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1 Introduction
Let I and J be intervals in R. To motivate our work, let us recall the definitions of some
special classes of functions.

Definition  [] A function f : I → R is said to be a Godunova-Levin function or belongs
to the class Q(I) if f is non-negative and

f
(
αx + ( – α)y

) ≤ f (x)
α

+
f (y)
 – α

for all x, y ∈ I and α ∈ (, ).

The class Q(I) was firstly described in [] by Godunova and Levin. Some further prop-
erties of it are given in [, ]. It has been known that non-negative convex and monotone
functions belong to this class of functions.

Definition  [] Let s ∈ (, ) be a fixed real number. A function f : [,∞)→ [,∞) is said
to be an s-convex function (in the second sense) or belongs to the class K

s , if

f
(
αx + ( – α)y

) ≤ αsf (x) + ( – α)sf (y)

for all x, y ∈ I and α ∈ [, ].

An s-convex function was introduced by Breckner [] and a number of properties
and connections with s-convexity (in the first sense) were discussed in []. Of course,
s-convexity means just convexity when s = .
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Definition  [] A function f : I → R is said to be a P-function or belongs to the class
P(I), if f is non-negative and

f
(
αx + ( – α)y

) ≤ f (x) + f (y)

for all x, y ∈ I and α ∈ [, ].

For some results on the class P(I), see [, ].

Definition  [] Let I be a p-convex set. A function f : I → R is said to be a p-convex
function or belongs to the class PC(I), if

f
([

αxp + ( – α)yp
] 
p
) ≤ αf (x) + ( – α)f (y)

for all x, y ∈ I and α ∈ [, ].

Remark  [] An interval I is said to be a p-convex set if [αxp + ( – α)yp]

p ∈ I for all

x, y ∈ I and α ∈ [, ], where p = k +  or p = n
m , n = r + ,m = t + , and k, r, t ∈N .

Definition  [] Let h : J → R be a non-negative and non-zero function. We say that f :
I → R is an h-convex function or that f belongs to the class SX(I), if f is non-negative and

f
(
αx + ( – α)y

) ≤ h(α)f (x) + h( – α)f (y)

for all x, y ∈ I and α ∈ (, ).

The h- and p-convex functions were introduced by Varšanec, Zhang and Wan, and a
number of properties and Jensen’s inequalities of the functions were established (cf. []).
As one can see, the definitions of the P-function, convex, h,p, s-convex, Godunova-Levin
functions have similar forms. This observation leads us to generalize these varieties of
convexity.

2 Definitions and basic results
In this section, we give new definitions and properties of the (p,h)-convex function.
Throughout this paper, we assume that (, )⊆ J , f and h are real non-negative func-
tions defined on I and J , respectively, and the set I is p-convex when f ∈ ghx(p,h, I) or
f ∈ ghv(p,h, I). We first give a definition of the new class of convex functions.

Definition  Let h : J → R be a non-negative and non-zero function.We say that f : I → R
is a (p,h)-convex function or that f belongs to the class ghx(h,p, I), if f is non-negative and

f
([

αxp + ( – α)yp
] 
p
) ≤ h(α)f (x) + h( – α)f (y) (.)

for all x, y ∈ I and α ∈ (, ). Similarly, if the inequality sign in (.) is reversed, then f is
said to be a (p,h)-concave function or belong to the class ghv(h,p, I).
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Remark  It can be obviously seen that if h(α) = α, then all non-negative p-convex and p-
concave functions belong to ghx(h,p, I) and ghv(h,p, I), respectively; if h(α) = α and p = ,
then all non-negative convex functions belong to ghx(h,p, I); if h(α) = 

α
and p = , then

Q(I) = ghx(h,p, I); if h(α) = αs, s ∈ (, ), and p = , then K
s ⊆ ghx(h,p, I); if h(α) =  and

p = , then P(I) ⊆ ghx(h,p, I), and if p = , then SX(I) ⊆ ghx(h,p, I).

Example  Let hk(α) = αk , where k ≤  and α > . If f is a function defined as f (x) = xp,
where p is an odd number and x ≥ , we then have

f
([

αxp + ( – α)yp
] 
p
) ≤ αf (x) + ( – α)f (y) ≤ hk(α)f (x) + hk( – α)f (y),

and hence, f belongs to ghx(hk ,p, I).

Next, we discuss some interesting properties of (p,h)-convex (concave) functions, which
include linearity, product, composition properties, and an ordered property of h and p. In
addition, we give some interesting properties of the (p,h)-convex function, when h is a
super(sub)-multiplicative function.

Property  If f , g ∈ ghx(h,p, I) and λ > , then f + g,λf ∈ ghx(h,p, I). Similarly, if f , g ∈
ghv(h,p, I) and λ > , then f + g,λf ∈ ghv(h,p, I).

Proof The proof immediately follows from the definitions of the classes ghx(h,p, I) and
ghv(h,p, I). �

Property  Let h and h be non-negative functions defined on an interval J with
h ≤ h in (, ). If f ∈ ghx(h,p, I), then f ∈ ghx(h,p, I). Similarly, if f ∈ ghv(h,p, I), then
f ∈ ghv(h,p, I).

Proof If f ∈ ghx(h,p, I), then for any x, y ∈ I and α ∈ (, ) we have

f
([

αxp + ( – α)yp
] 
p
) ≤ h(α)f (x) + h( – α)f (y)

≤ h(α)f (x) + h( – α)f (y),

and hence, f ∈ ghx(h,p, I). �

Property  Let f ∈ ghx(h,p, I).
(a) For I ⊆ (, ], if f is monotone increasing (monotone decreasing), and p ≥ p >  or

p ≤ p < , and (p ≥ p >  or p ≤ p < ), then f ∈ ghx(h,p, I).
(b) For I ⊆ [,∞), if f is monotone increasing (monotone decreasing), and p ≥ p >  or

p ≤ p < , and (p ≥ p >  or p ≤ p < ), then f ∈ ghx(h,p, I).
Let f ∈ ghv(h,p, I).
(c) For I ⊆ (, ], if f is monotone increasing (monotone decreasing), and p ≥ p >  or

p ≤ p < , and (p ≥ p >  or p ≤ p < ), then f ∈ ghv(h,p, I).
(d) For I ⊆ [,∞), if f is monotone increasing (monotone decreasing), and p ≥ p >  or

p ≤ p < , and (p ≥ p >  or p ≤ p < ), then f ∈ ghv(h,p, I).

http://www.journalofinequalitiesandapplications.com/content/2014/1/45
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Proof (a) Setting g(p) = (αxp + ( – α)yp)

p , we have

g ′(p) =

p
(
αxp + ( – α)yp

) 
p–

(
αxp ln(x) + ( – α)yp ln(y)

)
.

When p >  and x, y ∈ (, ], we have g ′(p) < , and so g(p) ≤ g(p). We then obtain

f
(
g(p)

) ≤ f
(
g(p)

) ≤ h(α)f (x) + ( – α)f (y),

since f is monotone increasing and f ∈ ghx(h,p, I). Therefore, we get f ∈ ghx(h,p, I).
The results of (b), (c), and (d) follow by similar arguments as above. �

Property  Let f and g be similarly ordered functions on I , i.e.,

(
f (x) – f (y)

)(
g(x) – g(y)

) ≥  (.)

for all x, y ∈ I . If f ∈ ghx(h,p, I), g ∈ ghx(h,p, I), and h(α) + h( – α) ≤ c for all α ∈ (, ),
where h(t) =max(h(t),h(t)) and c is a fixed positive number, then the product fg belongs
to ghx(ch,p, I). Similarly, let f and g be oppositely ordered, i.e.,

(
f (x) – f (y)

)(
g(x) – g(y)

) ≤ 

for all x, y ∈ I . If f ∈ ghv(h,p, I), g ∈ ghv(h,p, I), and h(α) + h( – α) ≥ c for all α ∈ (, ),
where h(t) =min(h(t),h(t)) and c is a fixed positive number, then the product fg belongs
to ghv(ch,p, I).

Proof We only give a proof for the first part, since the result of the second part of this
theorem follows by a similar argument. By (.), we have

f (x)g(x) + f (y)g(y) ≥ f (x)g(y) + f (y)g(x).

Let α and β be positive numbers such that α + β = . We then obtain

fg
([

αxp + βyp
] 
p
) ≤ (

h(α)f (x) + h(β)f (y)
)(
h(α)g(x) + h(β)g(y)

)
≤ h(α)fg(x) + h(α)h(β)f (x)g(y) + h(α)h(β)f (y)g(x) + h(β)fg(y)

≤ h(α)fg(x) + h(α)h(β)f (x)g(x) + h(α)h(β)f (y)g(y) + h(β)fg(y)

=
(
h(α) + h(β)

)(
h(α)fg(x) + h(β)fg(y)

)
≤ ch(α)fg(x) + ch(β)fg(y),

which completes the proof. �

Definition  [] A function h : I → R is called a super-multiplicative function if

h(xy) ≥ h(x)h(y) (.)

for all x, y ∈ J .

http://www.journalofinequalitiesandapplications.com/content/2014/1/45
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If the inequality sign in (.) is reversed, then h is said to be a sub-multiplicative function,
and if the equality holds in (.), then h is called a multiplicative function.

Example  Let h(x) = cex. If c = , then h is a multiplicative function. If c > , then h is a
sub-multiplicative function, and if  < c < , then h is a super-multiplicative function.

Property  Let I be an interval such that  ∈ I .We then have the following.
(a) If f ∈ ghx(h,p, I), f () = , and h is super-multiplicative, then the inequality

f
([

αxp + βyp
] 
p
) ≤ h(α)f (x) + h(β)f (y) (.)

holds for all x, y ∈ I and all α,β >  such that α + β ≤ .
(b) Let h be a non-negative function with h(α) < 

 for some α ∈ (,  ). If f is a
non-negative function satisfying (.) for all x, y ∈ I and all α,β >  with α + β ≤ ,
then f () = .

(c) If f ∈ ghv(h,p, I), f () = , and h is sub-multiplicative, then the inequality

f
([

αxp + βyp
] 
p
) ≥ h(α)f (x) + h(β)f (y) (.)

holds for all x, y ∈ I and all α,β >  such that α + β ≤ .
(d) Let h be a non-negative function with h(α) > 

 for some α ∈ (,  ). If f is a
non-negative function satisfying (.) for all x, y ∈ I and all α,β >  with α + β ≤ ,
then f () = .

Proof (a) Let α,β > , α + β = γ < , and let a and b be numbers such that a = α
γ
and b = β

γ
.

We then have a + b =  and

f
([

αxp + βyp
] 
p
)
= f

([
aγ xp + bγ yp

] 
p
)

≤ h(a)f
(
γ


p x

)
+ h(b)f

(
γ


p y

)
= h(a)f

([
γ xp + ( – γ )p

] 
p
)
+ h(b)f

([
γ yp + ( – γ )p

] 
p
)

≤ h(a)h(γ )f (x) + h(a)h( – γ )f ()

+ h(b)h(γ )f (y) + h(b)h( – γ )f ()

= h(a)h(γ )f (x) + h(b)h(γ )f (y)

≤ h(aγ )f (x) + h(bγ )f (y) = h(α)f (x) + h(β)f (y).

(b) If f () 	= , then f () > . Setting x = y =  in (.), we get

f ()≤ h(α)f () + h(β)f ().

By setting α = β , where α ∈ (,  ), and dividing both sides of the inequality above by f (),
we obtain h(α)≥  for all α ∈ (,  ), which is a contradiction to the assumption h(α) < 


for some α ∈ (,  ), and so f () = .
The results of (c) and (d) follow by using similar arguments as above, and so we omit the

proofs here. �
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Corollary  Let hs(x) = xs, where s,x > , and let  ∈ I . For all f ∈ ghx(hs,p, I), inequality
(.) holds for all α,β >  with α + β ≤  if and only if f () = . For all f ∈ ghv(hs,p, I),
inequality (.) holds for all α,β >  with α + β ≤  if and only if f () = .

Proof Let α,β > , α + β = γ < , and let a and b be positive numbers such that a = α
γ
and

b = β

γ
. We then have a + b =  and

f
([

αxp + βyp
] 
p
)
= f

([
aγ xp + bγ yp

] 
p
)

≤ asf
(
γ


p x

)
+ bsf

(
γ


p y

)
= asf

([
γ xp + ( – γ )p

] 
p
)
+ bsf

([
γ yp + ( – γ )p

] 
p
)

≤ asγ sf (x) + as( – γ )sf () + bsγ sf (y) + bs( – γ )sf ()

= asγ sf (x) + bsγ sf (y)

= αsf (x) + βsf (y).

Setting x = y = α = β =  in (.), we get f () ≤ , while f () ≥  by the definition of the
(p,h)-convex function, and hence f () = . �

Property  Suppose that hi : Ji → (,∞), i = , , are functions such that h(J)⊆ J and
h(α) + h( – α) ≤  for all α ∈ (, ), and that f : I → [,∞) and g : I → [,∞) are func-
tions with g(I) ⊆ I,  ∈ I, and f () = .
If h is a super-multiplicative function, f ∈ SX(h, I), and f is increasing (decreas-

ing) and g ∈ ghx(h,p, I) (g ∈ ghv(h,p, I)), then the composite function f ◦ g belongs to
ghx(h ◦ h,p, I). If h is a sub-multiplicative function, f ∈ SV (h, I), and f is increasing
(decreasing) and g ∈ ghv(h,p, I) (g ∈ ghx(h,p, I)), then the composite function f ◦ g be-
longs to ghv(h ◦ h,p, I).

Proof If g ∈ ghx(h,p, I) and f is an increasing function, then we have

(f ◦ g)([αxp + ( – α)yp
] 
p
) ≤ f

(
h(α)g(x) + h( – α)g(y)

)
for all x, y ∈ I and α ∈ (, ). Using Property (a) with p = , we obtain

f
(
h(α)g(x) + h( – α)g(y)

) ≤ h
(
h(α)

)
f
(
g(x)

)
+ h

(
h( – α)

)
f
(
g(y)

)
,

which implies that f ◦ g belongs to ghx(h ◦ h,p, I). �

If f is a convex or concave function, then we may give a similar statement on the com-
posite function of f and g .

Property  Let f : I → [,∞) and g : I → [,∞) be functions with g(I)⊆ I. If the func-
tion f is convex and increasing (decreasing), and g ∈ ghx(h,p, I) (g ∈ ghv(h,p, I)) with
h(α) + h( – α) =  for α ∈ (, ), then f ◦ g belongs to ghx(h,p, I). If the function f is concave
and increasing (decreasing), and g ∈ ghv(h,p, I) (g ∈ ghx(h,p, I)) with h(α) + h( – α) = 
for α ∈ (, ), then f ◦ g belongs to ghv(h,p, I).
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Proof If g ∈ ghx(h,p, I) and f is an increasing function, we then have

(f ◦ g)([αxp + ( – α)yp
] 
p
) ≤ f

(
h(α)g(x) + h( – α)g(y)

)
for all x, y ∈ I and α ∈ (, ). Since h(α) + h( – α) =  and f is convex, we obtain

f
(
h(α)g(x) + h( – α)g(y)

) ≤ h(α)f
(
g(x)

)
+ h( – α)f

(
g(y)

)
,

which implies that f ◦ g belongs to ghx(h,p, I). �

3 Schur-type inequalities
In this section, we establish Schur-type inequalities of (p,h)-convex functions.

Theorem  Let h : J → R be a non-negative super-multiplicative function and let f : I → R
be a function such that f ∈ ghx(h,p, I). Then for all x,x,x ∈ I such that x < x < x and
xp – xp ,x

p
 – xp,x

p
 – xp ∈ J , the following inequality holds:

h
(
xp – xp

)
f (x) – h

(
xp – xp

)
f (x) + h

(
xp – xp

)
f (x) ≥ . (.)

If the function h is sub-multiplicative and f ∈ ghv(h,p, I), then the inequality sign in (.) is
reversed.

Proof Let f ∈ ghx(h,p, I) and let x,x,x ∈ I be the numbers stated in this theorem. Then
one can easily see that

xp – xp
xp – xp

,
xp – xp
xp – xp

∈ (, )⊆ J and
xp – xp
xp – xp

+
xp – xp
xp – xp

= .

We also have

h
(
xp – xp

)
= h

(
xp – xp
xp – xp

(
xp – xp

)) ≥ h
(
xp – xp
xp – xp

)
h
(
xp – xp

)

and

h
(
xp – xp

) ≥ h
(
xp – xp
xp – xp

)
h
(
xp – xp

)
.

Setting α = xp–x
p


xp–x
p

, x = x, and y = x in (.), we have xp = αxp + ( – α)yp and

f (x) ≤ h
(
xp – xp
xp – xp

)
f (x) + h

(
xp – xp
xp – xp

)
f (x)

≤ h(xp – xp)
h(xp – xp )

f (x) +
h(xp – xp )
h(xp – xp )

f (x). (.)

Assuming h(xp – xp ) >  and multiplying both sides of the inequality above by h(xp – xp ),
we obtain inequality (.). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/45
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Remark  In fact, if f (x) = xλ, λ ∈ R, h(x) = h–(x) = 
x , p = , and x,x,x ∈ I = (, ), then

inequality (.) gives the Schur inequality, see [, p.].

The following corollary gives a Schur-type inequality for the (p,h)-convex function.

Corollary  If f : I = (, ) → I belongs to the class ghx(h–k ,p, I) and h–k = 
xk , then we have

the inequality

f (x)
(
xp – xp

)k(xp – xp
)k – f (x)

(
xp – xp

)k(xp – xp
)k

+ f (x)
(
xp – xp

)k(xp – xp
)k ≥  (.)

for all x,x,x ∈ I with x < x < x. If f ∈ ghv(h–k ,p, I), then the inequality sign in (.) is
reversed. If k = , p = , and f (x) = xλ, λ ∈ R, then f ∈ ghx(h–, , I) and inequality (.) gives
the Schur inequality.

4 Jensen-type inequalities
In this section, we introduce some Jensen-type inequalities of (p,h)-convex functions.

Theorem Let w, . . . ,wn be positive real numbers with n≥ . If h is a non-negative super-
multiplicative function and if f ∈ ghx(h,p, I) and x, . . . ,xn ∈ I , then we have the inequality

f

([

Wn

n∑
i=

wix
p
i

] 
p
)

≤
n∑
i=

h
(

wi

Wn

)
f (xi), where Wn =

n∑
i=

wi. (.)

If h is sub-multiplicative and f ∈ ghv(h,p, I), then the inequality sign in (.) is reversed.

Proof When n = , inequality (.) holds by (.) with α = w
W

. Assuming inequality (.)
holds for n – , we obtain

f

([

Wn

n∑
i=

wix
p
i

] 
p
)

= f

([
wn

Wn
xpn +

n–∑
i=

wi

Wn
xpi

] 
p
)

= f

([
wn

Wn
xpn +

Wn–

Wn

n–∑
i=

wi

Wn–
xpi

] 
p
)

≤ h
(
wn

Wn

)
f (xn) + h

(
Wn–

Wn

)
f

([ n–∑
i=

wi

Wn–
xpi

] 
p
)

≤ h
(
wn

Wn

)
f (xn) + h

(
Wn–

Wn

) n–∑
i=

h
(

wi

Wn–

)
f (xi)

≤
n∑
i=

h
(

wi

Wn

)
f (xi),

and, hence, the result follows by mathematical induction. �

Remark  For h(α) = α and p = , inequality (.) becomes the classical Jensen inequality.

http://www.journalofinequalitiesandapplications.com/content/2014/1/45
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Theorem  Let w, . . . ,wn be positive real numbers and let (m,M) be an interval in I . If
h : (,∞) → R is a non-negative super-multiplicative function and f ∈ ghx(h,p, I), then for
all x, . . . ,xn ∈ (m,M) we have the inequality

n∑
i=

h
(

wi

Wn

)
f (xi) ≤ f (m)

n∑
i=

h
(

wi

Wn

)
h
(
Mp – xpi
Mp –mp

)

+ f (M)
n∑
i=

h
(

wi

Wn

)
h
(

xpi –mp

Mp –mp

)
. (.)

If h is a non-negative sub-multiplicative function and f ∈ ghv(h,p, I), then the inequality
sign in (.) is reversed.

Proof Setting x =m, x = xi, and x =M in (.), we get the inequalities

f (xi) ≤ h
(
Mp – xpi
Mp –mp

)
f (m) + h

(
xpi –mp

Mp –mp

)
f (M), i = , . . . ,n.

Multiplying both sides of the above inequality with h( wi
Wn

) and adding all inequalities side
by side for i = , . . . ,n, we obtain (.). �

Let K be a finite nonempty set of positive integers and let F be an index set function
defined by

F(K ) = h(WK )f
([


WK

∑
i∈K

wix
p
i

] 
p
)
–

∑
i∈K

h(wi)f (xi), whereWK =
∑
i∈K

wi.

Theorem  Let h : (,∞)→ R be a non-negative function, and let M and K be finite
nonempty sets of positive integers such that M ∩K = ∅. If h is super-multiplicative and
f : I → R belongs to the class ghx(h,p, I), then for wi > , xi ∈ I , i ∈ M ∪ K we have the in-
equality

F(M ∪K ) ≤ F(M) + F(K ). (.)

If h is sub-multiplicative and f ∈ ghv(h,p, I), then the inequality sign in (.) is reversed.

Proof Setting x = [ 
WM

∑
i∈M wix

p
i ]


p , y = [ 

WK

∑
i∈K wix

p
i ]


p , and α = WM

WM∪K in (.), we ob-
tain the inequality

f
([


WM∪K

∑
i∈M∪K

wix
p
i

] 
p
)

≤ h
(

WM

WM∪K

)
f
([


WM

∑
i∈M

wix
p
i

] 
p
)
+ h

(
WK

WM∪K

)
f
([


WK

∑
i∈K

wix
p
i

] 
p
)
.
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Multiplying both sides of the above inequality with h(WM∪K ), we get the inequality

h(WM∪K )f
([


WM∪K

∑
i∈M∪K

wix
p
i

] 
p
)

≤ h(WM)f
([


WM

∑
i∈M

wix
p
i

] 
p
)
+ h(WK )f

([


WK

∑
i∈K

wix
p
i

] 
p
)
.

Subtracting
∑

i∈M∪K h(wi)f (xi) from both sides of the inequality above and using the iden-
tity

∑
i∈M∪K h(wi)f (xi) =

∑
i∈M h(wi)f (xi) +

∑
i∈K h(wi)f (xi), we obtain (.). �

A simple consequence of Theorem  is stated in the following corollary without proof.

Corollary  Let h : (,∞)→ R be a non-negative super-multiplicative function. If wi > ,
i = , . . . ,n, and Mk = {, . . . ,K}, then for f ∈ ghx(h,p, I) we have

F(Mn) ≤ F(Mn–) ≤ · · · ≤ F(M) ≤  (.)

and

F(Mn) ≤ min
≤i<j≤n

{
h(wi +wj)f

([wix
p
i +wjx

p
j

wi +wj

] 
p
)
– h(wi)f (xi) – h(wj)f (xj)

}
. (.)

If h is sub-multiplicative and f ∈ ghv(h,p, I), then the inequality signs in (.) and (.) are
reversed, and min is replaced with max.

Remark  Some results obtained from Theorem  and Corollary  are given in [, p.],
when h(α) = α, p = , and h is a convex or concave function.

5 Hadamard-type inequalities
In this section, we give some Hadamard-type inequalities of (p,h)-convex functions.

Theorem  If f ∈ ghx(h,p, I)∩ L([a,b]) for a,b ∈ I with a < b, then we have


h(  )

f
([

ap + bp



] 
p
)

≤ p
bp – ap

∫ b

a
xp–f (x)dx≤ (

f (a) + f (b)
)∫ 


h(t)dt. (.)

Proof Setting xp = y–a
b–ab

p + b–y
b–aa

p, we get

p
bp – ap

∫ b

a
xp–f (x)dx =


b – a

∫ b

a
f
([

y – a
b – a

bp +
b – y
b – a

ap
] 

p
)
dy.

By using inequality (.) we obtain

f
([

y – a
b – a

bp +
b – y
b – a

ap
] 

p
)

≤ h
(
y – a
b – a

)
f (b) + h

(
b – y
b – a

)
f (a),
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and hence, by integrating the above inequality over [a,b], we have

∫ b

a
f
([

y – a
b – a

bp +
b – y
b – a

ap
] 

p
)
dy ≤ f (b)

∫ b

a
h
(
y – a
b – a

)
dy + f (a)

∫ b

a
h
(
b – y
b – a

)
dy

= (b – a)
(
f (a) + f (b)

)∫ 


h(t)dt,

which gives the second inequality.
Setting y = 

 (a + b) + t, we obtain

∫ 
 (b–a)

– 
 (b–a)

f
([



(
ap + bp

)
+
bp – ap

b – a
t
] 

p
)
dt

=
∫ 

 (b–a)


f
([



(
ap + bp

)
+
bp – ap

b – a
t
] 

p
)
dt

+
∫ 

 (b–a)


f
([



(
ap + bp

)
–
bp – ap

b – a
t
] 

p
)
dt

≥ 
h(/)

∫ 
 (b–a)


f
([



(
ap + bp

)] 
p
)
dt =

b – a
h(/)

f
([



(
ap + bp

)] 
p
)
,

and, hence, the first inequality follows. �

Remark If h(α) = α and p = , then inequality (.) gives the classicalHadamard inequal-
ity.

Theorem  Suppose that f and g are functions such that f ∈ ghx(h,p, I), g ∈ ghx(h,p, I),
fg ∈ L([a,b]), and hh ∈ L([, ]) with a,b ∈ I and a < b.We then have

p
bp – ap

∫ b

a
xp–f (x)g(x)dx≤M(a,b)

∫ 


h(t)h(t)dt

+N(a,b)
∫ 


h(t)h( – t)dt, (.)

where M(a,b) = f (a)g(a) + f (b)g(b) and N(a,b) = f (a)g(b) + f (b)g(a).

Proof Since f ∈ ghx(h,p, I) and g ∈ ghx(h,p, I), we have

f
([
tap + ( – t)bp

] 
p
) ≤ h(t)f (a) + h( – t)f (b),

g
([
tap + ( – t)bp

] 
p
) ≤ h(t)g(a) + h( – t)g(b)

for all t ∈ [, ]. Because f and g are non-negative, we get the inequality

f
([
tap + ( – t)bp

] 
p
)
g
([
tap + ( – t)bp

] 
p
)

≤ h(t)h(t)f (a)g(a) + h( – t)h(t)f (b)g(a) + h(t)h( – t)f (a)g(b)

+ h( – t)h( – t)f (b)g(b).
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Integrating both sides of the above inequality over (, ), we obtain the inequality

∫ 


f
([
tap + ( – t)bp

] 
p
)
g
([
tap + ( – t)bp

] 
p
)
dt

≤ f (a)g(a)
∫ 


h(t)h(t)dt + f (b)g(a)

∫ 


h( – t)h(t)dt

+ f (a)g(b)
∫ 


h(t)h( – t)dt + f (b)g(b)

∫ 


h( – t)h( – t)dt.

Setting x = [tap + ( – t)bp]

p , we get

p
bp – ap

∫ b

a
xp–f (x)g(x)dx≤M(a,b)

∫ 


h(t)h(t)dt +N(a,b)

∫ 


h(t)h( – t)dt.

�

Theorem  Let f ∈ ghx(h,p, I), g ∈ ghx(h,p, I) be functions such that fg ∈ L([a,b]) and
hh ∈ L([, ]), and let a,b ∈ I with a < b.We then have


h(  )h(


 )
f
([

ap + bp



] 
p
)
g
([

ap + bp



] 
p
)
–

p
bp – ap

∫ b

a
xp–f (x)g(x)dx

≤M(a,b)
∫ 


h(t)h( – t)dt +N(a,b)

∫ 


h(t)h(t)dt. (.)

Proof Since ap+bp
 = tap+(–t)bp

 + (–t)ap+tbp
 , we have

f
([

ap + bp



] 
p
)
g
([

ap + bp



] 
p
)

= f
([

tap + ( – t)bp


+
( – t)ap + tbp



] 
p
)
g
([

tap + ( – t)bp


+
( – t)ap + tbp



] 
p
)

= h
(



)[
f
([
tap + ( – t)bp

] 
p
)
+ f

([
( – t)ap + tbp

] 
p
)]

× h
(



)[
g
([
tap + ( – t)bp

] 
p
)
+ g

([
( – t)ap + tbp

] 
p
)]

≤ h
(



)
h

(



)[
f
([
tap + ( – t)bp

] 
p
)
g
([
tap + ( – t)bp

] 
p
)]

+ h
(



)
h

(



)[
f
([
( – t)ap + tbp

] 
p
)
g
([
( – t)ap + tbp

] 
p
)]

+ h
(



)
h

(



)[
h(t)f (a) + h( – t)f (b)

][
h( – t)g(a) + h(t)g(b)

]

+ h
(



)
h

(



)[
h( – t)f (a) + h(t)f (b)

][
h(t)g(a) + h( – t)g(b)

]

= h
(



)
h

(



)[
f
([
tap + ( – t)bp

] 
p
)
g
([
tap + ( – t)bp

] 
p
)]

+ h
(



)
h

(



)[
f
([
( – t)ap + tbp

] 
p
)
g
([
( – t)ap + tbp

] 
p
)]
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+ h
(



)
h

(



)[(
h(t)h( – t) + h( – t)h(t)

)
M(a,b)

]

+ h
(



)
h

(



)[(
h(t)h(t) + h( – t)h( – t)

)
N(a,b)

]
.

Integrating the above inequality over [, ], we obtain


h(  )h(


 )
f
([

ap + bp



] 
p
)
g
([

ap + bp



] 
p
)
–

p
bp – ap

∫ b

a
xp–f (x)g(x)dx

≤M(a,b)
∫ 


h(t)h( – t)dt +N(a,b)

∫ 


h(t)h(t)dt. �

Theorem  Let f ∈ ghx(h,p, I) and g ∈ ghx(h,p, I) be functions such that fg ∈ L([a,b]),
hh ∈ L([, ]), and let a,b ∈ I with a < b.We then have the inequality

p

(bp – ap)

∫ b

a

∫ b

a

∫ 


xp–yp–f

([
txp + ( – t)yp

] 
p
)
g
([
txp + ( – t)yp

] 
p
)
dxdydt

≤ p
bp – ap

∫ 


h(t)h(t)dt

∫ b

a
xp–f (x)g(x)dx

+
∫ 


h(t)dt

∫ 


h(t)dt

∫ 


h(t)h( – t)dt

[
M(a,b) +N(a,b)

]
. (.)

Proof Since f ∈ ghx(h,p, I) and g ∈ ghx(h,p, I), we have

f
([
txp + ( – t)yp

] 
p
) ≤ h(t)f (x) + h( – t)f (y),

g
([
txp + ( – t)yp

] 
p
) ≤ h(t)g(x) + h( – t)g(y)

for all t ∈ [, ]. Because f and g are non-negative, we get the inequality

f
([
txp + ( – t)yp

] 
p
)
g
([
txp + ( – t)yp

] 
p
)

≤ h(t)h(t)f (x)g(x) + h( – t)h(t)f (y)g(x) + h(t)h( – t)f (x)g(y)

+ h( – t)h( – t)f (y)g(y).

Multiplying both sides of the above inequality with pxp–yp–
(bp–ap) and integrating the result

over [a,b] and [, ], we obtain the inequality

p

(bp – ap)

∫ b

a

∫ b

a

∫ 


xp–yp–f

([
txp + ( – t)yp

] 
p
)
g
([
txp + ( – t)yp

] 
p
)
dxdydt

≤
∫ 


h(t)h(t)dt

[
p

(bp – ap)

(∫ b

a
xp–f (x)g(x)dx

∫ b

a
yp– dy

+
∫ b

a
yp–f (y)g(y)dy

∫ b

a
xp– dx

)]

+ 
∫ 


h(t)h( – t)dt

[
p

(bp – ap)

∫ b

a
xp–f (x)dx

∫ b

a
yp–f (y)dy

]
.
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By (.), we have the inequality

p

(bp – ap)

∫ b

a

∫ b

a

∫ 


xp–yp–f

([
txp + ( – t)yp

] 
p
)
g
([
txp + ( – t)yp

] 
p
)
dxdydt

≤ p
bp – ap

∫ 


h(t)h(t)dt

∫ b

a
xp–f (x)g(x)dx

+
∫ 


h(t)dt

∫ 


h(t)dt

∫ 


h(t)h( – t)dt

[
M(a,b) +N(a,b)

]
. �

Theorem  Let f ∈ ghx(h,p, I), g ∈ ghx(h,p, I) be functions such that fg ∈ L([a,b]),
hh ∈ L([, ]), and let a,b ∈ I with a < b.We then have the inequality

∫ b

a

∫ 


xp–f

([
txp + ( – t)

ap + bp



] 
p
)
g
([

txp + ( – t)
ap + bp



] 
p
)
dt dx

≤
∫ 


h(t)h(t)dt

∫ b

a
xp–f (x)g(x)dx +

bp – ap

p
[
M(a,b) +N(a,b)

]

×
[
h

(



)
h

(



)∫ 


h(t)h(t)dt

+
[
h

(



)∫ 


h(t)dt + h

(



)∫ 


h(t)dt

]∫ 


h(t)h( – t)dt

]
. (.)

Proof Since f ∈ ghx(h,p, I) and g ∈ ghx(h,p, I), we have the inequalities

f
([

txp + ( – t)
ap + bp



] 
p
)

≤ h(t)f (x) + h( – t)f
([

ap + bp



] 
p
)
,

g
([

txp + ( – t)
ap + bp



] 
p
)

≤ h(t)g(x) + h( – t)g
([

ap + bp



] 
p
)

for all t ∈ [, ]. Because f and g are non-negative, we get the inequality

f
([

txp + ( – t)
ap + bp



] 
p
)
g
([

txp + ( – t)
ap + bp



] 
p
)

≤ h(t)h(t)f (x)g(x) + h( – t)h(t)f
([

ap + bp



] 
p
)
g(x)

+ h(t)h( – t)f (x)g
([

ap + bp



] 
p
)

+ h( – t)h( – t)f
([

ap + bp



] 
p
)
g
([

ap + bp



] 
p
)
.

Multiplying both sides of the inequality above with xp– and integrating the result over
[a,b] and [, ], we obtain

∫ b

a

∫ 


xp–f

([
txp + ( – t)

ap + bp



] 
p
)
g
([

txp + ( – t)
ap + bp



] 
p
)
dt dx

≤
∫ 


h(t)h(t)dt

[∫ b

a
xp–f (x)g(x)dx +

bp – ap

p
f
([

ap + bp



] 
p
)
g
([

ap + bp



] 
p
)]
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+
∫ 


h(t)h( – t)dt

[
g
([

ap + bp



] 
p
)∫ b

a
xp–f (x)dx

+ f
([

ap + bp



] 
p
)∫ b

a
xp–g(x)dx

]
.

By inequality (.), we have

∫ b

a

∫ 


xp–f

([
txp + ( – t)

ap + bp



] 
p
)
g
([

txp + ( – t)
ap + bp



] 
p
)
dt dx

≤
∫ 


h(t)h(t)dt

[∫ b

a
xp–f (x)g(x)dx

+
bp – ap

p
h

(



)(
f (a) + f (b)

)
h

(



)(
g(a) + g(b)

)]

+
∫ 


h(t)h( – t)dt

bp – ap

p
h

(



)(
f (a) + f (b)

)(
g(a) + g(b)

)∫ 


h(t)dt

+
∫ 


h(t)h( – t)dt

bp – ap

p
h

(



)(
f (a) + f (b)

)(
g(a) + g(b)

)∫ 


h(t)dt

=
∫ 


h(t)h(t)dt

∫ b

a
xp–f (x)g(x)dx +

bp – ap

p
[
M(a,b) +N(a,b)

]

×
[
h

(



)
h

(



)∫ 


h(t)h(t)dt

+
[
h

(



)∫ 


h(t)dt + h

(



)∫ 


h(t)dt

]∫ 


h(t)h( – t)dt

]
. �
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