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Abstract
In this paper, we prove the existence results of solutions for a new class of generalized
quasi-variational-like inequalities (GQVLI) for pseudo-monotone type II operators
defined on compact sets in locally convex Hausdorff topological vector spaces. In
obtaining our results on GQVLI for pseudo-monotone type II operators, we use
Chowdhury and Tan’s generalized version (Chowdhury and Cho in J. Inequal. Appl.
2012:79, 2012) of Ky Fan’s minimax inequality (Fan in Inequalities, vol. III, pp.103-113,
1972) as the main tool.
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1 Introduction
If X is a nonempty set, then we denote by X the family of all nonempty subsets of X and
by F (x) the family of all nonempty finite subsets of X. Let E be a topological vector space
over �, F be a vector space over � and X be a nonempty subset of E. Let 〈·, ·〉 : F ×E → �

be a bilinear functional. Throughout this paper, � denotes either the real field R or the
complex field C.
For each x ∈ E, each nonempty subset A of E and each ε > , let W (x; ε) := {y ∈ F :

|〈y,x〉| < ε} and U(A; ε) := {y ∈ F : supx∈A |〈y,x〉| < ε}. Let σ 〈F ,E〉 be the (weak) topol-
ogy on F generated by the family {W (x; ε) : x ∈ E, ε > } as a subbase for the neigh-
borhood system at  and δ〈F ,E〉 be the (strong) topology on F generated by the family
{U(A; ε) : A is a nonempty bounded subset of E and ε > } as a base for the neighborhood
system at . We note then that F , when equipped with the (weak) topology σ 〈F ,E〉 or the
(strong) topology δ〈F ,E〉, becomes a locally convex topological vector space which is not
necessarily Hausdorff. But, if the bilinear functional 〈·, ·〉 : F × E → � separates points in
F , i.e., for each y ∈ F with y �= , there exists x ∈ E such that 〈y,x〉 �= , then F also becomes
Hausdorff. Furthermore, for any net {yα}α∈� in F and y ∈ F ,
(a) yα → y in σ 〈F ,E〉 if and only if 〈yα ,x〉 → 〈y,x〉 for each x ∈ E;
(b) yα → y in δ〈F ,E〉 if and only if 〈yα ,x〉 → 〈y,x〉 uniformly for each x ∈ A, where A is a

nonempty bounded subset of E.
Suppose that, for the sets X, E and F mentioned above, S : X → X and T : X → F are

two set-valued mappings. We now introduce below a slightly modified definition of the
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generalized quasi-variational inequality in infinite dimensional spaces given by Shih and
Tan in []:

Find ŷ ∈ S(ŷ) and ŵ ∈ T(ŷ) such that

Re〈ŵ, ŷ – x〉 ≤ 

for all x ∈ S(ŷ).
Now, we state the following definition which is a slightly corrected version of the corre-

sponding definition given in []. Please note that there were typos in Definition . in [].

Definition . Let the sets X, E and F and the mappings S and T be as defined above. Let
η : X × X → E be a single-valued mapping and h : X × X → R be a real-valued function.
Then the generalized quasi-variational-like inequality problem is defined as follows: Find
ŷ ∈ S(ŷ) and ŵ ∈ T(ŷ) such that

Re
〈
ŵ,η(ŷ,x)

〉
+ h(ŷ,x)≤ 

for all x ∈ S(ŷ).

For more results related to the generalized quasi-variational-like inequality problems,
we refer to [–] and the references therein.
The following definition given in [] is a slight modification of demi-operators defined

in [] and of pseudo-monotone type II operators defined in [] (see also []).

Definition . Let X be a nonempty subset of a topological vector space E over �, F be a
vector space over � which is equipped with σ 〈F ,E〉-topology, where 〈·, ·〉 : F ×E → � is a
bilinear functional. Let h : X ×X →R, η : X ×X → E and T : X → F be three mappings.
Then T is said to be:
() an (η,h)-pseudo-monotone type II (respectively, a strongly (η,h)-pseudo-monotone

type II) operator if, for each y ∈ X and every net {yα}α∈� in X converging to y
(respectively, weakly to y) with

lim sup
α

[
inf

u∈T(y)
Re

〈
u,η(yα , y)

〉
+ h(yα , y)

]
≤ ,

we have

lim sup
α

[
inf

u∈T(x)
Re

〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

≥ inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

for all x ∈ X ;
() an h-pseudo-monotone type II operator (respectively, a strongly h-pseudo-monotone

type II operator) if T is an (η,h)-pseudo-monotone type II operator with
η(x, y) = x – y and, for some h′ : X →R, h(x, y) = h′(x) – h′(y) for all x, y ∈ X .

Note that, if F = E∗, the topological dual space of E, then the notions of h-pseudo-
monotone type II operators coincide with those in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/449


Chowdhury et al. Journal of Inequalities and Applications 2014, 2014:449 Page 3 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/449

Pseudo-monotone type II operators were first introduced by Chowdhury in [] with
a slight variation in the name of this operator. Later, these operators were renamed as
pseudo-monotone type II operators by Chowdhury in [].
Next, we shall state and prove the following lemma which provides a numerous col-

lection of (η,h)-pseudo-monotone type II and strongly (η,h)-pseudo-monotone type II
operators.

Lemma . Let E be a topological vector space and X be a nonempty bounded subset of E.
Let T : X → E∗ be an operator such that each T(x) is strongly compact. Suppose that h :
X × X → R is a real-valued function such that, for each y ∈ X, h(·, y) is continuous and
h(X × X) is bounded. Let η : X × X → E be a continuous mapping. Suppose further that
the operator T is a continuous mapping from the relative weak topology on X to the weak∗

topology on E∗. Then T is both an (η,h)-pseudo-monotone type II and a strongly (η,h)-
pseudo-monotone type II operator.

Proof Suppose that {yα}α∈� is a net in X and y ∈ X with yα → y (respectively, yα → y
weakly) and that

lim sup
α

[
inf

u∈T(y)
Re

〈
u,η(yα , y)

〉
+ h(yα , y)

]
≤ .

Let x ∈ X be arbitrarily fixed. Then, using the continuity of h(·, y), η and T , we obtain the
following:

lim sup
α

[
inf

u∈T(x)
Re

〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

≥ lim sup
α

[
inf

u∈T(x)
Re

〈
u,η(yα ,x)

〉]
+ lim inf

α
h(yα ,x)

= inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

for all x ∈ X. Consequently, T is both an (η,h)-pseudo-monotone type II and a strongly
(η,h)-pseudo-monotone type II operator. �

The above lemma will, therefore, provide ample examples for our main results in The-
orems . and . given in Section .
In this paper, we obtain some general theorems on solutions for a new class of gener-

alized quasi-variational-like inequalities for pseudo-monotone type II operators defined
on compact sets in topological vector spaces. In obtaining our results, we shall mainly use
the following generalized version of Ky Fan’s minimax inequality [] due to Chowdhury
and Tan which was stated and proved as Theorem . in [] and is a slight modification
of Theorem  in [].

Theorem . Let E be a Hausdorff topological vector space and X be a nonempty convex
subset of E. Let h : X ×X →R and φ : X ×X →R∪{–∞, +∞} be the mappings such that
(a) for each A ∈ F (X) and fixed x ∈ co(A), y → φ(x, y) is lower semi-continuous on

co(A);
(b) for each A ∈F (X) and y ∈ co(A), minx∈A[φ(x, y) + h(y,x)] ≤ ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/449


Chowdhury et al. Journal of Inequalities and Applications 2014, 2014:449 Page 4 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/449

(c) for each fixed x ∈ X , y → h(x, y) is lower semi-continuous and concave on X , and
h(x,x) = ;

(d) for each A ∈F (X) and each pair of points x, y ∈ co(A) such that every net {yα}α∈� in
X converging to y with φ(tx + ( – t)y, yα) + h(yα , tx + ( – t)y) ≤  for all α ∈ � and
all t ∈ [, ], we have φ(x, y) + h(y,x)≤ ;

(e) there exist a nonempty closed and compact subset K of X and x ∈ K such that
φ(x, y) + h(y,x) >  for all y ∈ X \K .

Then there exists ŷ ∈ K such that φ(x, ŷ) + h(ŷ,x) ≤  for all x ∈ X.

Proof For the proof, we refer to []. �

Definition . A function φ : X × X → R ∪ {±∞} is said to be -diagonally concave (in
short, -DCV) in the second argument [] if, for any finite set {x, . . . ,xn} ⊂ X and λi ≥ 
with

∑n
i= λi = , we have

∑n
i= λiφ(y,xi)≤ , where y =

∑n
i= λixi.

Now, we state the following definition given in [].

Definition . Let X, E, F be the sets defined before and T : X → F , η : X × X → E,
g : X → E be mappings.
() The mappings T and η are said to have the -diagonally concave relation (in short,

-DCVR) if the function φ : X ×X →R∪ {±∞} defined by

φ(x, y) = inf
w∈T(x)

Re
〈
w,η(x, y)

〉

is -DCV in y.
() The mappings T and g are said to have the -diagonally concave relation if T and

η(x, y) = g(x) – g(y) have the -DCVR.

The following definition of upper hemi-continuity was given in []. For a more general
definition, we refer to Definition  in [].

Definition . Let E be a topological vector space, X be a nonempty subset of E and
T : X → E∗ . Then T is said to be upper hemi-continuous on X if and only if, for each
p ∈ E, the function fp : X →R∪ {+∞} defined by

fp(z) = sup
u∈T(z)

Re〈u,p〉

for each z ∈ X is upper semi-continuous on X (if and only if, for each p ∈ E, the function
gp : X →R∪ {–∞} defined by

gp(z) = inf
u∈T(z)

Re〈u,p〉

for each z ∈ X is lower semi-continuous on X).

2 Preliminaries
Now, we present some preliminary results in this section. First, we state the following
result which is Lemma  of Shih and Tan in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/449


Chowdhury et al. Journal of Inequalities and Applications 2014, 2014:449 Page 5 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/449

Lemma . Let X be a nonempty subset of a Hausdorff topological vector space E and
S : X → E be an upper semi-continuous map such that S(x) is a bounded subset of E for
each x ∈ X. Then, for each continuous linear functional p on E, the mapping fp : X → R

defined by

fp(y) = sup
x∈S(y)

Re〈p,x〉

is upper semi-continuous, i.e., for each λ ∈ R, the set {y ∈ X : fp(y) = supx∈S(y)Re〈p,x〉 < λ}
is open in X.

The following result is Lemma  of Takahashi in [] (see also Lemma  in []).

Lemma . Let X and Y be topological spaces, f : X →R be non-negative and continuous
and g : Y → R be lower semi-continuous. Then the mapping F : X × Y → R defined by
F(x, y) = f (x)g(y) for all (x, y) ∈ X × Y is lower semi-continuous.

The following result, which was stated and proved as Lemma . in [], follows from
slight modification of Lemma  of Chowdhury and Tan given in [].

Lemma . Let E be a Hausdorff topological vector space over�,A ∈ F (E) and X = co(A),
where co(A) denotes the convex hull of A.Let F be a vector space over� and 〈·, ·〉 : F×E → φ

be a bilinear functional such that 〈·, ·〉 separates points in F .We equip F with the σ 〈F ,E〉-
topology. Suppose that, for each w ∈ F , x → Re〈w,x〉 is continuous. Let η : X × X → E be
continuous. Let T : X → F be upper semi-continuous from X into F such that each T(x)
is σ 〈F ,E〉-compact. Let f : X × X → R be defined by f (x, y) = infw∈T(y)Re〈w,η(y,x)〉 for all
x, y ∈ X. Suppose that 〈·, ·〉 is continuous on the (compact) subset [

⋃
y∈X T(y)] × η(X × X)

of F × E. Then, for each fixed x ∈ X, y → f (x, y) is lower semi-continuous on X.

For the completeness, we include the proof here given in [].

Proof Let λ ∈ R be given and let x ∈ X = co(A) be arbitrarily fixed. Let Aλ = {y ∈ X :
f (x, y) ≤ λ}. Suppose that {yα}α∈� is a net in Aλ and y ∈ co(A) = X such that yα → y.
Then, for each α ∈ �,

λ ≥ f (x, yα) = inf
w∈T(yα )

Re
〈
w,η(yα ,x)

〉
.

Since F is equipped with the σ 〈F ,E〉-topology, for each x ∈ E, the function w → Re〈w,x〉
is continuous. Also, η(yα ,x) → η(y,x) because η(·,x) is continuous. By the σ 〈F ,E〉-
compactness of T(yα), there exists wα ∈ T(yα) such that

λ ≥ inf
w∈T(yα )

Re
〈
w,η(yα ,x)

〉
= Re

〈
wα ,η(yα ,x)

〉
.

Since T is upper semi-continuous from X = co(A) to the σ 〈F ,E〉-topology on F , X is com-
pact, and each T(z) is σ 〈F ,E〉-compact,

⋃
z∈X T(z) is also σ 〈F ,E〉-compact by Proposi-

tion .. of Aubin and Ekeland []. Thus there is a subnet {wα′ }α′∈�′ of {wα}α∈� and
w ∈ ⋃

z∈X T(z) such that wα′ → w in the σ 〈F ,E〉-topology. Again, as T is upper semi-
continuous with the σ 〈F ,E〉-closed values, w ∈ T(y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/449
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Suppose that A = {a,a, . . . ,an} and let t, t, . . . , tn ≥  with
∑n

i= ti =  such that y =∑n
i= tiai. For each α′ ∈ �, let tα′

 , tα′
 , . . . , tα′

n ≥  with
∑n

i= tα
′

i =  such that yα′ =
∑n

i= tα
′

i ai.
Since E is Hausdorff and yα′ → y, we must have tα′

i → ti for each i = , , . . . ,n. Thus

λ ≥ Re
〈
wα′ ,η(yα′ ,x)

〉
= Re

〈
wα′ ,η

( n∑
i=

tα
′

i ai,x

)〉

→ Re

〈
w,η

( n∑
i=

tiai,x

)〉

= Re
〈
w,η(y,x)

〉 ≥ inf
w∈T(y)

Re
〈
w,η(y,x)

〉
= f (x, y), (.)

where (.) is true since η(·,x) is continuous on X and 〈·, ·〉 is continuous on the compact
subset [

⋃
y∈X T(y)] × η(X × X) of F × E. Hence y ∈ Aλ. Thus Aλ is closed in X = co(A)

for each λ ∈ R. Therefore y → f (x, y) is lower semi-continuous on X. This completes the
proof. �

By the slight modification of Lemma . in [], we obtained the following result given
in [] as Lemma ..

Lemma . Let E be a topological vector over φ, X be a nonempty convex subset of E and
F be a vector space over φ with the σ 〈F ,E〉-topology such that, for each w ∈ F , the function
x → Re〈w,x〉 is continuous. Let T : X → F be upper hemi-continuous along line segments
in X. Let η : X × X → E be such that for each fixed y ∈ X, η(·, y) is continuous, and let
h : X×X → R be amapping such that, for each fixed y ∈ X, h(·, y) is lower semi-continuous
on co(A) for each A ∈ F (X) and, for each fixed x ∈ X, h(x, ·) is concave and h(x,x) =  and
T , η have the -DCVR. Suppose that ŷ ∈ X such that infu∈T(x)Re〈u,η(ŷ,x)〉 ≤ h(x, ŷ) for all
x ∈ X. Then

inf
w∈T(ŷ)

Re
〈
w,η(ŷ,x)

〉 ≤ h(x, ŷ)

for all x ∈ X.

We need the following Kneser’s minimax theorem in [] (see also Aubin []).

Theorem . Let X be a nonempty convex subset of a vector space and Y be a nonempty
compact convex subset of a Hausdorff topological vector space. Suppose that f is a real-
valued function on X × Y such that for each fixed x ∈ X, the map y → f (x, y), i.e., f (x, ·) is
lower semi-continuous and convex on Y and, for each fixed y ∈ Y , the mapping x → f (x, y),
i.e., f (·, y) is concave on X. Then

min
y∈Y sup

x∈X
f (x, y) = sup

x∈X
min
y∈Y f (x, y).

3 Generalized quasi-variational-like inequalities
In this section, we prove some existence theorems for the solutions to the generalized
quasi-variational-like inequalities for pseudo-monotone type II operatorsT with compact

http://www.journalofinequalitiesandapplications.com/content/2014/1/449
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domain in locally convex Hausdorff topological vector spaces. Our results extend and/or
generalize the corresponding results in [].
First, we establish the following result.

Theorem . Let E be a locally convex Hausdorff topological vector space over �, X be a
nonempty compact convex subset of E and F be a vector space over�with σ 〈F ,E〉-topology,
where 〈·, ·〉 : F × E → � is a bilinear functional separating points on F such that, for each
w ∈ F , the function x → Re〈w,x〉 is continuous. Let S : X → X , T : X → F , η : X ×X → E
and h : E × E →R be the mappings such that
(a) S is upper semi-continuous such that each S(x) is closed and convex;
(b) h(X ×X) is bounded;
(c) T is an (η,h)-pseudo-monotone type II (respectively, a strongly

(η,h)-pseudo-monotone type II) operator and is upper hemi-continuous along line
segments in X to the σ 〈F ,E〉-topology on F such that each T(x) is σ 〈F ,E〉-compact
and convex and T(X) is δ〈F ,E〉-bounded;

(d) T and η have the -DCVR and η is continuous;
(e) for each fixed y ∈ X , x → h(x, y), i.e., h(·, y) is lower semi-continuous on co(A) for

each A ∈ F (X) and, for each fixed x ∈ X , h(x, ·) and η(x, ·) are concave, η(x, ·) is
affine, h(x,x) =  and η(x,x) = ;

(f ) the set � = {y ∈ X : supx∈S(y)[infu∈T(x)Re〈u,η(y,x)〉 + h(y,x)] > } is open in X ;
(g) for each A ∈F (X) and each y ∈ co(A), there exist x̄ ∈ A and ū ∈ T(x̄) such that

β(y)
[
Re

〈
ū,η(y, x̄)

〉
+ h(y, x̄)

]
+

∑
p∈LF(E)

βp(y)Re〈p, y – x̄〉 ≤ 

for any family {β,βp : p ∈ LF(E)} of non-negative real-valued functions from X into
[, ], where LF(E) denotes the set of all continuous linear functionals on E;

(h) for each A ∈F (X), the bilinear functional 〈·, ·〉 is continuous over the compact subset
[
⋃

y∈co(A)T(y)]× η(co(A)× co(A)) of F × E.
Then there exists a point ŷ ∈ X such that
() ŷ ∈ S(ŷ);
() there exists a point ŵ ∈ T(ŷ) with Re〈ŵ,η(ŷ,x)〉 + h(ŷ,x)≤  for all x ∈ S(ŷ).

Proof Step . Let us first show that there exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[
inf

u∈T(x)
Re

〈
u,η(ŷ,x)

〉
+ h(ŷ,x)

]
≤ .

Now, we prove this by contradiction. So, we assume that, for each y ∈ X, either y /∈ S(y)
or there exists x ∈ S(y) such that

inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x) > ,

that is, for each y ∈ X, either y /∈ S(y) or y ∈ �. If y /∈ S(y), then, by a slight modification of a
separation theorem for convex sets in locally convex Hausdorff topological vector spaces,
there exists a continuous linear functional p on E such that

Re〈p, y〉 – sup
x∈S(y)

Re〈p,x〉 > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/449
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For each y ∈ X, set

γ (y) := sup
x∈S(y)

[
inf

u∈T(x)
Re

〈
u,η(y,x)

〉
+ h(y,x)

]
,

V :=� =
{
y ∈ X : γ (y) > 

}
and, for each continuous linear functional p on E,

Vp :=
{
y ∈ X : Re〈p, y〉 – sup

x∈S(y)
Re〈p,x〉 > 

}
.

Then we have

X = V ∪
⋃

p∈LF(E)
Vp.

Since V is open by hypothesis and each Vp is open in X by Lemma . (Lemma  in
[]), {V,Vp : p ∈ LF(E)} is an open covering for X. Since X is compact, there exist
p,p, . . . ,pn ∈ LF(E) such thatX = V∪⋃n

i=Vpi . For the simplicity of notation, letVi = Vpi
for i = , , . . . ,n. Let {β,β, . . . ,βn} be a continuous partition of unity onX subordinated to
the covering {V,V, . . . ,Vn}. Then β,β, . . . ,βn are continuous non-negative real-valued
functions on X such that βi vanishes on X \Vi for each i = , , . . . ,n and

∑n
i= βi(x) =  for

all x ∈ X. Note that, for each y ∈ X and A ∈ F (X), x → h(x, y), i.e., h(·, y) is continuous on
co(A) (see [], Corollary ..). Define a function φ : X ×X →R by

φ(x, y) = β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]

+
n∑
i=

βi(y)Re〈pi, y – x〉

for all x, y ∈ X. Then we have the following:
(I) Since E is Hausdorff, for each A ∈F (X) and fixed x ∈ co(A), the mapping

y → inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

is continuous on co(A) by Lemma . and the fact that h is continuous on co(A), and so
the mapping

y → β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]

is lower semi-continuous on co(A) by Lemma .. Also, for each fixed x ∈ X,

y →
n∑
i=

βi(y)Re〈pi, y – x〉

is continuous onX. Hence, for eachA ∈F (X) and fixed x ∈ co(A), themapping y → φ(x, y)
is lower semi-continuous on co(A).
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(II) Since β,β, . . . ,βn is a family of continuous non-negative real-valued functions on
X into [, ], by the hypothesis, for each A ∈ F (X) and each y ∈ co(A), there exist x̄ ∈ A
and ū ∈ T(x̄) such that

β(y)
[
Re

〈
ū,η(y, x̄)

〉
+ h(y, x̄)

]
+

n∑
i=

βi(y)Re〈pi, y – x̄〉 ≤ .

Thus we have

min
u∈T(x)

[
β(y)

(
Re

〈
u,η(y, x̄)

〉
+ h(y, x̄)

)]
+

n∑
i=

βi(y)Re〈pi, y – x̄〉 ≤ ,

i.e.,

β(y)
[
min
u∈T(x)

(
Re

〈
u,η(y, x̄)

〉
+ h(y, x̄)

)]
+

n∑
i=

βi(y)Re〈pi, y – x̄〉 ≤ .

Therefore, we have

min
x∈A

[
β(y)

(
min
u∈T(x)

(
Re

〈
u,η(y,x)

〉
+ h(y,x)

))
+

n∑
i=

βi(y)Re〈pi, y – x〉
]

≤ 

and so minx∈A φ(x, y) ≤  for each A ∈F (X) and y ∈ co(A).
(III) Suppose that A ∈ F (X), x, y ∈ co(A) and {yα}α∈� is a net in X converging to y (re-

spectively, weakly to y) with φ(tx + ( – t)y, yα) ≤  for all α ∈ � and all t ∈ [, ].
Case : β(y) = . Since β is continuous and yα → y, we have β(yα) → β(y) = . Note

that β(yα) ≥  for each α ∈ �. Since T(X) is strongly bounded and {yα}α∈� is a bounded
net, it follows that

lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)]
= . (.)

Also, we have

β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]
= .

Thus it follows from (.) that

lim sup
α

[
β(yα) min

u∈T(x)
Re

〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

+
n∑
i=

βi(y)Re〈pi, y – x〉

=
n∑
i=

βi(y)Re〈p, y – x〉

= β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]

+
n∑
i=

βi(y)Re〈p, y – x〉. (.)
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When t = , we have φ(x, yα) ≤  for all α ∈ �, i.e.,

β(yα)
[
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

+
n∑
i=

βi(yα)Re〈p, yα – x〉

≤  (.)

for all α ∈ �. Therefore, by (.), we have

lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)]

+ lim inf
α

[ n∑
i=

βi(yα)Re〈p, yα – x〉
]

≤ lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)

+
n∑
i=

βi(yα)Re〈p, yα – x〉
]

≤ ,

and so

lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)]

+
n∑
i=

βi(y)Re〈p, y – x〉

≤ . (.)

Hence, by (.) and (.), we have φ(x, y) ≤ .
Case : β(y) > . Since β is continuous, β(yα) → β(y). Again since β(y) > , there

exists λ ∈ � such that β(yα) >  for all α ≥ λ.
When t = , we have φ(y, yα) ≤  for all α ∈ �, i.e.,

β(yα)
[
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

]
+

n∑
i=

βi(yα)Re〈p, yα – y〉 ≤ 

for all α ∈ �, and so

lim sup
α

[
β(yα)

(
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

)

+
n∑
i=

βi(yα)Re〈p, yα – y〉
]

≤ . (.)
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Hence, by (.), we have

lim sup
α

[
β(yα)

(
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

)]

+ lim inf
α

[ n∑
i=

βi(yα)Re〈p, yα – y〉
]

≤ lim sup
α

[
β(yα)

(
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

)

+
n∑
i=

βi(yα)Re〈p, yα – y〉
]

≤ .

Since lim infα[
∑n

i= βi(yα)Re〈p, yα – y〉] = , we have

lim sup
α

[
β(yα)

(
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

)]
≤ . (.)

Since β(yα) >  for all α ≥ λ, it follows that

β(y) lim sup
α

[
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

]

= lim sup
α

[
β(yα)

(
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

)]
. (.)

Since β(y) > , by (.) and (.), we have

lim sup
α

[
min
u∈T(y)

Re
〈
u,η(yα , y)

〉
+ h(yα , y)

]
≤ .

Since T is an (η,h)-pseudo-monotone type II (respectively, a strongly (η,h)-pseudo-
monotone type II) operator, we have

lim sup
α

[
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

≥ min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

for all x ∈ X. Since β(y) > , we have

β(y)
[
lim sup

α

min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

≥ β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]
,

and so

β(y)
[
lim sup

α

min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

]

+
n∑
i=

βi(y)Re〈p, y – x〉
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≥ β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]

+
n∑
i=

βi(y)Re〈p, y – x〉. (.)

When t = , we have φ(x, yα) ≤  for all α ∈ �, i.e.,

β(yα)
[
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

]
+

n∑
i=

βi(yα)Re〈p, yα – x〉 ≤ 

for all α ∈ � and so, by (.),

 ≥ lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)

+
n∑
i=

βi(yα)Re〈p, yα – x〉
]

≥ lim sup
α

[
β(yα)

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)]

+ lim inf
α

[ n∑
i=

βi(yα)Re〈p, yα – x〉
]

= β(y)
[
lim sup

α

(
min
u∈T(x)

Re
〈
u,η(yα ,x)

〉
+ h(yα ,x)

)]

+
n∑
i=

βi(y)Re〈p, y – x〉

≥ β(y)
[
min
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

]

+
n∑
i=

βi(y)Re〈p, y – x〉. (.)

Hence we have φ(x, y) ≤ .
(IV) Since X is a compact (respectively, weakly compact) subset of the Hausdorff topo-

logical vector space E, it is also closed. Now, if we take K = X, then, for any x ∈ K = X,
we have φ(x, y) >  for all y ∈ X \K (= X \X = ∅). Thus the hypothesis (d) of Theorem .
is satisfied trivially. (If T is a strongly (η,h)-quasi-pseudo-monotone type II operator, we
equipEwith theweak topology.) Thusφ satisfies all the hypotheses of Theorem..Hence,
by Theorem ., there exists a point ŷ ∈ K = X such that φ(x, ŷ)≤  for all x ∈ X, i.e.,

β(ŷ)
[
min
u∈T(x)

Re
〈
u,η(ŷ,x)

〉
+ h(ŷ,x)

]
+

n∑
i=

βi(ŷ)Re〈pi, ŷ – x〉 ≤  (.)

for all x ∈ X.
If β(ŷ) > , then ŷ ∈ V =� so that γ (ŷ) > . Choose x̂ ∈ S(ŷ) ⊂ X such that

min
u∈T(x̂)

Re
〈
u,η(ŷ, x̂)

〉
+ h(ŷ, x̂) ≥ γ (ŷ)/ > .
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Then it follows that

β(ŷ)
[
min
u∈T(x̂)

Re
〈
u,η(ŷ, x̂)

〉
+ h(ŷ, x̂)

]
> .

If βi(ŷ) >  for each i = , , . . . ,n, then ŷ ∈ Vi and hence

Re〈pi, ŷ〉 > sup
x∈S(ŷ)

Re〈pi,x〉 ≥ Re〈pi, x̂〉

and so Re〈pi, ŷ– x̂〉 > . Then we see that βi(ŷ)Re〈pi, ŷ– x̂〉 >  whenever βi(ŷ) >  for each
i = , , . . . ,n. Since β(ŷ) >  or βi(ŷ) >  for each i = , , . . . ,n, it follows that

φ(x̂, ŷ) = β(ŷ)
[
min
u∈T(x̂)

Re
〈
u,η(ŷ, x̂)

〉
+ h(ŷ, x̂)

]
+

n∑
i=

βi(ŷ)Re〈pi, ŷ – x̂〉 > ,

which contradicts (.). This contradiction proves Step . Hence we have shown that
there exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[
inf

u∈T(x)
Re

〈
u,η(ŷ,x)

〉
+ h(ŷ,x)

]
≤ .

Step . We need to show that

inf
w∈T(ŷ)

Re
〈
w,η(ŷ,x)

〉 ≤ h(x, ŷ)

for all x ∈ S(ŷ).
From Step , we know that ŷ ∈ S(ŷ) which is a convex subset of X and

inf
u∈T(x)

Re
〈
u,η(ŷ,x)

〉 ≤ h(x, ŷ)

for all x ∈ S(ŷ). Hence, applying Lemma ., we obtain

inf
w∈T(ŷ)

Re
〈
w,η(ŷ,x)

〉 ≤ h(x, ŷ)

for all x ∈ S(ŷ).
Step . There exists a point ŵ ∈ T(ŷ) with Re〈ŵ,η(ŷ,x)〉 ≤ h(x, ŷ) for all x ∈ S(ŷ). From

Step , we have

sup
x∈S(ŷ)

[
inf

w∈T(ŷ)
Re

〈
w,η(ŷ,x)

〉
+ h(ŷ,x)

]
≤ , (.)

where T(ŷ) is a σ 〈F ,E〉-compact convex subset of the Hausdorff topological vector space
(F ,σ 〈F ,E〉) and S(ŷ) is a convex subset of X.
Now, we define f : S(ŷ) × T(ŷ) → R by f (x,w) = Re〈w,η(ŷ,x)〉 + h(ŷ,x) for each x ∈ S(ŷ)

and w ∈ T(ŷ). Then, for each fixed x ∈ S(ŷ), the mapping w → f (x,w) is convex and con-
tinuous on T(ŷ) and, for each fixed w ∈ T(ŷ), the mapping x → f (x,w) is concave on S(ŷ).
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So, we can apply Keneser’s minimax theorem (Theorem .) and obtain the following:

min
w∈T(ŷ)

sup
x∈S(ŷ)

[
Re

〈
w,η(ŷ,x)

〉
+ h(ŷ,x)

]
= sup

x∈S(ŷ)
min
w∈T(ŷ)

[
Re

〈
w,η(ŷ,x)

〉
+ h(ŷ,x)

]
.

Hence, by (.), we obtain

min
w∈T(ŷ)

sup
x∈S(ŷ)

[
Re

〈
w,η(ŷ,x)

〉
+ h(ŷ,x)

] ≤ .

Since T(ŷ) is compact, there exists ŵ ∈ T(ŷ) such that

Re
〈
ŵ,η(ŷ,x)

〉
+ h(ŷ,x)≤ 

for all x ∈ S(ŷ). This completes the proof. �

Note that, if for each open subset U of X and for each x, y ∈ U , η(x, y) = x – y and there
exists h′ : X → R such that h(x, y) = h′(x) – h′(y); and if the mapping S : X → X is, in
addition, lower semi-continuous and, for each y ∈ �, T is upper semi-continuous at some
point x in S(y) with infu∈T(x)Re〈u,η(y,x)〉 + h(y,x) > , then the set � in Theorem . is
always open in X, and so we obtain the following result.

Theorem . Let E be a locally convex Hausdorff topological vector space over �, X be a
nonempty compact convex subset of E and F be a vector space over�with σ 〈F ,E〉-topology,
where 〈·, ·〉 : F × E → � is a bilinear functional separating points on F such that, for each
w ∈ F , the function x → Re〈w,x〉 is continuous. Let S : X → X , T : X → F , η : X ×X → E
and h : E × E →R be the mappings such that
(a) S is continuous such that each S(x) is closed and convex;
(b) h(X ×X) is bounded;
(c) T is an (η,h)-pseudo-monotone type II (respectively, a strongly

(η,h)-pseudo-monotone type II) operator and is upper hemi-continuous along line
segments in X to the σ 〈F ,E〉-topology on F such that each T(x) is σ 〈F ,E〉-compact
and convex and T(X) is δ〈F ,E〉-bounded;

(d) T and η have the -DCVR and η is continuous;
(e) for each fixed y ∈ X , x → h(x, y), i.e., h(·, y) is lower semi-continuous on co(A) for

each A ∈ F (X) and, for each fixed x ∈ X , h(x, ·) and η(x, ·) are concave, η(x, ·) is
affine, h(x,x) =  and η(x,x) = ;

(f ) for each open subset U of X and x, y ∈U , η(x, y) = x – y, and there exists h′ : X →R

such that h(x, y) = h′(x) – h′(y);
(g) for each y ∈ � = {y ∈ X : supx∈S(y)[infu∈T(x)Re〈u,η(y,x)〉 + h(y,x)] > }, T is upper

semi-continuous at some point x in S(y) with infu∈T(x)Re〈u,η(y,x)〉 + h(y,x) > ;
(h) for each A ∈F (X) and y ∈ co(A), there exist x̄ ∈ A and ū ∈ T(x̄) such that

β(y)
[
Re

〈
ū,η(y, x̄)

〉
+ h(y, x̄)

]
+

∑
p∈LF(E)

βp(y)Re〈p, y – x̄〉 ≤ 

for any family {β,βp : p ∈ LF(E)} of non-negative real-valued functions from X into
[, ];
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(i) for each A ∈F (X), the bilinear functional 〈·, ·〉 is continuous over the compact subset
[
⋃

y∈co(A)T(y)]× η(co(A)× co(A)) of F × E.
Then there exists a point ŷ ∈ X such that
() ŷ ∈ S(ŷ);
() there exists a point ŵ ∈ T(ŷ) with Re〈ŵ,η(ŷ,x)〉 + h(ŷ,x)≤  for all x ∈ S(ŷ).

The proof is similar to the proof of Theorem. in []. For the completeness, we include
the proof here.

Proof The proof follows from Theorem . if we can show that the set

� =
{
y ∈ X : sup

x∈S(y)

[
inf

u∈T(x)
Re

〈
u,η(y,x)

〉
+ h(y,x)

]
> 

}

is open in X. To show that � is open in X, we start as follows.
Let y ∈ � be an arbitrary point. We show that there exists an open neighborhood N

of y in X such that N ⊂ �. Now, by hypothesis (g), T is upper semi-continuous at some
point x in S(y) with

inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x) > .

Let

α := inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x).

Thus α > . Again, let

W :=
{
w ∈ F : sup

z,z∈X

∣∣〈w, z – z〉
∣∣ < α/

}
.

Then W is a strongly open neighborhood of  in F , and so U := T(x) +W is an open
neighborhood of T(x) in F . Since T is upper semi-continuous at x, there exists an open
neighborhood V of x in X such that T(x) ⊂ U for all x ∈ V. Since the mapping x →
infu∈T(x)Re〈u,η(x,x)〉 + h(x,x) is continuous at x, there exists an open neighborhood
V of x in X such that

∣∣∣ inf
u∈T(x)

Re
〈
u,η(x,x)

〉
+ h(x,x)

∣∣∣ < α



for all x ∈ V. Let V := V ∩ V. Then V is an open neighborhood of x in X. Since
x ∈ V ∩ S(y) �= ∅ and S is lower semi-continuous at y, there exists an open neigh-
borhood N of y in X such that S(y) ∩ V �= ∅ for all y ∈ N. Since the mapping y →
infu∈T(x)Re〈u,η(y, y)〉 + h(y, y) is continuous at y, there exists an open neighborhood
N of y in X such that

∣∣∣ inf
u∈T(x)

Re
〈
u,η(y, y)

〉
+ h(y, y)

∣∣∣ < α



for all y ∈N.
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LetN :=N∩N. ThenN is an openneighborhood of y inX such that for each y ∈N,
we have the following:
(a) S(y)∩V �= ∅ as y ∈N; so we can choose any x ∈ S(y)∩V;
(b) | infu∈T(x)Re〈u,η(y, y)〉 + h(y, y)| < α

 as y ∈N;
(c) T(x) ⊂U = T(x) +W as x ∈ V;
(d) | infu∈T(x)Re〈u,η(x,x)〉 + h(x,x)| < α

 as x ∈ V.
Hence, using property (f ) and (b)-(d), we can obtain the following by omitting the details:

inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

≥ inf
[u∈T(x)+W ]

Re
〈
u,η(y,x)

〉
+ h(y,x)

≥ inf
u∈T(x)

Re
〈
u,η(y,x)

〉
+ h(y,x)

+ inf
u∈W Re

〈
u,η(y,x)

〉
≥ inf

u∈T(x)
Re〈u, y – y〉 + h′(y) – h′(y)

+ inf
u∈T(x)

Re〈u, y – x〉 + h′(y) – h′(x)

+ inf
u∈T(x)

Re〈u,x – x〉 + h′(x) – h′(x)

+ inf
u∈W Re〈u, y – x〉

≥ –
α


+ α –

α


–

α



=
α


> .

Consequently, we have

sup
x∈S(y)

[
inf

u∈T(x)
Re

〈
u,η(y,x)

〉
+ h(y,x)

]
> ,

since x ∈ S(y). Hence y ∈ � for all y ∈N. Therefore, y ∈N ⊂ �. But y was arbitrary.
Consequently,� is open inX. Thus all the hypotheses of Theorem . are satisfied. Hence,
the conclusion follows from Theorem .. This completes the proof. �

Remark .
() Theorems . and . of this paper are further extensions of the results obtained in

[, Theorem .] and in [, Theorem .], respectively, into generalized
quasi-variational-like inequalities of (η,h)-pseudo-monotone type II operators on
compact sets.

() In , Shih and Tan [] obtained results on generalized quasi-variational
inequalities in locally convex topological vector spaces, and their results were
obtained on compact sets where the set-valued mappings were either lower
semi-continuous or upper semi-continuous. Our present paper is another extension
of the original work in [] using (η,h)-pseudo-monotone type II operators on
compact sets.
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() The results in [] were obtained on non-compact sets where one of the set-valued
mappings is a pseudo-monotone type II operator which was defined first in [] and
later renamed as pseudo-monotone type II operator in []. Our present results are
extensions of the results in [] using an extension of the operators defined in []
(and originally in []).
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