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Abstract
We introduce and investigate the notion of an operator P-class function. We show
that every nonnegative operator convex function is of operator P-class, but the
converse is not true in general. We present some Jensen type operator inequalities
involving P-class functions and some Hermite-Hadamard inequalities for operator
P-class functions.
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1 Introduction and preliminaries
Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert
space H with its identity denoted by I . When dimH = n, we identify B(H) with the ma-
trix algebra Mn of all n × n matrices with entries in the complex field C. We denote by
σ (J) the set of all self-adjoint operators onH whose spectra are contained in an interval J .
An operator A ∈ B(H) is called positive (positive semidefinite for a matrix) if 〈Ax,x〉 ≥ 
for all x ∈H and in such a case we write A ≥ . For self-adjoint operators A,B ∈B(H), we
write B ≥ A if B–A≥ . The Gelfand map f �→ f (A) is an isometrical ∗-isomorphism be-
tween the C∗-algebra C(σ (A)) of a complex-valued continuous functions on the spectrum
σ (A) of a self-adjoint operatorA and theC∗-algebra generated by I andA. If f , g ∈ C(σ (A)),
then f (t) ≥ g(t) (t ∈ σ (A)) implies that f (A) ≥ g(A). A real-valued continuous function f
on an interval J is called operator increasing (operator decreasing, resp.) if A ≤ B implies
f (A) ≤ f (B) (f (B) ≤ f (A), resp.) for all A,B ∈ σ (J). We recall that a real-valued continuous
function f defined on an interval J is operator convex if f (λA+(–λ)B) ≤ λf (A)+(–λ)f (B)
for all A,B ∈ σ (J) and all λ ∈ [, ].
A function f : J −→ R is said to be of P-class on J or is a P-class function on J if

f
(
λx + ( – λ)y

) ≤ f (x) + f (y), ()

where x, y ∈ J and λ ∈ [, ]; see []. Many properties of P-class functions can be found in
[–]. Note that the set of all P-class functions contains all convex functions and also all
nonnegative monotone functions. Every non-zero P-class function is nonnegative valued.
In fact, choose λ =  and fix x ∈ J . It follows from () that

f (x) ≤ f (x) + f (y),

where y ∈ J . Thus ≤ f (y) for all y ∈ J .
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For a P-class function f on an interval [a,b],

f
(
a + b


)
≤ 

∫ 


f
(
ta + ( – t)b

)
dt ≤ 

(
f (a) + f (b)

)
,

which is known as theHermite-Hadamard inequality for the P-class continuous functions;
see [].
In this paper, we introduce and investigate the notion of an operator P-class function

and give several examples. We show that if f is a P-class function on (,∞) such that
limt→∞ f (t) = , then it is operator decreasing. We also prove that if f is an operator P-
class function on an interval J , then

f
(
C∗AC

) ≤ C∗f (A)C,

whereA ∈ σ (J) andC ∈B(H) is an isometry. In addition, we present aHermite-Hadamard
inequality for operator P-class functions.

2 Operator P-class functions
In this section, we investigate operator P-class functions and study some relations between
the operator P-class functions and the operator monotone functions.
We start our work with the following definition.

Definition  Let f be a real-valued continuous function defined on an interval J . We say
that f is of operator P-class on J if

f
(
λA + ( – λ)B

) ≤ f (A) + f (B)

for all A,B ∈ σ (J) and all λ ∈ [, ].

Clearly every nonnegative operator convex function is of operator P-class.

Example  Let f (t) = t–r ( ≤ r ≤ ) be defined on (,∞). It follows from the operator
concavity of tr (≤ r ≤ ) [] and the arithmetic-harmonic mean inequality that

(
λA + ( – λ)B

)–r ≤ (
λAr + ( – λ)Br)– (

by the concavity of tr
)

≤ λA–r + ( – λ)B–r (by the arithmetic-harmonic mean inequality)

≤ A–r + B–r ,

where A,B ∈ σ ((,∞)) and λ ∈ [, ]. Thus f is an operator P-class function on (,∞).

In addition, every operator P-class f on an interval J is of operator Q-class in the sense
that

f
(
λA + ( – λ)B

) ≤ f (A)
λ

+
f (B)
 – λ

for all A,B ∈ σ (J) and λ ∈ (, ); see []. In the next example, we show the converse is not
true, in general.
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Example  The function f (t) =  – t defined on [–
√
,

√
] is of operator Q-class; see [,

Example .]. We put λ = 
 , A =

( 
 
 



)
and B =

( – 
 
 – 



)
. Then f (λA + ( – λ)B) =

(  
 

)
�

f (A) + f (B) =
( 

 
 



)
. Hence f is not of operator P-class.

Example  Let α >  and f be a continuous function on the interval [α, α] into itself. It
follows from

f
(
λA + ( – λ)B

) ≤ α ≤ f (A) + f (B)
(
A,B ∈ σ

(
[α, α]

)
,λ ∈ [, ]

)
that f is of operator P-class on [α, α].

Example  Let g be a nonnegative continuous function on an interval [a,b] and α =
supx,y∈[a,b],t∈[x,y] |g(t) – g(x) – g(y)|. We put f (t) = g(t) + α. Then

f
(
λA + ( – λ)B

)
= g

(
λA + ( – λ)B

)
+ α

≤ (
g(A) + α

)
+

(
g(B) + α

)
= f (A) + f (B),

where A,B ∈ σ ([a,b]) and λ ∈ [, ]. Hence f is an operator P-class function.

Next, we explore some relations between operatorP-class functions and operatormono-
tone functions. In fact, we have the following.

Theorem  If f is an operator P-class function on the interval (,∞) such that
limt→∞ f (t) = , then f is operator decreasing.

Proof Let  < A ≤ B. Fix ε > . We put C = B – A + ε. Let θ > . It follows from
limt→∞ f (t) =  that there existsM >  such that f (t)≤ θ for all t ≥M.Wemay assume that
the spectrum of the strictly positive operator C is contained in [α,β] for some  < α < β . It
follows from limλ→–

λ
–λ

= ∞ that there exists δ >  such that λ
–λ

≥ M
α
for all λ ∈ ( – δ, ).

Hence σ ( λ
–λ

C) ⊆ [M,∞) for all λ ∈ ( – δ, ). Now, by the functional calculus for the pos-
itive operator λ

–λ
C, we have f ( λ

–λ
C) ≤ θ for all λ ∈ ( – δ, ). Thus 〈f ( λ

–λ
C)x,x〉 ≤ θ‖x‖

for all λ ∈ ( – δ, ) and x ∈H. Since λ(B + ε) = λA + ( – λ)( λ
–λ

)C and f is P-class we have

f
(
λ(B + ε)

) ≤ f (A) + f
((

λ

 – λ

)
C

)

for all λ ∈ ( – δ, ). Hence

〈
f
(
λ(B + ε)

)
x,x

〉 ≤ 〈
f (A)x,x

〉
+

〈
f
(

λ

 – λ
C

)
x,x

〉
≤ 〈

f (A)x,x
〉
+ θ‖x‖,

where λ ∈ ( – δ, ) and x ∈ H. As λ → – and then θ → + we obtain 〈f (B + ε)x,x〉 ≤
〈f (A)x,x〉 for all x ∈H. As ε → +, we conclude that f (B)≤ f (A). �

3 Jensen operator inequality for operator P-class functions
In this section, we present a Jensen operator inequality for operator P-class functions. We
start with the following result in which we utilized the well-known technique of [].
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Theorem Let f be an operator P-class function on an interval J ,A ∈ σ (J), and C ∈B(H)
be an isometry. Then

f
(
C∗AC

) ≤ C∗f (A)C. ()

Proof Let X =
( A 
 B

) ∈ B(H ⊕ H) for some B ∈ σ (J) and let U =
( C D
 –C∗

)
and V =( C –D

 C∗
)
, where D =

√
H –CC∗. Now we can easily conclude from the two facts C∗D =√

H –CC∗C =  and DC = C
√
H –C∗C =  that U and V are unitary operators in

B(H⊕H). Further,

U∗XU =

(
C∗AC C∗AD
DAC DAD +CBC∗

)

and

V ∗XV =

(
C∗AC –C∗AD
–DAC DAD +CBC∗

)
.

Using the operator P-class property of f we have

(
f (C∗AC) 

 f (DAD +CBC∗)

)
= f

(
C∗AC 
 DAD +CBC∗

)

= f
(
U∗XU +V ∗XV



)

≤ f
(
U∗XU

)
+ f

(
V ∗XV

)
= 

(
C∗f (A)C 

 Df (A)D +Cf (B)C∗

)
.

Therefore

f
(
C∗AC

) ≤ C∗f (A)C. �

Applying Theorem  we have some inequalities including the subadditivity.

Corollary  Let f be operator P-class on an interval J ,Aj ∈ σ (J) (≤ j ≤ n), and Cj ∈B(H)
(≤ j ≤ n), where

∑n
j=C∗

j Cj = . Then

f

( n∑
j=

C∗
j AjCj

)
≤ 

n∑
j=

C∗
j f (Aj)Cj.

Proof Let

Ã = Ã =

⎛
⎜⎜⎜⎝
A

A

· · ·
An

⎞
⎟⎟⎟⎠ ∈ B(H⊕ · · · ⊕H), C̃ =

⎛
⎜⎜⎜⎜⎝
C

C
...
Cn

⎞
⎟⎟⎟⎟⎠ ∈B(H⊕ · · · ⊕H).
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It follows from C̃∗C̃ =  and () that

f

( n∑
j=

C∗
j AjCj

)
= f

(
C̃∗ÃC̃

) ≤ C̃∗f (Ã)C̃ = 
n∑
j=

C∗
j f (Aj)Cj. �

Corollary  Let f be operator P-class on [,∞) such that f () = , A ∈ σ ([,∞)), and
C ∈ B(H) be a contraction. Then

f
(
C∗AC

) ≤ C∗f (A)C.

Proof For every contraction C ∈ B(H), we put D =
√
H –C∗C. It follows from C∗C +

D∗D = H and () that

f
(
C∗AC

)
= f

(
C∗AC +D∗D

) ≤ f
(
C∗AC

)
+ f

(
D∗D

)
= C∗f (A)C. �

Corollary  Let f be operator P-class on [,∞) such that f () =  and A,B ∈ σ ((,∞))
such that A≤ B. Then

A–f (A) ≤ B–f (B).

Proof Let A,B ∈ σ ((,∞)) such that  < A ≤ B. We put C = B–/A/. Then CC∗ =
B–/AB–/ ≤ H, so C is a contraction. It follows from () that

f (A) = f
(
C∗BC

) ≤ C∗f (B)C = A/B–/f (B)B–/A/.

Therefore

A–f (A) ≤ B–f (B). �

In the following theorem, we obtain the Choi-Davis-Jensen type inequality for operator
P-class functions.

Theorem  Let 	 be a unital positive linear map on B(H), A ∈ σ (J) and f be operator
P-class on an interval J . Then

f
(
	(A)

) ≤ 	
(
f (A)

)
. ()

Proof LetA ∈ σ (J).We put
 the restriction of	 to theC∗-algebra C∗(A, I) generated by I
and A. Then 
 is a unital completely positive map on C∗(A, I). The celebrated Stinespring
dilation theorem [, Theorem ] states that there exist an isometry V : H −→ H and a
unital ∗-homomorphism π : C∗(A, I) −→B(H) such that 
(A) = V ∗π (A)V . Hence

f
(
	(A)

)
= f

(

(A)

)
= f

(
V ∗π (A)V

) ≤ V ∗f
(
π (A)

)
V (by ())

= V ∗π
(
f (A)

)
V = 


(
f (A)

)
= 	

(
f (A)

)
. �

We will show that the constant  is the best possible such one in the following example.
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Example  Let f (t) =  – t for t ∈ [–, ]. Then  ≤ f (t)≤  and

f
(
λA + ( – λ)B

)
=  –

(
λA + ( – λ)B

) ≤  ≤  –A +  – B = f (A) + f (B),

where A,B ∈ σ ([–, ]). Hence f is of operator P-class on [–, ]. Now, consider that the
unital positive map 	 : M → M is defined by 	(A) = tr(A)

 I . Then for the Hermitian
matrix A =

( – 
 

)
we have 	(A) = , f (	(A)) = , f (A) = I , and 	(f (A)) = I . Therefore

f (	(A)) = 	(f (A)). This shows that the coefficient  in () and () is the best.

Example  Consider (the nonnegative increasing function and so) P-class function f (t) =√
t where t ∈ (,∞). Let the unital positive map 
 : M(C) → C be defined by 
(A) =

a with A = (aij)≤i,j≤ and let A =
(  
 

). Then 
(f (A)) =  and f (
(A)) =
√
. Hence

f (
(A))� 
(f (A)). It follows from () that f is not of operator P-class.

We present a Hermite-Hadamard inequality for operator P-class functions in the next
theorem.

Theorem  Let 	 be a unital positive linear map onB(H) and f be operator P-class on J .
Then

f
(

	(A) +	(B)


)
≤ 

∫ 


f
(
λ	(A) + ( – λ)	(B)

)
dλ ≤ 

(
	

(
f (A)

)
+	

(
f (B)

))
,

where A,B ∈ σ (J) and λ ∈ [, ].

Proof Let A,B ∈ σ (J) and λ ∈ [, ]. Then

f
(

	(A) +	(B)


)
= f

(
λ	(A) + ( – λ)	(B) + ( – λ)	(A) + λ	(B)



)

≤ f
(
λ	(A) + ( – λ)	(B)

)
+ f

(
( – λ)	(A) + λ	(B)

)
≤ 

(
f
(
	(A)

)
+ f

(
	(B)

))
. ()

Integrating both sides of () over [, ] we obtain

f
(

	(A) +	(B)


)
≤

∫ 


f
(
λ	(A) + ( – λ)	(B)

)
dλ

+
∫ 


f
(
( – λ)	(A) + λ	(B)

)
dλ

= 
∫ 


f
(
λ	(A) + ( – λ)	(B)

)
dλ

≤ 
(
f
(
	(A)

)
+ f

(
	(B)

))
≤ 

(
	

(
f (A)

)
+	

(
f (B)

))
(by ()). �

4 Some inequalities for P-class functions involving continuous operator fields
LetA be aC∗-algebra of operators acting on aHilbert space and letT be a locally compact
Hausdorff space. A field (At)t∈T of operators inA is called a continuous field of operators
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if the mapping t �→ At is norm continuous on T . If μ(t) is a Radon measure on T and the
function t �→ ‖At‖ is integrable, one can form the Bochner integral

∫
T At dμ(t), which is

the unique element in A such that

ϕ

(∫
T
At dμ(t)

)
=

∫
T

ϕ(At)dμ(t)

for every linear functional ϕ in the norm dualA∗ of A.
Let C(T ,A) denote the set of bounded continuous functions on T with values in A. It

is easy to see that the set C(T ,A) is a C∗-algebra under the pointwise operations and the
norm ‖(At)t∈T‖ = supt∈T ‖At‖; cf. [].
Assume that there is a field (	t)t∈T of positive linear mappings 	t :A −→ B from A to

another C∗-algebra B. We say that such a field is continuous if the mapping t �→ 	t(A)
is continuous for every A ∈ A. If the C∗-algebras are unital and the field t �→ 	t(I) is
integrable with integral I , we say that (	t)t∈T is unital; see [].

Theorem  Let f : J −→ R be an operator P-class function defined on an interval J , and let
A and B be unital C∗-algebras. If (	t)t∈T is a unital field of positive linear mappings 	t :
A−→ B defined on a locally compactHausdorff space T with a boundedRadonmeasureμ,
then

f
(∫

T
	t(At)dμ(t)

)
≤ 

∫
T

	t
(
f (At)

)
dμ(t)

holds for every bounded continuous field (At)t∈T of self-adjoint elements inA with spectra
contained in J .

Proof We consider the unital positive linear map 
 : C(T ,A) −→ B defined by

((At)t∈T ) =

∫
T 	t(At)dμ(t). Let Ã = (At)t∈T ∈ C(T ,A). It follows from σ (Ã) ⊆ J and ()

that

f
(



(
(At)t∈T

))
= f

(

(Ã)

) ≤ 

(
f (Ã)

)
= 


(
f
(
(At)t∈T

))
= 


((
f (At)

)
t∈T

)
. �

In the discrete case, T = {, . . . ,n} in Theorem , we get the following result.

Corollary  Let f : J −→ R be an operator P-class function defined on an interval J , let
Aj ∈ σ (J) (≤ j ≤ n) and 	j (≤ j ≤ n) be unital positive linear maps onB(H). Then

f

( n∑
j=

	j(Aj)

)
≤ 

n∑
j=

	j
(
f (Aj)

)
.
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1. Dragomir, SS, Pečarić, J, Persson, LE: Some inequalities of Hadamard type. Soochow J. Math. 21(3), 335-341 (1995)
2. Dragomir, SS, Pearce, CEM: Quasi-convex functions and Hadamard’s inequality. Bull. Aust. Math. Soc. 57(3), 377-385

(1998)
3. Pearce, CEM: P-Functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240, 92-104

(1999)
4. Sarikaya, MZ, Set, E, Ozdemir, ME: On some new inequalities of Hadamard type involving h-convex functions. Acta

Math. Univ. Comen. 2, 265-272 (2010)
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