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1 Introduction
The concept of blockwise-dependence was introduced by Móricz []. Móricz’s [] and
Gaposhkin [] showed that some properties of sequences of independent random vari-
ables can be applied to sequences consisting of independent blocks. Huan et al. [] ex-
tended the strong laws of large numbers to blockwise-martingale difference arrays in
Banach spaces. Recently, Móricz et al. [] introduced the concept of blockwiseM-depen-
dence for a double array of random variables and established a version of the Kolmogorov
SLLN for double arrays of random variables which are blockwise M-dependent. The re-
sults of Móricz and Stadtmüller and Thalmaier [] were generalized by Stadtmüller and
Thanh [].
The aim of this paper is to investigate inequalities for sums of random fields and the

strong law of large numbers of arbitrary random fields taking values in a Banach space.
In Section , we introduce α-strong adapted random fields, α-strong∗ adapted random
fields, blockwise α-martingale difference fields and prove some useful lemmas. In Sec-
tion , inequalities for sums of α-strong adapted random fields and α-strong∗ adapted
randomfields in p-uniformly smoothBanach spaces are given. Section  contains themain
results including the SLLN for a such blockwise α-martingale difference field taking values
in a p-uniformly smooth Banach space, in which the results of [, , ] will be generalized.
Throughout this paper, the symbol C will denote a generic constant ( < C < ∞) which

is not necessarily the same one in each appearance.

2 Preliminaries and some useful lemmas
Let E be a real separable Banach space. E is said to be p-uniformly smooth ( ≤ p ≤ ) if
there exists a finite positive constant C such that for all E-valued martingales {Sn;  ≤ n≤
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m}

E‖Sm‖p ≤ C
m∑
n=

E‖Sn – Sn–‖p. (.)

Clearly, every real separable Banach space is -uniformly smooth and the real line (the
same as any Hilbert space) is -uniformly smooth. If a real separable Banach space is
p-uniformly smooth for some  < p≤  then it is r-uniformly smooth for all r ∈ [,p).
Let d be a positive integer, the set of all integer d-dimensional lattice points will be de-

noted by Zd and the set of all positive integer d-dimensional lattice points will be de-
noted by Nd . For m = (m, . . . ,md) ∈ Zd , n = (n, . . . ,nd) ∈ Zd , α = (α, . . . ,αd) ∈ Rd de-
note [m,n) =

∏d
i=[mi,ni) is a d-dimensional rectangle, m + n = (m + n, . . . ,md + nd),

m – n = (m – n, . . . ,md – nd), n = (n , . . . , nd ), |nα| = ∏d
i= n

αi
i ,  = (, . . . , ) ∈ Nd . We

write m � n (or n � m) if mi ≤ ni,  ≤ i ≤ d; m ≺ n if m � n, and m 
= n. For x ≥ , let [x]
denote the greatest integer less than or equal to x, we use log+ x to denote the log(x ∨ )
(the logarithms are to base ).
For nondecreasing sequences of positive integers {αi(k),k ≥ } ( ≤ i ≤ d), for n ∈ Nd ,

let α(n) = (α(n), . . . ,αd(nd)).
Let (�,F ,P) be a probability space, E be a real separable Banach space, and B(E) be

the σ -algebra of all Borel sets in E. Let {Xk,n� k �N} be a field of E-valued random
variables and {Fk,n� k �N} be a field of nondecreasing sub-σ -algebras of F with re-
spect to the partial order � on Nd such that Xk is Fk-measurable for all n � k � N, then
{Xk,Fk,n� k �N} is said to be an adapted field.
Let {Xk,Fk,n� k �N} be an adapted field, we adopt the convention that Fk = {∅,�} if

k� n. For k ∈ Zd (k �N – ) set

F i
k = σ

{
Fl : l = (l, . . . , ld), lj ≤ kj (j 
= i) and li = ki

}

for all  ≤ i ≤ d, and

F∗
k = σ

{
F (i)

k : ≤ i≤ d
}
.

The adapted field {Xk,Fk,n� k �N} is said to be α-strong adapted (or strong adapted)
if E(Xk|F∗

l–α(l)) (or E(Xk|F∗
l–)) is F i

k-measurable for all n� l� k �N, and ≤ i≤ d.
The adapted field {Xk,Fk,n� k �N} is said to be α-strong∗ adapted (or strong∗

adapted) if {XkIA,Fk,n� k �N} is α-strong adapted (or strong adapted) for allA ∈ σ (Xk).

Example . Let {Xn,Gn :  ≤ n ≤ N} be an adapted sequence of E-valued random vari-
ables and set

Xk = Xk if k = (k,k, . . . ,k) and Xk =  if k 
= (k,k, . . . ,k);

Gk = Gk if k = (k,k, . . . ,k) and Gk = {∅,�} if k 
= (k,k, . . . ,k).

Let Fk = σ {Gl, l� k} for all k � , then E(XkIA|F∗
k–) = E(XkIA|Gk–) ∈ Gk = F i

k if k =
(k,k, . . . ,k), E(XkIA|F∗

k–) =  if otherwise, for all A ∈ σ (Xk) and � k �N = (N , . . . ,N),
so {Xk,Fk : � k �N} is a strong∗ adapted field.

http://www.journalofinequalitiesandapplications.com/content/2014/1/446
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Example . Let {Yk,n� k �N} be a field of independent random variables. Put Fk =
σ (Yi, i� k) andXk =

∏
i�k Yi, so {Xk,n� k �N} is not a field of independent random vari-

ables. If E|Xk| < ∞ for all n� k �N, then {Xk,Fk,n� k �N} is a strong∗ adapted field.

The adapted field {Xk,Fk,n� k �N} is said to be an α-martingale difference field if
E(Xk|F i

k–α(k)) =  for all n� k �N and  ≤ i≤ d.
When α(k) = (M, . . . ,Md) =M for all n � k �N then the adapted field {Xk,Fk,n� k �

N} is said to be anM-martingale difference field.
When α(k) =  for all n� k �N then the field {Xk,Fk,n� k �N} is amartingale differ-

ence field which was introduced by Huan et al. [] in case d = .

Remark .
• Let {Xk,Fk : n� k �N} be a field of martingale differences, then it is strong adapted,
but it is not necessarily a strong∗ adapted field.

• Let {Xk,k ∈ Zd} be a field of m-dependence random variables with mean . Put
Fk = σ (Xl, l � k) andM = (m, . . . ,m), then E(Xk|F i

k–M) = EXk =  for all k ∈ Zd ,
≤ i ≤ d. Therefore, {Xk,Fk,k ∈ Zd} is a field ofM-martingale differences.

Example. Let {Xk,k ∈ Zd} be a field of independent randomelementswithmean . Put
Fk = σ (Xl, l� k), then E(Xk|F i

k–) =  for all k ∈ Zd ,  ≤ i ≤ d. Therefore, {Xk,Fk,k ∈ Zd}
is a field of martingale differences and a strong∗ adapted field.
Set Yk =

∑
k+–α(k)�l�kXl, then {Yk,Fk,k ∈ Zd} is a field of α-martingale differences.

Example . Let {Yk,k ∈ Nd} be a field of independent random variables with mean .
PutFk = σ (Yl, l� k) andXk =

∏
l�k Yl, so {Xk,k ∈Nd} is not a field of independent random

variables. If E|Xk| < ∞ for all k � , then E(Xk|F i
k–) = , E(XkIA|F∗

k–) = E(XkIA) ∈F i
k for

all A ∈ σ (Xk), k � ,  ≤ i ≤ d. Therefore, {Xk,Fk,k ∈ Nd} is a field of martingale differ-
ences and a strong∗ adapted field.

For strictly increasing sequence of positive integers {ωi(k),k ≥ }, with ωi() =  (≤ i ≤
d), and k ∈Nd , we set

ω(k) =
(
ω(k), . . . ,ωd(kd)

)
, �k =

[
ω(k),ω(k + )

)
.

The adapted field {Xk,Fk,k ∈ Nd} is said to be a blockwise-adapted field (respectively,
blockwise-α-strong adapted, blockwise-α-strong∗ adapted, blockwise-α-martingale differ-
ence field, blockwise-M-martingale difference field, blockwise-martingale difference field)
with respect to the blocks {�k,k ∈ Nd} if for each k ∈ Nd , {Xk,Fk,k ∈ �k} is an adapted
field (respectively, α-strong adapted, α-strong∗ adapted, α-martingale difference field,
M-martingale difference field, martingale difference field).

Example . Let Xk,Fk, Yk as in Example .. Set Zi = Yi–k+ and Gi = σ (Zu;k � u� i),
k � i≺ k+, k �  then {Zn,Gn;n � } is a blockwise-α-martingale differences and a
blockwise-α-strong∗ adapted field with respect to the blocks

∏d
k=[k , k+).

To prove the main result we need the following lemmas.

http://www.journalofinequalitiesandapplications.com/content/2014/1/446


Dang et al. Journal of Inequalities and Applications 2014, 2014:446 Page 4 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/446

Lemma . Let E be a real separable p-uniformly smooth Banach space for some  ≤
p ≤ . Then there exists a positive constant C such that all strong adapted random fields
{Xk,Fk,n� k �N} in E we have

E
[
max
n�k�N

∥∥∥∥
∑
n�i�k

(
Xi – E

(
Xi|F∗

i–
))∥∥∥∥

p]
≤ C

∑
n�k�N

E‖Xk‖p. (.)

Proof We set

Sk =
∑
�i�k

(
Xi – E

(
Xi|F∗

i–
))
.

Firstly, for d = , note that {max≤i≤k ‖Si‖,Fk : n≤ k ≤N} is a nonnegative sub-martingale.
ApplyingDoob’s inequality and by (.), we have (.).We assume that (.) holds for d–,
we wish to show that it holds for d.
Denote k = (k′,kd); k = (n′,nd); N = (N′,Nd); with k′,n′,N′ ∈Nd–; set

Ykd = max
n′≤k′≤N′

∥∥S(k′ ;kd)
∥∥

for each nd ≤ kd ≤Nd , we have

E
(
S(k′ ;kd)|Fd

(k′ ;kd–)
)
= E

(
S(k′ ;kd–)|Fd

(k′ ;kd–)
)

+
∑

n′≤k′≤N′

(
E
(
X(k′ ;kd) – E

(
X(k′ ;kd)|F∗

(k′–,kd–)
)|Fd

(k′ ;kd–)
))

= S(k′ ;kd–);

that means that for each n′ ≤ k′ ≤N′ then {S(k′ ;kd);Fd
(k′ ;kd) : nd ≤ kd ≤ Nd}, we find that

{Ykd ;F(k′ ;kd) : nd ≤ kd ≤ Nd} is a nonnegative sub-martingale sequence. Applying Doob’s
inequality, we obtain

E max
n�(k′ ,kd)�N

‖S(k′ ;kd)‖p = E max
nd≤kd≤Nd

Yp
kd ≤ C · EYp

Nd
= C · E max

n′≤k′≤N′ ‖S(k′ ;Nd)‖p.

Set

Xd–
k′ =

∑
nd≤kd≤Nd

X(k′ ;kd); Fd–
k′ = σ

(
Fd–

(k′ ;kd) : nd ≤ kd ≤Nd
)
.

We note that F i
(k′ ,kd) = (Fd–

k′ )i, F∗
(k′ ,kd) = (Fd–

k′ )∗, for all nd ≤ kd ≤ Nd ,  ≤ i ≤ d, then
{Xd–

k′ ;Fd–
k′ : n′ ≤ k′ ≤N′} is a strong adapted field. Therefore, by the inductive assumption

and inequality (.) we have

E
[

max
n�(k′ ,kd)�N

‖S(k′ ;kd)‖p
]

≤ C ·
∑

n′≤k′≤N′
E
∥∥∥∥

∑
nd≤kd≤Nd

X(k′ ;kd) – E
(
X(k′ ;kd)|F∗

(k′–,kd–)
)∥∥∥∥

p

≤ C
∑

�k�n

E
∥∥Xk – E

(
Xk|F∗

k–
)∥∥p ≤ C

∑
�k�n

E‖Xk‖p. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/446
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Remark . If {Xk;k � } is an E-valued martingale difference field, from Lemma ., we
obtain Lemma . in [] for d =  and Corollary . in [] for d ≥  (with p = q).
We note that if {Xk,Fk : n� k �N} is strong adapted, when d =  then {Xk –E(Xk|F∗

k–),
Fk : n ≤ k ≤ N} is a sequences of martingale differences, but when d >  then {Xk –
E(Xk|F∗

k–),Fk : n� k �N} is not necessarily a field of martingale differences, because
Xk – E(Xk|F∗

k–) may not be Fk-measurable (see [], Example .).

Lemma . Let  < p ≤ , α = (α, . . . ,αd) where α, . . . ,αd are positive constants,  = α =
· · · = αq < αq+ ≤ · · · ≤ αd and X be a random variable taking values in a real separable
Banach space E. Then there exists a positive constant C such that

(i)
∑
n�


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt ≤ C · (E‖X‖ logq–+ ‖X‖ + 

)
,

(ii)
∑
n�


|nα|

∫ ∞

|nα |
P
{‖X‖ ≥ t

}
dt ≤ C · E‖X‖ logq+ ‖X‖.

Proof Denote d(k) =
∑

n···nq=k , by Lemma . of Gut [] we have

∞∑
j=k

d(j)
jp

∼ C
(logk)q–

kp–
.

Hence, we have

∑
n


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt

≤
∑
n


|nα|p +

∑
n


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt

≤ C +C
∑
n


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt

≤ C +C
∞∑

k,nq+,...,nd=

d(k)


kp · npαq+q+ · · ·npαdd

[kn
αq+
q+ ···nαd

d ]∑
j=

E
(‖X‖pI(j ≤ ‖X‖ < j + 

))

≤ C +C
∞∑

nq+,...,nd=


npαq+q+ · · ·npαdd

∞∑
k=

d(k)
kp

[kn
αq+
q+ ···nαd

d ]∑
j=

jp–P
{‖X‖ ≥ j

}

≤ C +C
∞∑

nq+,...,nd=


npαq+q+ · · ·npαdd

[n
αq+
q+ ···nαd

d ]∑
j=

jp–P
{‖X‖ ≥ j

} ∞∑
k=

d(k)
kp

+C
∞∑

nq+,...,nd=


npαq+q+ · · ·npαdd

∞∑
j=[n

αq+
q+ ···nαd

d ]+

jp–P
{‖X‖ ≥ j

} ∞∑
k=[j/n

αq+
q+ ···nαd

d ]

d(k)
kp

≤ C +C
∞∑

nq+,...,nd=


nαq+
q+ · · ·nαd

d

∞∑
j=

(log i)q–P
{‖X‖ ≥ j

} ≤ C +CE‖X‖ logq–+ ‖X‖.
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Now we prove (ii). We have by Lemma  of Stadtmüller and Thalmaier []

g(j) =
∑

≤n···nq·n
αq+
q+ ···nαd

d ≤j

∼ C
j(log j)q–

(q – )!
as j → ∞.

Denote �g(j) = g(j) – g(j – ), we get

∑
n�


|nα|

∫ ∞

|nα |
P
{‖X‖ ≥ t

}
dt

=
∞∑
k=


k
�g(k)

∫ ∞

k
P
{‖X‖ ≥ t

}
dt =

∞∑
k=


k
�g(k)

∞∑
i=k

∫ i+

i
P
{‖X‖ ≥ t

}
dt

≤
∞∑
k=


k
�g(k)

∞∑
j=k

jP
{
j ≤ ‖X‖ < j + 

}
=

∞∑
j=

jP
{
j ≤ ‖X‖ < j + 

} j∑
k=


k
�g(k)

≤ C
∞∑
j=

jP
{
j ≤ ‖X‖ < j + 

} j–∑
k=

(

k
–


k + 

)
k(logk)q–

+C
∞∑
j=

P
{
j ≤ ‖X‖ < j + 

}
j(log j)q–

≤ C
∞∑
j=

jP
{
j ≤ ‖X‖ < j + 

}
(log j)q–

j∑
k=


k

+C
∞∑
j=

P
{
j ≤ ‖X‖ < j + 

}
j(log j)q–

≤ C
∞∑
j=

P
{
j ≤ ‖X‖ < j + 

}
j(log j)q ≤ CE‖X‖ logq+ ‖X‖.

�

Lemma . Let {an,n� } be a nondecreasing field of positive constants such that

 < lim inf
n≺m�n+

am
an

≤ lim sup
n≺m�n+

am
an

≤M. (.)

If {xn,n� } is a field of constants and

lim|n|→∞xn = ,

then

lim|n|→∞

an

sup
k�n

∣∣∣∣
∑
�j�k

aj+xj
∣∣∣∣ = .

Proof First, we prove that


an

∑
�j�n

aj+ ≤ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/446
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By (.), there exist a constant  < δ <  and n such that for all m� n� n then an
am ≤ δ.

We have for all n� 


an

∑
�j�n

aj+ ≤M


an+

∑
�j�n

aj+ ≤M
(

|n| + 
( – δ)d

)

and we have (.).
For every ε > , there exists N >  such that for all |n| ≥N , |xn| ≤ ε

C so that


an

sup
k�n

∣∣∣∣
∑
�j�k

aj+xj
∣∣∣∣ ≤ 

an
sup
|k|<N

∣∣∣∣
∑
|j|�k

aj+xj
∣∣∣∣ + ε.

The conclusion of the lemma follows upon letting |n| → ∞ and then ε → . �

3 Inequalities for sums of adapted random fields
The first theorem characterizes the p-uniformly smooth Banach spaces.

Theorem . Let  ≤ p ≤  and E be a separable Banach space, then the following three
statements are equivalent:

(i) E is p-uniformly smooth.
(ii) There exists a positive constant C such that for all α-strong adapted random fields

{Xk,Fk;n� k �m} in E we have

E
[
max

n�k�m

∥∥∥∥
∑
n�i�k

Xi – E
(
Xi|F∗

i–α(i)
)∥∥∥∥

p]

≤ C
∣∣αp–(m)

∣∣ ∑
n�k�m

E‖Xk‖p. (.)

Proof We first prove the implication ((i) ⇒ (ii)). Ifm – n� α(m), (.) is trivial.
If m – n � α(m), note that if {α(k),k � } is a nondecreasing field of positive, for all

n� i� α(m) + n –  then

{
Xi+(u–)α(m),Fi+uα(m)+α(i+uα(m));n� i + (u – )α(m)�m

}

are α-strong adapted fields. Set

Ai =
{
k;  � kα(m) + i �m – n

}
and Yk = Xk – E

(
Xk|F∗

k–α(k)
)
.

Then we have

E
(

max
n�k�m

∥∥∥∥
∑
n�i�k

Xi – E
(
Xi|F∗

i–α(i)
)∥∥∥∥

p)

≤ E
( ∑
�i�α(m)–

max
k∈Ai

∥∥∥∥
∑

�u�k

Yuα(m)+i+n

∥∥∥∥
)p

≤ αp–(m)
( ∑
�i�α(m)–

Emax
k∈Ai

∥∥∥∥
∑

�u�k

Yuα(m)+i+n

∥∥∥∥
p)

http://www.journalofinequalitiesandapplications.com/content/2014/1/446
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≤ Cαp–(m)
∑

�i�α(m)–

(∑
k∈Ai

E‖Ykα(m)+i+n‖p
)

= Cαp–(m)
∑

n�i�m

E‖Xi‖p by (.), (.)

again establishing (.). If
∨d

i=(mi – ni < αi(mi)), the proof is similar to (.).
((ii) ⇒ (i)) Let {Xn,Gn,n≥ } be a martingale difference sequence in E.
For n′ � , nd ≥ , put

X(n′ ;nd) = Xnd if n′ =  and X(n′ ;nd) =  if n′ � ,

F(n′ ;nd) = Gn′ .

Then {Xn,Fn,n� } is an α-strong adapted field with α(n) =  by (ii); we have (.) and
then E is p-uniformly smooth. �

From now on, let {	i(k),k ≥ } be strictly increasing sequences of positive integers with
	i() =  (≤ i≤ d). Form ∈Nd , n ∈N∗d , we introduce the following notations:

	(n) =
(
	(n), . . . ,	d(nd)

)
, �m = [	(m),	(m + )), �m

n =�n ∩ �m,

Im =
{
n :�m

n 
= ∅}
, cm = card Im,

ϕ(n) =
∞∑
k�

ckI�k (n), φ(n) =max
k�n

ϕ(k),

ϕ(n) =
∑
k�

∣∣α(
	(k + )

)∣∣ · ckI�k (n), φ(n) =max
k�n

ϕ(k),

where I�(k) denotes the indicator function of the set �(k);k ∈Nd .
Let {Xn,Fn;n ∈ Nd} be a blockwise-α-adapted field taking values in the Banach space E

with respect to the blocks {�n;n ∈Nd}, we put

Tn = sup
k∈�n

∥∥∥∥
∑

	(n)�i�k

Xi – E
(
Xi|F∗

i–α(i)
)∥∥∥∥.

Theorem . Let E be a p-uniformly smooth Banach space ( ≤ p ≤ ). Then there exists
a positive constant C such that for all strong blockwise-α-strong adapted random fields
{Xn,Fn;n� } in E with respect to the blocks {�k,k � } and every nondecreasing field of
positive constants {an,n� } we have

∑
n�


ap	(n+)ϕ

p–
 (	(n))

ETp
n ≤ C

∑
n�


apn

E‖Xn‖p. (.)

Proof Form ∈Nd , n ∈ Im, we set

rmn (i) =min
{
j : j ∈ [

ωi(ni),ωi(ni + )
) ∩ [

	i(mi),	i(mi + )
)}
,

rmn =
(
rmn (), . . . , r

m
n (d)

)
, Tm

n = max
u∈�m

n

∥∥∥∥
∑

rmn �i�u

Xi

∥∥∥∥.
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We have Tm ≤ ∑
n∈Im Tn

m form ∈Nd . Applying the Cr inequality, we have

E(Tm)p

ap	(m+)ϕ
p–
 (	(m))

≤ cp–m

ap
	(m+)ϕ(	(m))p–

∑
n∈Im

E
(
Tm
n

)p

≤ cp–n ·C · |αp–(	(m + ))|
(a	(m+))p(ϕ(	(m)))p–

∑
k∈Im

∑
i∈�m

n

E‖Xi‖p (by Lemma .)

=
C

ap	(m+)

∑
i∈�m

E‖Xi‖p ≤ C
∑
i∈�m


api

E‖Xi‖p. �

When α(i) =M for all i � , with a note that ϕ(m) = |M|ϕ(m) for all m � , we have
the following corollary.

Corollary . Let E be a p-uniformly smooth Banach space ( ≤ p≤ ). Then there exists
a positive constant C such that for all strong blockwise-M-adapted random fields {Xn,Fn :
n� } in E with respect to the blocks {�k,k � } and every nondecreasing field of positive
constants {an,n � } we have

∑
n�


ap

	(n+)ϕ
p–
 (	(n))

ETp
n ≤ C

∑
n�


apn

E‖Xn‖p. (.)

Theorem . E is a p-uniformly smooth Banach space ( ≤ p ≤ ), {Xn,Fn,n� } is
a blockwise α-strong∗-adapted random field in E with respect to the blocks {�k,k � }.
{ψn(x) ∈ R+} is a field of a positive Borel function which has the following property:

Cn
uλn

vλn
≤ ψn(u)

ψn(v)
≤Dn

uμn

vμn
for all u ≥ v > , (.)

where Cn ≥ , Dn ≥ , λn ≥ ,  < μn ≤ p. {an,n� } is a nondecreasing field of positive
constants satisfying (.). Then there exists a positive constant C such that for all ε > , we
have

∑
n�

P
(
Tn ≥ εa	(n+)ϕ

(p–)/p


(
	(n)

)) ≤ C
∑
n�

An
Eψn(‖Xn‖)

ψn(an)
, (.)

where An =max{ 
Cn
,Dn}.

Proof For each n� , set

Yn = XnI
(‖Xn‖ ≤ an

)
, Zn = XnI

(‖Xn‖ > an
)
,

Un = sup
k∈�n

∥∥∥∥
∑

	(n)�i�k

Yi – E
(
Yi|F∗

i–α(i)
)∥∥∥∥, Vn = sup

k∈�n

∥∥∥∥
∑

	(n)�i�k

Zi – E
(
Zi|F∗

i–α(i)
)∥∥∥∥.

Since {Xn,Fn,n� } is a blockwise-α-strong∗ adapted field with respect to the blocks
{�m,m � }, it is clear that {Yn,Fn,n� } and {Zn,Fn,n� } are blockwise α-strong
adapted fields with respect to the blocks {�m,m� }. Moreover, for n ∈ Nd ,

Xn + E(Xn|Fn–α(n)) =
(
Yn + E(Yn|Fn–α(n))

)
+

(
Zn + E(Zn|Fn–α(n))

)
.
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Then Tn ≤Un +Vn for all n� . By the Markov inequality, we have

∑
n�

P
(
Tn ≥ εa	(n+)ϕ

(p–)/p


(
	(n)

))

≤ 
εp

∑
n�


ap	(n+)ϕ

p–
 (	(n))

EUp
n +


ε

∑
n�


a	(n+)

EVn. (.)

By Theorem ., we have

∑
n�


ap

	(n+)ϕ
p–
 (	(n))

EUp
n

≤ C
∑
n�

E‖Un‖p
apn

≤ C
∑
n�

E
∥∥∥∥Yn

an

∥∥∥∥
p

≤ C
∑
n�

E
∥∥∥∥Yn

an

∥∥∥∥
μn

≤ C
∑
n�

Dn
Eψn(‖Yn‖)

ψn(an)
≤ C

∑
n�

An
Eψn(‖Xn‖)

ψn(an)
. (.)

Next, by Theorem .,

∑
n�


a	(n+)

EVn

≤ C
∑
n�

E‖Vn‖
an

≤ C
∑
n�

E
∥∥∥∥Zn

an

∥∥∥∥

≤ C
∑
n�

E
∥∥∥∥Zn

an

∥∥∥∥
λn

≤ C
∑
n�


Cn

Eψn(‖Zn‖)
ψn(an)

≤ C
∑
n�

An
Eψn(‖Xn‖)

ψn(an)
. (.)

Then (.), (.), and (.) yield (.). �

Remark. Thefield of functions {ψn,n� }withψn(x) = |x|p satisfies the property (.).

Recall that the field ofE-valued random variables {Xn,n ∈Nd} is said to be stochastically
dominated by an E-valued random variable X if, for some  < C <∞,

P
{‖Xn‖ ≥ x

} ≤ CP
{‖X‖ ≥ x

}

for all n ∈ Nd and x > .

Theorem . Let {Xn,Fn;n ∈ Nd} be a blockwise-α-strong∗ adapted field with respect
to the blocks {�k,k � } in a real separable p-uniformly smooth Banach space E with
 < p ≤ . Let α, . . . ,αd be positive constants satisfyingmin{α, . . . ,αd} = , let q be the num-
ber of integers s such that αs =  = min{α, . . . ,αd}. If {Xn;n ∈ Nd} is stochastically domi-
nated by an E-valued random variable X . Then

∑
n�

P
(
Tn ≥ ε

∣∣	α(n + )
∣∣ϕ(p–)/p


(
	(n)

))
< C

(
E‖X‖ logq+ ‖X‖ + 

)
.
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Proof For each n� , set

Yn = XnI
(‖Xn‖ ≤ ∣∣nα

∣∣), Zn = XnI
(‖Xn‖ >

∣∣nα
∣∣),

Un = sup
k∈�n

∥∥∥∥
∑

	(n)�i�k

Yi – E
(
Yi|F∗

i–α(i)
)∥∥∥∥,

Vn = sup
k∈�n

∥∥∥∥
∑

	(n)�i�k

Zi – E
(
Zi|F∗

i–α(i)
)∥∥∥∥.

Since {Xn,Fn,n� } is a blockwise-α-strong∗ adapted field with respect to the blocks
{�m,m � } then it is clear that {Yn,Fn,n� } and {Zn,Fn,n� } are blockwise-α-strong
adapted fields with respect to the blocks {�m,m� }. Moreover, for n ∈ Nd ,

Xn + E(Xn|Fn–α(n)) =
(
Yn + E(Yn|Fn–α(n))

)
+

(
Zn + E(Zn|Fn–α(n))

)
.

Then Tn ≤Un +Vn for all n� . By the Markov inequality, Theorem ., and Lemma .,
we have

∑
n�

P
(
Tn ≥ ε

∣∣	(n + )
∣∣ϕ(p–)/p


(
	(n)

))

≤ p

εp

∑
n�


|	(n + )|pϕp–

 (	(n))
EUp

n +

ε

∑
n�


|	(n + )|EVn

≤ C
∑
n�


|nα|p E‖Yn‖p +C

∑
n�


|nα|E‖Znα‖

≤ C
∑
n�


|nα|p E‖X‖pI{‖X‖>|nα |} +C

∑
n�


|nα|E‖X‖I{‖X‖≤|nα |}

≤ C
∑
n�

P
{‖X‖ ≥ ∣∣nα

∣∣} +C
∑
n�


|nα|

∫ ∞

|nα |
P
{‖X‖ ≥ t

}
dt

+C
∑
n�


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt

≤ C
∑
n�


|nα|

∫ ∞

|nα |
P
{‖X‖ ≥ t

}
dt +C

∑
n�


|nα|p

∫ |nα |p


P
{‖X‖p ≥ t

}
dt

≤ C
(
E‖X‖ logq+ ‖X‖ + 

)
. �

4 Application to the strong law of large numbers
By applying theorems in Section  we establish some results of strong laws of large num-
bers for fields of blockwise-α-martingale differences with values in a p-uniformly smooth
Banach space.
In the rest of this paper, we denote by {Xn,Fn : n� } the blockwise-α-martingale dif-

ference field with respect to the blocks {�k,k � }. When α(k) =M for all k, it is called a
strong blockwise-M-martingale difference field, and we set

Sk =
∑
�i�k

Xi.
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Let {an,n� } be a nondecreasing field of positive constants such that

 < lim inf
n≺m�n+

a	(m)

a	(n)
≤ lim sup

n≺m�n+

a	(m)

a	(n)
< ∞. (.)

Theorem . Let  ≤ p ≤ , and let E be a separable Banach space, then the following
three statements are equivalent:

(i) E is p-uniformly smooth.
(ii) {Xn,Fn,n� } is a blockwise-α-martingale difference field in E with respect to the

blocks {�k,k � }, {an,n� } is a nondecreasing field of positive constants satisfying
(.). If

∑
n�


an

E‖Xn‖p < ∞, (.)

then we have


anφ

(p–)/p
 (n)

max
�k�n

‖Sk‖ →  a.s. as |n| → . (.)

(iii) {Xn,Fn : n� } is a blockwise-M-martingale difference field in E with respect to the
blocks {�k,k � }, {an,n� } is a nondecreasing sequence of positive constants
satisfying (.). If (.) holds, then we have


an(φ(n))(p–)/p

max
�k�n

‖Sk‖ →  a.s. as |n| → .

Proof ((i) ⇒ (ii)) By (.) and Theorem ., we have

Tn

a	(n+)φ(n)
→  a.s.

For n� , letm�  be such that n ∈�(m), by Lemma ., we have

 ≤ 
an(φ(n))(p–)/p

sup
k�n

∥∥∥∥
∑
�i�k

Xi

∥∥∥∥

≤ 
a	(m)

sup
k�m

∥∥∥∥
∑
�i�k

a	(i+)
Ti

a	(i+)φ(	(i))

∥∥∥∥ →  a.s.

((ii)⇒ (iii))When α(k) =M for all k � , with a note that ϕ(m) = |M|ϕ(m) for allm� .
We have (.).
((iii) ⇒ (i)) Assume that (iii) holds. Let {Xn,Gn,n ≥ } be a martingale difference se-

quence in E such that

∞∑
n=

E‖Xn‖p
np

< ∞.

For n� , put Xn = Xn if ni =  ( ≤ i ≤ d) and Xn =  if there exists a positive integer i
(≤ i≤ d) such that ni ≥ ,

Fn = Gn for all n = (n, . . . ,nd) ∈Nd.
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Then {Xn,Fn,n� } is a blockwise--martingale difference field with respect to the blocks∏d
k=[k , k+) in E and

∑∞
n�

E‖Xn‖p
|n|p =

∑∞
n=

E‖Xn‖p
np < ∞. Let an = |n| for all n� . Then

(.) and (.) hold. Thus, by (iii),

lim|n|→∞


|n|(φ(n))(p–)/p
∑
�i�n

Xi =  a.s.

Note that φ(n) = , n� , and we have

lim|n|→∞


|n|
∑
�i�n

Xi =  a.s.

Taking ni =  for all  ≤ i≤ d and letting ni → ∞, we obtain

lim
n→∞


n

n∑
i=

Xi =  a.s.

Then by Theorem . of Hoffmann-Jørgensen and Pisier [], E is p-uniformly smooth.
�

Remark . In Theorem ., when d = , α(n) = , �k =
∏d

k=[k , k+) we have the result
in Theorem . in []. When d = , α(n) =M, E = R, �k =

∏d
k=[k , k+), {Xn;n� } is a

double of mean zero random variables and we have a part of Theorem . in [].

{Xn,Fn;n � } is said to be a strong∗ blockwise-α-martingale difference field if it is a
blockwise-α-strong∗ adapted field as well as a blockwise-α-martingale difference field.

Theorem . Let ≤ p≤ , and let E be a separable Banach space, then the following two
statements are equivalent:

(i) E is p-uniformly smooth.
(ii) {Xn,Fn,n� } is a strong∗ blockwise-α-martingale difference field in E with respect

to the blocks {�k,k � }, {ψn,n≥ } is a field of positive Borel functions satisfying
(.). If

∑
n�

An
Eψn(‖Xn‖)

ψn(an)
< ∞, (.)

where An =max{ 
Cn
,Dn}, then we have (.).

Proof ((i) ⇒ (ii)) By Theorem . and by the same argument as in the proof of Theo-
rem ..
((ii)⇒ (i)) Assume that (ii) holds. Let {Xn,Gn,n ≥ } be amartingale difference sequence

in E such that
∞∑
n=

E‖Xn‖p
np

< ∞.

For n� , put Xn = Xn if ni =  ( ≤ i ≤ d) and Xn =  if there exists a positive integer i
(≤ i≤ d) such that ni ≥ ,

Fn = Gn for all n = (n, . . . ,nd) ∈Nd.
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Then {Xn,Fn,n� } is a blockwise--martingale difference and strong∗ adapted field with
respect to the blocks

∏d
k=[k , k+) in E and we have

∑∞
n�

E‖Xn‖p
|n|p =

∑∞
n=

E‖Xn‖p
np < ∞. Put

ψn(x) = xp, λn = , μn = p, Cn = , Dn = , n�  and an = |n| for all n � . Thus, by (ii) and
by the same argument as in the proof of Theorem ., we have (i). �

Theorem. Let {Xn,Fn;n � } be a blockwise-α-strong∗ adapted fieldwith respect to the
blocks {�k,k � } in a real separable p-uniformly smooth Banach space E with  < p ≤ .
Let α, . . . ,αd be positive constants satisfying min{α, . . . ,αd} = , let q be the number of
integers s such that αs =  =min{α, . . . ,αd}. If {Xn;n ∈ Nd} is stochastically dominated by
an E-valued random variable X such that E(‖X‖ logq+ ‖X‖) < ∞. Then


|nα|φ(n)

max
�k�n

‖Sk‖ →  a.s. as |n| → . (.)

Proof Using Theorem . and by the same argument as in the proof of Theorem ., we
have (.). �

Remark . In Theorem ., when d = , α(n) = , �k = �k =
∏d

k=[k , k+) we have the
result in Theorem .(ii) in [].
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