
(
N(x),N(y)

) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < .

Lemma . ([]) Let (X,d) be a complete metric space. If N : X → Pcl(X) is a contrac-
tion, then FixN �= ∅.

Theorem . Assume that:

(H) F : [, e] × R → Pcp(R) is such that F(·,x) : [, e] → Pcp(R) is measurable for each
x ∈R.

(H) Hd(F(t,x),F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [, e] and x, x̄ ∈ R with m ∈
L([, e],R+) and d(,F(t, ))≤m(t) for almost all t ∈ [, e].

Then the boundary value problem (.) has at least one solution on [, e] if

‖m‖ω +
|c|
|| < .

http://www.journalofinequalitiesandapplications.com/content/2014/1/454
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Proof Observe that the set SF ,x is nonempty for each x ∈ C([, e],R) by the assumption
(H), so F has a measurable selection (see Theorem III. []). Now we show that the
operator F , defined in the beginning of proof of Theorem ., satisfies the assumptions
of Lemma .. To show thatF (x) ∈Pcl((C[, e],R)) for each x ∈ C([, e],R), let {un}n≥ ∈
F (x) be such that un → u (n → ∞) in C([, e],R). Then u ∈ C([, e],R) and there exists
vn ∈ SF ,xn such that, for each t ∈ [, e],

un(t) =


�(α)

∫ t



(
log

t
s

)α– vn(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– vn(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– vn(s)
s

ds
}
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn
converges to v in L([, e],R). Thus, v ∈ SF ,x and for each t ∈ [, e], we have

vn(t)→ v(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

Hence, u ∈ (x).
Next we show that there exists δ <  such that

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖ for each x, x̄ ∈ AC([, e],R)
.

Let x, x̄ ∈ AC([, e],R) and h ∈ F (x). Then there exists v(t) ∈ F(t,x(t)) such that, for
each t ∈ [, e],

h(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

By (H), we have

Hd
(
F(t,x),F(t, x̄)

) ≤m(t)
∣∣x(t) – x̄(t)

∣∣.
So, there exists w ∈ F(t, x̄(t)) such that

∣∣v(t) –w
∣∣≤m(t)

∣∣x(t) – x̄(t)
∣∣, t ∈ [, e].

http://www.journalofinequalitiesandapplications.com/content/2014/1/454
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Define U : [, e] →P(R) by

U(t) =
{
w ∈R :

∣∣v(t) –w
∣∣ ≤m(t)

∣∣x(t) – x̄(t)
∣∣}.

Since themultivalued operatorU(t)∩F(t, x̄(t)) ismeasurable (Proposition III. []), there
exists a function v(t) which is a measurable selection for U . So v(t) ∈ F(t, x̄(t)) and for
each t ∈ [, e], we have |v(t) – v(t)| ≤m(t)|x(t) – x̄(t)|.
For each t ∈ [, e], let us define

h(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– v(s)
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
}
.

Thus,

∣∣h(t) – h(t)
∣∣ = ∣∣∣∣ 

�(α)

∫ t



(
log

t
s

)α– (v(s) – v(s))
s

ds

+
(log t)α–



{
c –

A
�(γ + α)

∫ η



(
log

η

s

)γ+α– (v(s) – v(s))
s

ds

–
B

�(α)

∫ e



(
log

e
s

)α– (v(s) – v(s))
s

ds
}∣∣∣∣

≤
( ‖m‖

�(α)

∫ t



(
log

t
s

)α– 
s
ds

+
(log t)α–

||
[
|c| + |A|

�(γ + α)

∫ η



(
log

η

s

)γ+α– 
s
ds

+
|B|

�(α)

∫ e



(
log

e
s

)α– 
s
ds

])
‖x – x̄‖

≤
(

‖m‖ω +
|c|
||

)
‖x – x̄‖.

Hence,

‖h – h‖ ≤
(

‖m‖ω +
|c|
||

)
‖x – x̄‖.

Analogously, interchanging the roles of x and x, we obtain

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖ ≤
(

‖m‖ω +
|c|
||

)
‖x – x̄‖.

Since F is a contraction, it follows by Lemma . that F has a fixed point x which is
a solution of (.). This completes the proof. �
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3.4 Example
Example . Consider the problem

{
D/x(t) ∈ F(t,x(t)),  < t < e,
x() = , I/x() + x(e) = .

(.)

Here α = /, γ = /, η = , A = , B = , and c = . With the given values, we find that

 = B +
A�(α)

�(γ + α)
(logη)γ+α– �  +

√
π log

√
≈ .,

ω =


�(α + )
+




( |A|(logη)γ+α

�(γ + α + )
+

|B|
�(α + )

)
≈ ..

Let F : [, e]×R →P(R) be a multivalued map given by

x → F(t,x) =
[ |x|

|x| + 
+ t + t + ,

|x|
|x| + 

+ t + 
]
.

For f ∈ F , we have

|f | ≤max

( |x|
|x| + 

+ t + t + ,
|x|

|x| + 
+ t + 

)
≤ , x ∈ R.

Thus,

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤  = p(t)ψ
(‖x‖), x ∈R,

with p(t) = , ψ(‖x‖) = . In this case by the condition

M
ψ(M)‖p‖ω + |c|

||
> ,

we find that M > .. Hence by Theorem . the problem (.) has a solution on
[, e].
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