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Abstract
We introduce an order in a quotient space of strictly monotone continuous functions
on a real interval and show that a new average function on this quotient space is
order-preserving. We also apply this new order-preserving function to derive a finite
form of Jensen type inequality with negative weights.
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1 Introduction andmain results
This is meant as a continuation of our paper [] related to Jensen’s inequality []. The
reader should refer to the recent paper of József [] on Jensen’s inequality. Further the
paper is related to the notion of quasi-arithmetic means, so the reader should refer to the
recent paper of Janusz [].
Let I be a finite closed interval [m,M] on R and C(I) the space of all continuous real-

valued functions defined on I . Moreover, letC+
sm(I) (resp.C–

sm(I)) be the set of all functions
in C(I) which are strictly monotone increasing (resp. decreasing) on I . Put

Csm(I) = C+
sm(I)∪C–

sm(I).

Then Csm(I) is equal to the space of all strictly monotone continuous functions on I . For
any ϕ,ψ ∈ Csm(I), we write ϕ ∼= ψ if there exist two numbers a,b ∈ R such that ϕ(x) =
aψ(x) + b for all x ∈ I . Then it is clear that ∼= is an equivalence relation in Csm(I). Let
C̃sm(I) be the quotient space of Csm(I) by ∼= and we denote by ϕ̃ the coset of ϕ ∈ Csm(I).
We introduce an order � in C̃sm(I) in the next section (see Theorem ).
Let (�,μ) be a probability space and f a function in L(�,μ) such that f (ω) ∈ I for almost

all ω ∈ �. Then we see that ϕ ◦ f ∈ L(�,μ) for all ϕ ∈ Csm(I) because ϕ is a bounded
continuous function and μ is a finite measure. Put

Mϕ(f ) = ϕ–
(∫

ϕ ◦ f dμ

)
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for each ϕ ∈ Csm(I). Then [, Theorem ] which gives a new interpretation of Jensen’s
inequality is restated as ϕ̃ � ψ̃ ⇒ Mϕ(f ) ≤ Mψ (f ). In this paper, we give a new order-
preserving average function N[I,f ] on the quotient space C̃sm(I), according to this idea. We
also apply this functionN[I,f ] to derive a finite form of Jensen type inequality with negative
weights.
Let ϕ be an arbitrary function of Csm(I). Since ϕ(I) is an interval of R and μ is a proba-

bility measure on �, it follows that

ϕ(m) + ϕ(M) –
∫

ϕ ◦ f dμ ∈ ϕ(I),

and hence we have

ϕ–
(

ϕ(m) + ϕ(M) –
∫

ϕ ◦ f dμ

)
∈ I.

Note that a simple computation implies that if ϕ,ψ ∈ Csm(I) satisfy ϕ̃ = ψ̃ , then

ϕ–
(

ϕ(m) + ϕ(M) –
∫

ϕ ◦ f dμ

)
=ψ–

(
ψ(m) +ψ(M) –

∫
ψ ◦ f dμ

)

holds. Then denote by N[I,f ](ϕ̃) the above value.
In this case, our main result can be stated as follows.

Theorem  N[I,f ] is an order-preserving real-valued function on the quotient space C̃sm(I)
with order �, that is, ϕ̃ � ψ̃ ⇒ N[I,f ](ϕ̃) ≤N[I,f ](ψ̃).

The above theorem easily implies the following result, which is a finite form of Jensen
type inequality with negative weights.

Corollary  Let ϕ,ψ ∈ Csm(I) with ϕ̃ � ψ̃ and t, . . . , tn ∈ R with
∑n

i= ti = ,  < t, tn < ,
and t, . . . , tn– < . Then

ϕ–

( n∑
i=

tiϕ(xi)

)
≤ ψ–

( n∑
i=

tiψ(xi)

)

holds for all x, . . . ,xn ∈ I with x ≤ x, . . . ,xn– ≤ xn.

Finally, we give concrete examples of Corollary .

2 An order in the quotient space C̃sm(I)
Let us start with the following two lemmas.

Lemma  Let ϕ ∈ Csm(I). Then:
(i) ϕ is increasing and convex on I if and only if ϕ– is increasing and concave on ϕ(I).
(ii) ϕ is increasing and concave on I if and only if ϕ– is increasing and convex on ϕ(I).
(iii) ϕ is decreasing and convex on I if and only if ϕ– is decreasing and convex on ϕ(I).
(iv) ϕ is decreasing and concave on I if and only if ϕ– is decreasing and concave on ϕ(I).
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Proof Straightforward. �

Lemma 
(i) If ϕ is a convex function on I and ψ is an increasing convex function on ϕ(I), then

ψ ◦ ϕ is convex on I .
(ii) If ϕ is a convex function on I and ψ is a decreasing concave function on ϕ(I), then

ψ ◦ ϕ is concave on I .
(iii) If ϕ is a concave function on I and ψ is an increasing concave function on ϕ(I), then

ψ ◦ ϕ is concave on I .
(iv) If ϕ is a concave function on I and ψ is a decreasing convex function on ϕ(I), then

ψ ◦ ϕ is convex on I .

Proof Straightforward. �

For any ϕ,ψ ∈ Csm(I), we write ϕ � ψ if any of the following four conditions holds:
(i) ϕ,ψ ∈ C+

sm(I) and ϕ ◦ ψ– is concave on ψ(I).
(ii) ϕ ∈ C–

sm(I), ψ ∈ C+
sm(I) and ϕ ◦ ψ– is convex on ψ(I).

(iii) ϕ,ψ ∈ C–
sm(I) and ϕ ◦ ψ– is convex on ψ(I).

(iv) ϕ ∈ C+
sm(I), ψ ∈ C–

sm(I) and ϕ ◦ ψ– is concave on ψ(I).

Remark Lemma  guarantees that the above ϕ � ψ is a restatement of the concepts ap-
pearing in [, Lemma ].

Lemma  Let ϕ,ϕ′,ψ ,ψ ′ ∈ Csm(I). If ϕ ∼= ϕ′, ψ ∼= ψ ′, and ϕ � ψ , then ϕ′ � ψ ′.

Proof Assume that ϕ ∼= ϕ′, ψ ∼= ψ ′, and ϕ � ψ . Then we must show ϕ′ � ψ ′. Since ϕ ∼= ϕ′,
ψ ∼= ψ ′, we can write ϕ′ and ψ ′ as follows:

ϕ′ = aϕ + b and ψ ′ = cψ + d

for some a,b, c,d ∈ R. Then we have a 
=  and c 
= . Put

ζ (x) = ax + b and η(x) = cx + d

for each x ∈ R. In the case of ϕ,ψ ∈ C+
sm(I) and a, c > , we find that ϕ ◦ ψ– is concave on

ψ(I) because ϕ � ψ . Then ζ ◦ϕ◦ψ– is increasing and concave onψ(I) fromLemma -(iii)
and hence ϕ′ ◦ψ ′– = ζ ◦ϕ◦ψ–◦η– is also concave onψ ′(I) fromLemma-(iii). However,
since ϕ′,ψ ′ ∈ C+

sm(I), we obtain ϕ′ � ψ ′ as required. Moreover, we can easily see that ϕ′ �
ψ ′ holds in the other  cases:

[
ϕ ∈ C+

sm(I),ψ ∈ C–
sm(I),a > , c > 

]
, . . . ,[

ϕ ∈ C–
sm(I),ψ ∈ C–

sm(I),a < , c < 
]
. �

For any ϕ̃, ψ̃ ∈ C̃sm(I), we write ϕ̃ � ψ̃ by the same notation if ϕ � ψ holds. This is well
defined by Lemma . In this case, we have the following.

Theorem  � is an order relation in C̃sm(I).
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Proof We show the theorem by dividing into three steps.
(I) It is evident that � satisfies the reflexivity.
(II) Assume that ϕ̃ � ψ̃ and ψ̃ � ϕ̃. Then ϕ � ψ and ψ � ϕ hold. In the case of ϕ,ψ ∈

C+
sm(I), we find that ϕ ◦ψ– is concave onψ(I) andψ ◦ϕ– is concave on ϕ(I). Sinceψ ◦ϕ–

is increasing and concave on ϕ(I), it follows from Lemma -(ii) that ϕ ◦ ψ– = (ψ ◦ ϕ–)–

is convex on ψ(I). Therefore ϕ ◦ ψ– is affine on ψ(I) and hence ϕ ∼= ψ , that is, ϕ̃ = ψ̃ . By
the same method, we can easily see that ϕ̃ = ψ̃ holds in the other three cases:

[
ϕ ∈ C+

sm(I),ψ ∈ C–
sm(I)

]
,

[
ϕ ∈ C–

sm(I),ψ ∈ C+
sm(I)

]
and

[
ϕ,ψ ∈ C–

sm(I)
]
.

Therefore � satisfies the symmetry law.
(III) Assume that ϕ̃ � ψ̃ and ψ̃ � λ̃. Then ϕ � ψ and ψ � λ hold. In the case of ϕ,ψ ,λ ∈

C+
sm(I), we find that ϕ ◦ ψ– is increasing and concave on ψ(I) and ψ ◦ λ– is concave on

λ(I). Then it follows from Lemma -(iii) that ϕ ◦ λ– = (ϕ ◦ ψ–) ◦ (ψ ◦ λ–) is concave on
λ(I), and hence ϕ � λ, that is, ϕ̃ � λ̃ holds. By the same method, we can easily see that
ϕ̃ � λ̃ holds in the other seven cases:

[
ϕ ∈ C+

sm(I),ψ ∈ C+
sm(I),λ ∈ C–

sm(I)
]
, . . . ,[

ϕ ∈ C–
sm(I),ψ ∈ C–

sm(I),λ ∈ C–
sm(I)

]
.

Therefore � satisfies the transitive law. �

3 Proofs of Theorem 1 and Corollary 1
Let ϕ be an arbitrary function of Csm(I). Then an easy observation implies that

(–ϕ)–(y) = ϕ–(–y) ()

for all y ∈ –ϕ(I) and that

N[I,f ](–̃ϕ) =N[I,f ](ϕ̃). ()

Lemma  Let ϕ ∈ Csm(I). If either ϕ is increasing and concave on I or decreasing and
convex on I , then

N[I,f ](ϕ̃) ≤
∫

ϕ– ◦ (
ϕ(m) + ϕ(M) – ϕ ◦ f )dμ ≤m +M –

∫
f dμ

holds. If either ϕ is increasing and convex on I or decreasing and concave on I , then the
above inequalities are reversed.

Proof (I) Suppose that ϕ is increasing and concave on I . Then ϕ– is increasing and convex
on ϕ(I) by Lemma -(ii), and hence the first inequality in Lemma  follows from Jensen’s
inequality. Put

ϕ	(x) = ϕ–(ϕ(m) + ϕ(M) – ϕ(x)
)
+ x
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for each x ∈ I . Then it follows from Lemma -(i) that ϕ	 is a convex function on I such
that ϕ	(m) = ϕ	(M) =m +M. Therefore we have

ϕ–(ϕ(m) + ϕ(M) – ϕ
(
f (ω)

)) ≤m +M – f (ω) ()

for almost all ω ∈ �. By integrating () with respect to ω, we obtain the second inequality
in Lemma .We next suppose that ϕ is decreasing and convex on I . Then –ϕ is increasing
and concave on I . Therefore the desired inequality follows from (), (), and the above
argument.
(II) Suppose that ϕ is increasing and convex on I . Then ϕ– is increasing and concave on

ϕ(I) by Lemma -(i), and hence the first inequality in Lemma  is reversed from Jensen’s
inequality. Also since ϕ	 is concave on I by Lemma -(iii), it follows that the second in-
equality in Lemma  is reversed from a consideration in (I). Similarly for the decreasing
and concave case. �

Proof of Theorem  Let ϕ̃, ψ̃ ∈ C̃sm(I) with ϕ̃ � ψ̃ , where ϕ,ψ ∈ Csm(I).
(I-i) In the case of ϕ,ψ ∈ C+

sm(I), we find that ϕ ◦ψ– is increasing and concave onψ(I) =
[ψ(m),ψ(M)] because ϕ � ψ . Therefore we have from Lemma 

ψ
(
N[I,f ](ϕ̃)

)
=

(
ψ ◦ ϕ–)(ϕ(m) + ϕ(M) –

∫
ϕ ◦ f dμ

)
=

(
ϕ ◦ ψ–)–((

ϕ ◦ ψ–)(ψ(m)
)
+

(
ϕ ◦ ψ–)(ψ(M)

)
–

∫ (
ϕ ◦ ψ–) ◦ (ψ ◦ f )dμ

)
=N[ψ(I),ψ◦f ]

(
˜ϕ ◦ ψ–

)
≤ ψ(m) +ψ(M) –

∫
ψ ◦ f dμ

=ψ
(
N[I,f ](ψ̃)

)
,

so we obtain N[I,f ](ϕ̃) ≤N[I,f ](ψ̃) since ψ is strictly increasing on I .
(I-ii) In the case of ϕ ∈ C–

sm(I) and ψ ∈ C+
sm(I), we find that ϕ ◦ ψ– is decreasing and

convex on ψ(I) because ϕ � ψ . Then –ϕ,ψ ∈ C+
sm(I) and (–ϕ) ◦ ψ– is increasing and

concave on ψ(I). Therefore we have from (I-i) and ()

N[I,f ](ϕ̃) =N[I,f ](–̃ϕ) ≤N[I,f ](ψ̃).

(I-iii) In the case of ϕ,ψ ∈ C–
sm(I), we find that ϕ ◦ ψ– is increasing and convex on ψ(I)

because ϕ � ψ . Then ϕ ∈ C–
sm(I), –ψ ∈ C+

sm(I), and ϕ ◦ (–ψ)– is decreasing and convex
on –ψ(I) by (). Therefore we have from (I-ii) and ()

N[I,f ](ϕ̃) ≤N[I,f ](–̃ψ) =N[I,f ](ψ̃).

(I-iv) In the case of ϕ ∈ C+
sm(I) andψ ∈ C–

sm(I), we find that ϕ ◦ψ– is decreasing and con-
cave on ψ(I) because ϕ � ψ . Then –ϕ,ψ ∈ C–

sm(I) and –ϕ ◦ ψ– is increasing and convex

http://www.journalofinequalitiesandapplications.com/content/2014/1/450
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on ψ(I). Therefore we have from (I-iii) and ()

N[I,f ](ϕ̃) =N[I,f ](–̃ϕ) ≤N[I,f ](ψ̃).

This completes the proof. �

Remark Let ϕ,ψ ∈ Csm(I). We see from Theorem  and Lemma  that ψ � ϕ and then
N[I,f ](ϕ̃) ≥N[I,f ](ψ̃) if any of the following four conditions holds:

(v) ϕ,ψ ∈ C+
sm(I) and ϕ ◦ ψ– is convex on ψ(I).

(vi) ϕ ∈ C–
sm(I), ψ ∈ C+

sm(I), and ϕ ◦ ψ– is concave on ψ(I).
(vii) ϕ,ψ ∈ C–

sm(I) and ϕ ◦ ψ– is concave on ψ(I).
(viii) ϕ ∈ C+

sm(I), ψ ∈ C–
sm(I), and ϕ ◦ ψ– is convex on ψ(I).

Throughout the remainder of the paper, we assume that � = I and f (x) = x for all x ∈ I .

Proof of Corollary  Let ϕ,ψ ∈ Csm(I) with ϕ � ψ and t, . . . , tn ∈ R with
∑n

i= ti = ,  < t,
tn <  and t, . . . , tn– < . Let x, . . . ,xn ∈ I be such that x ≤ x, . . . ,xn– ≤ xn. Put s =  –
t, s = –t, . . . , sn– = –tn–, sn =  – tn. Then we have

∑n
i= si =  and s, . . . , sn > . So

μ ≡ sδx + · · · + snδxn

is a probability measure on I , where δx denotes the Dirac measure at x ∈ I . Taking [x,xn]
instead of I in Theorem , we obtain

ϕ–

(
ϕ(x) + ϕ(xn) –

n∑
i=

siϕ(xi)

)
≤ ψ–

(
ψ(x) +ψ(xn) –

n∑
i=

siψ(xi)

)
,

which implies the desired inequality

ϕ–

( n∑
i=

tiϕ(xi)

)
≤ ψ–

( n∑
i=

tiψ(xi)

)
.

This completes the proof. �

Remark Let ϕ, ψ be in Csm(I) such that any of (v), (vi), (vii), and (viii) holds. Then
ψ � ϕ holds from Lemma . Therefore if t, . . . , tn ∈ R with

∑n
i= ti = ,  < t, tn < , and

t, . . . , tn– < , then

ϕ–

( n∑
i=

tiϕ(xi)

)
≥ ψ–

( n∑
i=

tiψ(xi)

)

holds from Corollary .

Example  Put ϕ(x) = logx andψ(x) = x for each positive number x > . Then Corollary 
easily implies that

n∏
i=

xtii ≤
n∑
i=

tixi

http://www.journalofinequalitiesandapplications.com/content/2014/1/450
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holds for all t, . . . , tn ∈ R with
∑n

i= ti = ,  < t, tn < , and t, . . . , tn– < , and all pos-
itive numbers x, . . . ,xn with x ≤ x, . . . ,xn– ≤ xn. This is a geometric-arithmetic mean
inequality with negative weights.

Example  Put ϕ(x) = 
x andψ(x) = logx for each positive number x > . Then Corollary 

easily implies that

( n∑
i=

ti
xi

)–

≤
n∏
i=

xtii

holds for all t, . . . , tn ∈ R with
∑n

i= ti = ,  < t, tn < , and t, . . . , tn– < , and all positive
numbers x, . . . ,xn with x ≤ x, . . . ,xn– ≤ xn. This is a harmonic-geometricmean inequal-
ity with negative weights.
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