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Abstract
In this paper, we introduce and analyze a multi-step hybrid extragradient algorithm
by combining Korpelevich’s extragradient method, the viscosity approximation
method, the hybrid steepest-descent method, Mann’s iteration method and the
gradient-projection method (GPM) with regularization in the setting of
infinite-dimensional Hilbert spaces. It is proven that, under appropriate assumptions,
the proposed algorithm converges strongly to a solution of the convex minimization
problem (CMP) with constraints of several problems: finitely many generalized mixed
equilibrium problems (GMEPs), finitely many variational inclusions, and the fixed point
problem of a strictly pseudocontractive mapping. In the meantime, we also prove the
strong convergence of the proposed algorithm to the unique solution of a
hierarchical variational inequality problem (over the fixed point set of a strictly
pseudocontractive mapping) with constraints of finitely many GMEPs, finitely many
variational inclusions and the CMP. The results presented in this paper improve and
extend the corresponding results announced by many others.
MSC: 49J30; 47H09; 47J20; 49M05

Keywords: hybrid extragradient approach; split feasibility problem; generalized
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H and PC be the metric
projection of H onto C. Let S : C →H be a nonlinear mapping on C. We denote by Fix(S)
the set of fixed points of S and by R the set of all real numbers. A mapping S : C → H
is called L-Lipschitz-continuous (or L-Lipschitzian) if there exists a constant L ≥  such
that

‖Sx – Sy‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then S is called a nonexpansive mapping; if L ∈ [, ) then S is called
a contraction.
A mapping A : C → H is said to be ζ -inverse-strongly monotone if there exists ζ > 

such that

〈Ax –Ay,x – y〉 ≥ ζ‖Ax –Ay‖, ∀x, y ∈ C.
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It is clear that every inverse-strongly monotone mapping is a monotone and Lipschitz-
continuous mapping. A mapping T : C → C is said to be ξ -strictly pseudocontractive if
there exists ξ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ξ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

In this case, we also say that T is a ξ -strict pseudocontraction. In particular, whenever
ξ = , T becomes a nonexpansive mapping from C into itself.
Let A : C → H be a nonlinear mapping on C. We consider the following variational

inequality problem (VIP): find a point x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C,A).
The VIP (.) was first discussed by Lions []. There are many applications of VIP

(.) in various fields; see e.g., [–]. It is well known that, if A is a strongly monotone
and Lipschitz-continuous mapping on C, then VIP (.) has a unique solution. In ,
Korpelevich [] proposed an iterative algorithm for solving the VIP (.) in Euclidean
space Rn:{

yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n≥ ,

with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see e.g., [–] and references therein,
to name but a few.
Consider the following constrained convex minimization problem (CMP):

minimize
{
f (x) : x ∈ C

}
, (.)

where f : C → R is a real-valued convex functional. We denote by Γ the solution set of
the CMP (.). If f is Fréchet differentiable, then the gradient-projection method (GPM)
generates a sequence {xn} via the recursive formula

xn+ = PC
(
xn – λ∇f (xn)

)
, ∀n≥ , (.)

or more generally,

xn+ = PC
(
xn – λn∇f (xn)

)
, ∀n≥ , (.)

where in both (.) and (.), the initial guess x is taken fromC arbitrarily, the parameters,
λ or λn, are positive real numbers, and PC is the metric projection from H onto C. The
convergence of the algorithms (.) and (.) depends on the behavior of the gradient ∇f .
As a matter of fact, it is well known that if ∇f is strongly monotone and Lipschitzian;
namely, there are constants η,L >  satisfying the properties

〈∇f (x) –∇f (y),x – y
〉≥ η‖x – y‖ and

∥∥∇f (x) –∇f (y)
∥∥≤ L‖x – y‖, ∀x, y ∈ C,
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then, for  < λ < η/L, the operator T := PC(I – λ∇f ) is a contraction; hence, the se-
quence {xn} defined by (.) converges in norm to the unique solution of the CMP (.).
More generally, if the sequence {λn} is chosen to satisfy the property  < lim infn→∞ λn ≤
lim supn→∞ λn < η/L, then the sequence {xn} defined by (.) converges in norm to the
uniqueminimizer of the CMP (.). However, if the gradient∇f fails to be strongly mono-
tone, the operator T defined by T := PC(I – λ∇f ) would fail to be contractive; conse-
quently, the sequence {xn} generated by (.) may fail to converge strongly (see Section 
in Xu []).

Theorem . (see [, Theorem .]) Assume the CMP (.) is consistent and let Γ denote
its solution set.Assume the gradient∇f satisfies the Lipschitz condition with constant L > .
Let V : C → C be a ρ-contractionwith coefficient ρ ∈ [, ).Let a sequence {xn} be generated
by the following hybrid gradient-projection algorithm (GPA):

xn+ = αnVxn + ( – αn)PC
(
xn – λn∇f (xn)

)
, ∀n≥ . (.)

Assume the sequence {λn} satisfies the condition  < lim infn→∞ λn ≤ lim supn→∞ λn < /L,
and, in addition, the following conditions are satisfied for {λn} and {αn} ⊂ [, ]: (i) αn →
, (ii)

∑∞
n= αn = ∞, (iii)

∑∞
n= |αn+ – αn| < ∞, and (iv)

∑∞
n= |λn+ – λn| < ∞. Then the

sequence {xn} converges in norm to a minimizer of CMP (.), which is also the unique
solution x∗ ∈ Γ to the VIP

〈
(I –V )x∗,x – x∗〉≥ , ∀x ∈ Γ . (.)

In other words, x∗ is the unique fixed point of the contraction PΓ V , x∗ = PΓ Vx∗.

On the other hand, let S and T be two nonexpansive mappings. In , Yao et al. []
considered the following hierarchical variational inequality problem (HVIP): find hierar-
chically a fixed point of T , which is a solution to the VIP for monotone mapping I – S;
namely, find x̃ ∈ Fix(T) such that

〈
(I – S)x̃,p – x̃

〉≥ , ∀p ∈ Fix(T). (.)

The solution set of the hierarchical VIP (.) is denoted by Λ. It is not hard to check that
solving the hierarchical VIP (.) is equivalent to the fixed point problem of the composite
mapping PFix(T)S, i.e., find x̃ ∈ C such that x̃ = PFix(T)Sx̃. The authors [] introduced and
analyzed the following iterative algorithm for solving the HVIP (.):{

yn = βnSxn + ( – βn)xn,
xn+ = αnVxn + ( – αn)Tyn, ∀n≥ .

(.)

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let S and T be two nonexpansive mappings of C into itself. Let V : C → C
be a fixed contraction with α ∈ (, ). Let {αn} and {βn} be two sequences in (, ). For any
given x ∈ C, let {xn} be the sequence generated by (.). Assume that the sequence {xn} is
bounded and that

(i)
∑∞

n= αn =∞;
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(ii) limn→∞ 
αn

| 
βn

– 
βn–

| = , limn→∞ 
βn

| – αn–
αn

| = ;

(iii) limn→∞ βn = , limn→∞ αn
βn

=  and limn→∞
β
n

αn
= ;

(iv) Fix(T)∩ intC �= ∅;
(v) there exists a constant k >  such that ‖x – Tx‖ ≥ kDist(x,Fix(T)) for each x ∈ C,

where Dist(x,Fix(T)) = infy∈Fix(T) ‖x – y‖.
Then {xn} converges strongly to x̃ = PΛVx̃ which solves the HVIP

〈
(I – S)x̃,p – x̃

〉≤ , ∀p ∈ Fix(T).

Furthermore, let ϕ : C → R be a real-valued function, A : H → H be a nonlinear map-
ping and Θ : C × C → R be a bifunction. In , Peng and Yao [] introduced the gen-
eralized mixed equilibrium problem (GMEP) of finding x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

We denote the set of solutions of GMEP (.) by GMEP(Θ ,ϕ,A). The GMEP (.) is very
general in the sense that it includes, as special cases, optimization problems, variational in-
equalities, minimax problems, Nash equilibrium problems in noncooperative games and
others. The GMEP is further considered and studied; see e.g., [, , , , , –].
In particular, if ϕ = , then GMEP (.) reduces to the generalized equilibrium problem
(GEP) which is to find x ∈ C such that

Θ(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

It was introduced and studied by Takahashi and Takahashi []. The set of solutions of
GEP is denoted by GEP(Θ ,A).
If A = , then GMEP (.) reduces to the mixed equilibrium problem (MEP) which is to

find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C.

It was considered and studied in []. The set of solutions of MEP is denoted by
MEP(Θ ,ϕ).
If ϕ = , A = , then GMEP (.) reduces to the equilibrium problem (EP) which is to

find x ∈ C such that

Θ(x, y) ≥ , ∀y ∈ C.

It was considered and studied in [, ]. The set of solutions of EP is denoted by EP(Θ).
It is worth to mention that the EP is a unified model of several problems, namely, varia-
tional inequality problems, optimization problems, saddle point problems, complemen-
tarity problems, fixed point problems, Nash equilibrium problems, etc.
It was assumed in [] that Θ : C×C → R is a bifunction satisfying conditions (A)-(A)

and ϕ : C → R is a lower semicontinuous and convex function with restriction (B) or
(B), where
(A) Θ(x,x) =  for all x ∈ C;
(A) Θ is monotone, i.e., Θ(x, y) +Θ(y,x) ≤  for any x, y ∈ C;
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(A) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(
tz + ( – t)x, y

)≤ Θ(x, y);

(A) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
(B) for each x ∈H and r > , there exists a bounded subset Dx ⊂ C and yx ∈ C such

that, for any z ∈ C \Dx,

Θ(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ;

(B) C is a bounded set.
Given a positive number r > . Let T (Θ ,ϕ)

r : H → C be the solution set of the auxiliary
mixed equilibrium problem, that is, for each x ∈H ,

T (Θ ,ϕ)
r (x) :=

{
y ∈ C :Θ(y, z) + ϕ(z) – ϕ(y) +


r
〈y – x, z – y〉 ≥ ,∀z ∈ C

}
.

In addition, letB be a single-valuedmapping ofC intoH andR be amultivaluedmapping
with D(R) = C. Consider the following variational inclusion: find a point x ∈ C such that

 ∈ Bx + Rx. (.)

We denote by I(B,R) the solution set of the variational inclusion (.). In particular, if
B = R = , then I(B,R) = C. If B = , then problem (.) becomes the inclusion prob-
lem introduced by Rockafellar []. It is known that problem (.) provides a convenient
framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity problems, variational inequal-
ities, optimal control, mathematical economics, equilibria, and game theory, etc. Let a
set-valued mapping R : D(R) ⊂ H → H be maximal monotone. We define the resolvent
operator JR,λ :H → D(R) associated with R and λ as follows:

JR,λ = (I + λR)–, ∀x ∈H ,

where λ is a positive number.
In , Huang [] studied problem (.) in the case where R is maximal monotone

and B is strongly monotone and Lipschitz-continuous with D(R) = C = H . Subsequently,
Zeng et al. [] further studied problem (.) in the case which is more general than
Huang’s one []. Moreover, the authors [] obtained the same strong convergence con-
clusion as in Huang’s result []. In addition, the authors also gave a geometric conver-
gence rate estimate for approximate solutions. Also, various types of iterative algorithms
for solving variational inclusions have been further studied and developed; for more de-
tails, refer to [, , –] and the references therein.
Motivated and inspired by the above facts, we introduce and analyze a multistep hybrid

extragradient algorithm by combining Korpelevich’s extragradient method, the viscos-
ity approximation method, thehybrid steepest-descent method, Mann’s iteration method,
and the gradient-projection method (GPM) with regularization in the setting of infinite-
dimensional Hilbert spaces. It is proven that under appropriate assumptions the proposed
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algorithm converges strongly to a solution of the CMP (.) with constraints of several
problems: finitely many GMEPs, finitely many variational inclusions, and the fixed point
problem of a strictly pseudocontractive mapping. In the meantime, we also prove the
strong convergence of the proposed algorithm to the unique solution of a hierarchical vari-
ational inequality problem (over the fixed point set of a strictly pseudocontractive map-
ping) with constraints of finitely many GMEPs, finitely many variational inclusions, and
the CMP (.). Our results represent the supplementation, improvement, extension, and
development of the corresponding results in Xu [, Theorems . and .] and Yao et al.
[, Theorems . and .].

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{
x ∈H : xni ⇀ x for some subsequence {xni} of {xn}

}
.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

Definition . Let T be a nonlinear operator with the domain D(T) ⊂ H and the range
R(T)⊂H . Then T is said to be

(i) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈D(T);

(ii) β-strongly monotone if there exists a constant β >  such that

〈Tx – Ty,x – y〉 ≥ η‖x – y‖, ∀x, y ∈D(T);

(iii) ν-inverse-strongly monotone if there exists a constant ν >  such that

〈Tx – Ty,x – y〉 ≥ ν‖Tx – Ty‖, ∀x, y ∈D(T).

It is easy to see that the projection PC is -inverse-strongly monotone. Inverse-strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields, for instance, in traffic assignment problems; see e.g.,
[]. It is obvious that if T is ν-inverse-strongly monotone, then T is monotone and 

ν
-

Lipschitz-continuous. Moreover, we also have, for all u, v ∈D(T) and λ > ,

∥∥(I – λT)u – (I – λT)v
∥∥

=
∥∥(u – v) – λ(Tu – Tv)

∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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= ‖u – v‖ – λ〈Tu – Tv,u – v〉 + λ‖Tu – Tv‖

≤ ‖u – v‖ + λ(λ – ν)‖Tu – Tv‖. (.)

So, if λ ≤ ν , then I – λT is a nonexpansive mapping.
Some important properties of projections are gathered in the following proposition.

Proposition . For given x ∈H and z ∈ C:
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈H .

Consequently, PC is nonexpansive and monotone.

Definition . A mapping T :H → H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is
-inverse-strongly monotone (-ism),

〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =


(I + S),

where S :H →H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if T is nonexpansive, then I – T is monotone.
Next we list some elementary conclusions for the MEP.

Proposition . (see []) Assume thatΘ : C×C → R satisfies (A)-(A) and let ϕ : C →
R be a proper lower semicontinuous and convex function. Assume that either (B) or (B)
holds. For r >  and x ∈H , define a mapping T (Θ ,ϕ)

r :H → C as follows:

T (Θ ,ϕ)
r (x) =

{
z ∈ C :Θ(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
for all x ∈ H . Then the following hold:

(i) for each x ∈H , T (Θ ,ϕ)
r (x) is nonempty and single-valued;

(ii) T (Θ ,ϕ)
r is firmly nonexpansive, that is, for any x, y ∈ H ,

∥∥T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y
∥∥ ≤ 〈

T (Θ ,ϕ)
r x – T (Θ ,ϕ)

r y,x – y
〉
;

(iii) Fix(T (Θ ,ϕ)
r ) =MEP(Θ ,ϕ);

(iv) MEP(Θ ,ϕ) is closed and convex;
(v) ‖T (Θ ,ϕ)

s x – T (Θ ,ϕ)
t x‖ ≤ s–t

s 〈T (Θ ,ϕ)
s x – T (Θ ,ϕ)

t x,T (Θ ,ϕ)
s x – x〉 for all s, t >  and x ∈H .

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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Definition . Amapping T :H →H is said to be an averaged mapping if it can be writ-
ten as the average of the identity I and a nonexpansive mapping, that is,

T ≡ ( – α)I + αS,

where α ∈ (, ) and S : H → H is nonexpansive. More precisely, when the last equality
holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 

 -averaged mappings.

Proposition . (see []) Let T :H →H be a given mapping.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

Proposition . (see [, ]) Let S,T ,V :H →H be given operators.
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

(v) If the mappings {Ti}Ni= are averaged and have a common fixed point, then

N⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

The notation Fix(T) denotes the set of all fixed points of the mapping T , that is,
Fix(T) = {x ∈ H : Tx = x}.

Weneed some facts and tools in a real Hilbert spaceH which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then we have the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(b) ‖λx +μy‖ = λ‖x‖ +μ‖y‖ – λμ‖x – y‖ for all x, y ∈H and λ,μ ∈ [, ] with

λ +μ = ;
(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈H .

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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It is clear that, in a real Hilbert spaceH , T : C → C is ξ -strictly pseudocontractive if and
only if the following inequality holds:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – ξ


∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma . (see [, Proposition .]) Let C be a nonempty closed convex subset of a real
Hilbert space H and T : C → C be a mapping.

(i) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(ii) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is ξ -(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)ξ ≤ γ . Then

∥∥γ (x – y) + δ(Tx – Ty)
∥∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Lemma. (see [,Demiclosedness principle]) Let C be a nonempty closed convex subset
of a real Hilbert space H . Let S be a nonexpansive self-mapping on C with Fix(S) �= ∅. Then
I – S is demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y.
Here I is the identity operator of H .

Lemma . Let A : C → H be a monotone mapping. In the context of the variational in-
equality problem the characterization of the projection (see Proposition .(i)) implies

u ∈VI(C,A) ⇔ u = PC(u – λAu), λ > .

Let C be a nonempty closed convex subset of a real Hilbert spaceH . We introduce some
notations. Let λ be a number in (, ] and let μ > . Associated with a nonexpansive map-
ping T : C →H , we define the mapping Tλ : C →H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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where F : H → H is an operator such that, for some positive constants κ ,η > , F is
κ-Lipschitzian and η-strongly monotone on H ; that is, F satisfies the conditions:

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖

for all x, y ∈ H .

Lemma . (see [, Lemma .]) Tλ is a contraction provided  < μ < η
κ
; that is,

∥∥Tλx – Tλy
∥∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

Remark . (i) Since F is κ-Lipschitzian and η-stronglymonotone onH , we get  < η ≤ κ .
Hence, whenever  < μ < η

κ
, we have τ =  –

√
 –μ(η –μκ) ∈ (, ].

(ii) In Lemma ., put F = 
 I andμ = . Then we know that κ = η = 

 ,  < μ =  < η
κ

= ,
and τ = .

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers satisfying the
property:

an+ ≤ ( – sn)an + snbn + tn, ∀n≥ ,

where {sn} ⊂ (, ] and {bn} are such that:
(i)

∑∞
n= sn =∞;

(ii) either lim supn→∞ bn ≤  or
∑∞

n= |snbn| <∞;
(iii)

∑∞
n= tn <∞ where tn ≥ , for all n≥ .

Then limn→∞ an = .

Recall that a set-valued mapping T :D(T) ⊂ H → H is called monotone if for all x, y ∈
D(T), f ∈ Tx and g ∈ Ty imply

〈f – g,x – y〉 ≥ .

A set-valuedmapping T is calledmaximal monotone if T is monotone and (I +λT)D(T) =
H for each λ > , where I is the identity mapping ofH . We denote by G(T) the graph of T .
It is well known that a monotone mapping T is maximal if and only if, for (x, f ) ∈ H ×H ,
〈f – g,x – y〉 ≥  for every (y, g) ∈ G(T) implies f ∈ Tx. Next we provide an example to
illustrate the concept of a maximal monotone mapping.
Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be the

normal cone to C at v ∈ C, i.e.,

NCv =
{
u ∈H : 〈v – p,u〉 ≥ ,∀p ∈ C

}
.

Define

T̃v =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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Then T̃ is maximal monotone (see []) such that

 ∈ T̃v ⇔ v ∈VI(C,A). (.)

Let R : D(R) ⊂ H → H be a maximal monotone mapping. Let λ,μ >  be two positive
numbers.

Lemma . (see []) We have the resolvent identity

JR,λx = JR,μ
(

μ

λ
x +

(
 –

μ

λ

)
JR,λx

)
, ∀x ∈H .

Remark . For λ,μ > , we have the following relation:

‖JR,λx – JR,μy‖ ≤ ‖x – y‖ + |λ –μ|
(

λ

‖JR,λx – y‖ + 
μ

‖x – JR,μy‖
)
, ∀x, y ∈H . (.)

In terms of Huang [] (see also []), we have the following property for the resolvent
operator JR,λ :H → D(R).

Lemma . JR,λ is single-valued and firmly nonexpansive, i.e.,

〈JR,λx – JR,λy,x – y〉 ≥ ‖JR,λx – JR,λy‖, ∀x, y ∈H .

Consequently, JR,λ is nonexpansive and monotone.

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C. Then for
any given λ > , u ∈ C is a solution of problem (.) if and only if u ∈ C satisfies

u = JR,λ(u – λBu).

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C and let
B : C → H be a strongly monotone, continuous, and single-valued mapping. Then for each
z ∈H , the equation z ∈ (B + λR)x has a unique solution xλ for λ > .

Lemma . (see []) Let R be a maximal monotone mapping with D(R) = C and B :
C → H be a monotone, continuous and single-valued mapping. Then (I + λ(R + B))C =H
for each λ > . In this case, R + B is maximal monotone.

3 Main results
In this section, we will introduce and analyze a multistep hybrid extragradient algorithm
for finding a solution of the CMP (.) with constraints of several problems: finitely many
GMEPs and finitely many variational inclusions and the fixed point problem of a strict
pseudocontraction in a real Hilbert space. This algorithm is based on Korpelevich’s ex-
tragradient method, the viscosity approximation method, the hybrid steepest-descent
method [], Mann’s iteration method and the gradient-projection method (GPM) with
regularization. Under appropriate assumptions, we prove the strong convergence of the

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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proposed algorithm to a solution of the CMP (.), which is also the unique solution of a
hierarchical variational inequality problem (HVIP).
Let C be a nonempty closed convex subset of a real Hilbert space H and f : C → R be a

convex functional with L-Lipschitz-continuous gradient ∇f . We denote by Γ the solution
set of the CMP (.). Then the CMP (.) is generally ill-posed. Consider the following
Tikhonov regularization problem:

min
x∈C fα(x) := f (x) +



α‖x‖,

where α >  is the regularization parameter. Hence, we have

∇fα =∇f + αI.

We are now in a position to state and prove the main result in this paper.

Theorem. Let C be a nonempty closed convex subset of a real Hilbert space H . LetM,N
be two positive integers. Let f : C → R be a convex functional with L-Lipschitz-continuous
gradient ∇f . Let Θk be a bifunction from C × C to R satisfying (A)-(A) and ϕk : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function with restriction (B) or
(B),where k ∈ {, , . . . ,M}. Let Ri : C → H be a maximal monotone mapping and let Ak :
H → H and Bi : C → H be μk-inverse-strongly monotone and ηi-inverse-strongly mono-
tone, respectively, where k ∈ {, , . . . ,M}, i ∈ {, , . . . ,N}. Let T : C → C be a ξ -strictly
pseudocontractive mapping, S : H → H be a nonexpansive mapping and V : H → H be a
ρ-contraction with coefficient ρ ∈ [, ). Let F : H → H be κ-Lipschitzian and η-strongly
monotone with positive constants κ ,η >  such that  ≤ γ < τ and  < μ < η

κ
where τ =

–
√
 –μ(η –μκ). Assume that Ω :=

⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

i= I(Bi,Ri)∩Fix(T)∩
Γ �= ∅. Let {λn} ⊂ [a,b] ⊂ (, L ), {αn} ⊂ (,∞) with

∑∞
n= αn < ∞, {εn}, {δn}, {βn}, {γn},

{σn} ⊂ (, ) with βn + γn + σn = , and {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂ [ck ,dk] ⊂ (, μk)
where i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. For arbitrarily given x ∈ H , let {xn} be a se-
quence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
un = T (ΘM ,ϕM)

rM,n (I – rM,nAM)T (ΘM–,ϕM–)
rM–,n (I – rM–,nAM–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn,
vn = JRN ,λN ,n (I – λN ,nBN )JRN–,λN–,n (I – λN–,nBN–) · · · JR,λ,n (I – λ,nB)un,
yn = βnxn + γnPC(I – λn∇fαn )vn + σnTPC(I – λn∇fαn )vn,
xn+ = εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)yn, ∀n≥ ,

(.)

where ∇fαn = αnI +∇f for all n≥ . Suppose that
(C) limn→∞ εn = ,

∑∞
n= εn =∞ and limn→∞ 

εn
| – δn–

δn
| = ;

(C) lim supn→∞
δn
εn

< ∞, limn→∞ 
εn

| 
δn
– 

δn–
| =  and limn→∞ 

δn
| – εn–

εn
| = ;

(C) limn→∞ |βn–βn–|
εnδn

=  and limn→∞ |γn–γn–|
εnδn

= ;
(C) limn→∞

|λi,n–λi,n–|
εnδn

=  and limn→∞
|rk,n–rk,n–|

εnδn
=  for i = , , . . . ,N and

k = , , . . . ,M;
(C) limn→∞ |λn–λn–|

εnδn
= , limn→∞ |λnαn–λn–αn–|

εnδn
=  and (γn + σn)ξ ≤ γn for all n≥ ;

(C) {βn} ⊂ [c,d] ⊂ (, ), limn→∞ αn
δn

=  and lim infn→∞ σn > .
Then we have:

(i) limn→∞ ‖xn+–xn‖
δn

= ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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(ii) ωw(xn) ⊂ Ω ;
(iii) {xn} converges strongly to a minimizer x∗ of the CMP (.), which is a unique

solution x∗ in Ω to the HVIP

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

Proof First of all, observe that

μη ≥ τ ⇔ μη ≥  –
√
 –μ

(
η –μκ

)
⇔

√
 –μ

(
η –μκ

)≥  –μη

⇔  – μη +μκ ≥  – μη +μη

⇔ κ ≥ η

⇔ κ ≥ η

and

〈
(μF – γ S)x – (μF – γ S)y,x – y

〉
= μ〈Fx – Fy,x – y〉 – γ 〈Sx – Sy,x – y〉
≥ μη‖x – y‖ – γ ‖x – y‖

= (μη – γ )‖x – y‖, ∀x, y ∈ H .

Since  ≤ γ < τ and κ ≥ η, we know that μη ≥ τ > γ and hence the mapping μF – γ S is
(μη – γ )-strongly monotone. Moreover, it is clear that the mapping μF – γ S is (μκ + γ )-
Lipschitzian. Thus, there exists a unique solution x∗ in Ω to the VIP

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

That is, {x∗} =VI(Ω ,μF – γ S). Now, we put

Δk
n = T (Θk ,ϕk )

rk,n (I – rk,nAk)T (Θk–,ϕk–)
rk–,n (I – rk–,nAk–) · · ·T (Θ,ϕ)

r,n (I – r,nA)xn

for all k ∈ {, , . . . ,M} and n≥ ,

Λi
n = JRi ,λi,n (I – λi,nBi)JRi–,λi–,n (I – λi–,nBi–) · · · JR,λ,n (I – λ,nB)

for all i ∈ {, , . . . ,N}, Δ
n = I and Λ

n = I , where I is the identity mapping on H . Then we
have un =ΔM

n xn and vn =ΛN
n un.

In addition, we show that PC(I – λ∇fα) is ν-averaged for each λ ∈ (, 
α+L ), where

ν =
 + λ(α + L)


∈ (, ).

Indeed, the Lipschitz continuity of∇f implies that∇f is 
L -ism (see [] (also [])); that is,

〈∇f (x) –∇f (y),x – y
〉≥ 

L
∥∥∇f (x) –∇f (y)

∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/444
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Observe that

(α + L)
〈∇fα(x) –∇fα(y),x – y

〉
= (α + L)

[
α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉
+ αL‖x – y‖ + L

〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+
∥∥∇f (x) –∇f (y)

∥∥
=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥ = ∥∥∇fα(x) –∇fα(y)
∥∥.

Therefore, it follows that ∇fα = ∇f + αI is 
α+L -ism. Thus, by Proposition .(ii), λ∇fα is


λ(α+L) -ism. From Proposition .(iii), the complement I – λ∇fα is λ(α+L)

 -averaged. Con-
sequently, noting that PC is 

 -averaged and utilizing Proposition .(iv), we find that, for
each λ ∈ (, 

α+L ), PC(I – λ∇fα) is ν-averaged with

ν =


+

λ(α + L)


–



· λ(α + L)


=
 + λ(α + L)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. Taking into account that {λn} ⊂ [a,b] ⊂
(, L ) and αn → , we get

lim sup
n→∞

 + λn(αn + L)


≤  + bL


< .

Without loss of generality, we may assume that νn := +λn(αn+L)
 <  for each n ≥ . So,

PC(I – λn∇fαn ) is nonexpansive for each n≥ . Similarly, since

lim sup
n→∞

λn(αn + L)


≤ bL


< ,

it is well known that I – λn∇fαn is nonexpansive for each n≥ .
We divide the rest of the proof into several steps.
Step . We prove that {xn} is bounded.
Indeed, take a fixed p ∈ Ω arbitrarily. Utilizing (.) and Proposition .(ii) we have

‖un – p‖ =
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nBM)ΔM–

n xn – T (ΘM ,ϕM)
rM,n

(I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥(I – rM,nBM)ΔM–

n xn – (I – rM,nBM)ΔM–
n p

∥∥
≤ ∥∥ΔM–

n xn –ΔM–
n p

∥∥
· · ·

≤ ∥∥Δ
nxn –Δ

np
∥∥

= ‖xn – p‖. (.)

Utilizing (.) and Lemma . we have

‖vn – p‖ =
∥∥JRN ,λN ,n (I – λN ,nAN )ΛN–

n un – JRN ,λN ,n (I – λN ,nAN )ΛN–
n p

∥∥
≤ ∥∥(I – λN ,nAN )ΛN–

n un – (I – λN ,nAN )ΛN–
n p

∥∥
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≤ ∥∥ΛN–
n un –ΛN–

n p
∥∥

· · ·
≤ ∥∥Λ

nun –Λ
np
∥∥

= ‖un – p‖. (.)

Combining (.) and (.), we have

‖vn – p‖ ≤ ‖xn – p‖. (.)

For simplicity, put tn = PC(I – λn∇fαn )vn for each n ≥ . Note that PC(I – λ∇f )p = p for
λ ∈ (, L ). Hence, from (.), it follows that

‖tn – p‖
=
∥∥PC(I – λn∇fαn )vn – PC(I – λn∇f )p

∥∥
≤ ∥∥PC(I – λn∇fαn )vn – PC(I – λn∇fαn )p

∥∥ + ∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥∥

≤ ‖vn – p‖ + ∥∥(I – λn∇fαn )p – (I – λn∇f )p
∥∥

= ‖vn – p‖ + λnαn‖p‖
≤ ‖xn – p‖ + λnαn‖p‖. (.)

Since (γn + σn)ξ ≤ γn for all n ≥  and T is ξ -strictly pseudocontractive, utilizing Lem-
ma . we obtain from (.) and (.)

‖yn – p‖ = ‖βnxn + γntn + σnTtn – p‖
=
∥∥βn(xn – p) + γn(tn – p) + σn(Ttn – p)

∥∥
≤ βn‖xn – p‖ + ∥∥γn(tn – p) + σn(Ttn – p)

∥∥
≤ βn‖xn – p‖ + (γn + σn)‖tn – p‖
≤ βn‖xn – p‖ + (γn + σn)

[‖xn – p‖ + λnαn‖p‖
]

≤ βn‖xn – p‖ + (γn + δn)‖xn – p‖ + λnαn‖p‖
= ‖xn – p‖ + λnαn‖p‖. (.)

Utilizing Lemma ., we deduce from (.), (.), {λn} ⊂ [a,b]⊂ (, L ), and  ≤ γ < τ that,
for all n ≥ ,

‖xn+ – p‖
=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
+ (I – εnμF)yn – p

∥∥
=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)yn – (I – εnμF)p

∥∥
≤ ∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp

∥∥ + ∥∥(I – εnμF)yn – (I – εnμF)p
∥∥

= εn
∥∥δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)

∥∥ + ∥∥(I – εnμF)yn – (I – εnμF)p
∥∥

≤ εn
[
δn‖γVxn –μFp‖ + ( – δn)‖γ Sxn –μFp‖] + ∥∥(I – εnμF)yn – (I – εnμF)p

∥∥
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≤ εn
[
δn
(
γ ‖Vxn –Vp‖ + ‖γVp –μFp‖) + ( – δn)

(
γ ‖Sxn – Sp‖ + ‖γ Sp –μFp‖)]

+
∥∥(I – εnμF)yn – (I – λnμF)p

∥∥
≤ εn

[
δn
(
γρ‖xn – p‖ + ‖γVp –μFp‖) + ( – δn)

(
γ ‖xn – p‖ + ‖γ Sp –μFp‖)]

+ ( – εnτ )‖yn – p‖
≤ εn

[(
 – δn( – ρ)

)
γ ‖xn – p‖ +max

{‖γVp –μFp‖,‖γ Sp –μFp‖}]
+ ( – εnτ )

[‖xn – p‖ + λnαn‖p‖
]

= εn
(
 – δn( – ρ)

)
γ ‖xn – p‖ + λnmax

{‖γVp –μFp‖,‖γ Sp –μFp‖}
+ ( – εnτ )‖xn – p‖ + λnαn‖p‖

≤ εnγ ‖xn – p‖ + εnmax
{‖γVp –μFp‖,‖γ Sp –μFp‖} + ( – εnτ )‖xn – p‖

=
(
 – εn(τ – γ )

)‖xn – p‖ + εnmax
{‖γVp –μFp‖,‖γ Sp –μFp‖} + αnb‖p‖

=
(
 – εn(τ – γ )

)‖xn – p‖ + εn(τ – γ )
max{‖γVp –μFp‖,‖γ Sp –μFp‖}

τ – γ
+ αnb‖p‖

≤max

{
‖xn – p‖, ‖γVp –μFp‖

τ – γ
,
‖γ Sp –μFp‖

τ – γ

}
+ αnb‖p‖.

By induction, we get

‖xn+ – p‖ ≤max

{
‖x – p‖, ‖γVp –μFp‖

τ – γ
,
‖γ Sp –μFp‖

τ – γ

}
+

n∑
j=

αnb‖p‖, ∀n≥ .

Thus, {xn} is bounded (due to
∑∞

n= αn < ∞) and so are the sequences {tn}, {un}, {vn} and
{yn}.
Step . We prove that limn→∞ ‖xn+–xn‖

δn
= .

Indeed, utilizing (.) and (.), we obtain

‖vn+ – vn‖
=
∥∥ΛN

n+un+ –ΛN
n un

∥∥
=
∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥JRN ,λN ,n+ (I – λN ,n+BN )ΛN–

n+ un+ – JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–

n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–
n un

∥∥
≤ ∥∥(I – λN ,n+BN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n+ un+

∥∥
+
∥∥(I – λN ,nBN )ΛN–

n+ un+ – (I – λN ,nBN )ΛN–
n un

∥∥ + |λN ,n+ – λN ,n|

×
(


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥)

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
≤ |λN ,n+ – λN ,n|

(∥∥BNΛN–
n+ un+

∥∥ + M̃
)
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+ |λN–,n+ – λN–,n|
(∥∥BN–Λ

N–
n+ un+

∥∥ + M̃
)
+
∥∥ΛN–

n+ un+ –ΛN–
n un

∥∥
· · ·

≤ |λN ,n+ – λN ,n|
(∥∥BNΛN–

n+ un+
∥∥ + M̃

)
+ |λN–,n+ – λN–,n|

(∥∥BN–Λ
N–
n+ un+

∥∥ + M̃
)

+ · · · + |λ,n+ – λ,n|
(∥∥BΛ


n+un+

∥∥ + M̃
)
+
∥∥Λ

n+un+ –Λ
nun

∥∥
≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖, (.)

where

sup
n≥

{


λN ,n+

∥∥JRN ,λN ,n+ (I – λN ,nBN )ΛN–
n+ un+ – (I – λN ,nBN )ΛN–

n un
∥∥

+


λN ,n

∥∥(I – λN ,nBN )ΛN–
n+ un+ – JRN ,λN ,n (I – λN ,nBN )ΛN–

n un
∥∥}≤ M̃

for some M̃ >  and supn≥{
∑N

i= ‖BiΛ
i–
n+un+‖ + M̃} ≤ M̃ for some M̃ > .

Utilizing Proposition .(ii), (v), we deduce that

‖un+ – un‖
=
∥∥ΔM

n+xn+ –ΔM
n xn

∥∥
=
∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
≤ ∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n+ xn+

∥∥
+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,nAM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n xn

∥∥
≤ ∥∥T (ΘM ,ϕM)

rM,n+
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,n+AM)ΔM–
n+ xn+

∥∥
+
∥∥T (ΘM ,ϕM)

rM,n
(I – rM,n+AM)ΔM–

n+ xn+ – T (ΘM ,ϕM)
rM,n

(I – rM,nAM)ΔM–
n+ xn+

∥∥
+
∥∥(I – rM,nAM)ΔM–

n+ xn+ – (I – rM,nAM)ΔM–
n xn

∥∥
≤ |rM,n+ – rM,n|

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+ – (I – rM,n+AM)ΔM–

n+ xn+
∥∥

+ |rM,n+ – rM,n|
∥∥AMΔM–

n+ xn+
∥∥ + ∥∥ΔM–

n+ xn+ –ΔM–
n xn

∥∥
= |rM,n+ – rM,n|

[∥∥AMΔM–
n+ xn+

∥∥ + 
rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + ∥∥ΔM–
n+ xn+ –ΔM–

n xn
∥∥

· · ·

≤ |rM,n+ – rM,n|
[∥∥AMΔM–

n+ xn+
∥∥ + 

rM,n+

∥∥T (ΘM ,ϕM)
rM,n+

(I – rM,n+AM)ΔM–
n+ xn+

– (I – rM,n+AM)ΔM–
n+ xn+

∥∥] + · · · + |r,n+ – r,n|
[∥∥AΔ


n+xn+

∥∥
+


r,n+

∥∥T (Θ,ϕ)
r,n+ (I – r,n+A)Δ

n+xn+ – (I – r,n+A)Δ
n+xn+

∥∥]
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+
∥∥Δ

n+xn+ –Δ
nxn
∥∥

≤ M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖, (.)

where M̃ >  is a constant such that, for each n≥ ,

M∑
k=

[∥∥AkΔ
k–
n+xn+

∥∥ + 
rk,n+

∥∥T (Θk ,ϕk )
rk,n+ (I – rk,n+Ak)Δk–

n+xn+ – (I – rk,n+Ak)Δk–
n+xn+

∥∥]
≤ M̃.

Furthermore, we define yn = βnxn + ( – βn)wn for all n≥ . It follows that

wn+ –wn

=
yn+ – βn+xn+

 – βn+
–
yn – βnxn
 – βn

=
γn+tn+ + σn+Ttn+

 – βn+
–

γntn + σnTtn
 – βn

=
γn+(tn+ – tn) + σn+(Ttn+ – Ttn)

 – βn+

+
(

γn+

 – βn+
–

γn

 – βn

)
tn +

(
σn+

 – βn+
–

σn

 – βn

)
Ttn. (.)

Since (γn + σn)ξ ≤ γn for all n ≥ , utilizing Lemma . and the nonexpansivity of PC(I –
λn∇fαn ) we have∥∥γn+(tn+ – tn) + σn+(Ttn+ – Ttn)

∥∥≤ (γn+ + σn+)‖tn+ – tn‖ (.)

and

‖tn+ – tn‖ =
∥∥PC(I – λn+∇fαn+ )vn+ – PC(I – λn∇fαn )vn

∥∥
≤ ∥∥PC(I – λn+∇fαn+ )vn+ – PC(I – λn+∇fαn+ )vn

∥∥
+
∥∥PC(I – λn+∇fαn+ )vn – PC(I – λn∇fαn )vn

∥∥
≤ ‖vn+ – vn‖ +

∥∥(I – λn+∇fαn+ )vn – (I – λn∇fαn )vn
∥∥

≤ ‖vn+ – vn‖ + |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥. (.)

Hence it follows from (.)-(.) that

‖wn+ –wn‖

≤ ‖γn+(tn+ – tn) + σn+(Ttn+ – Ttn)‖
 – βn+

+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣‖tn‖ + ∣∣∣∣ σn+

 – βn+
–

σn

 – βn

∣∣∣∣‖Ttn‖
≤ (γn+ + σn+)

 – βn+
‖tn+ – tn‖ +

∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)
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= ‖tn+ – tn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ ‖vn+ – vn‖ + |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥
+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + ‖un+ – un‖ + |λn+αn+ – λnαn|‖vn‖

+ |λn+ – λn|
∥∥∇f (vn)

∥∥ + ∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)

≤ M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n| + ‖xn+ – xn‖

+ |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|
∥∥∇f (vn)

∥∥
+
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)
. (.)

In the meantime, a simple calculation shows that

yn+ – yn = βn(xn+ – xn) + ( – βn)(wn+ –wn) + (βn+ – βn)(xn+ –wn+).

So, it follows from (.) that

‖yn+ – yn‖
≤ βn‖xn+ – xn‖ + ( – βn)‖wn+ –wn‖ + |βn+ – βn|‖xn+ –wn+‖

≤ βn‖xn+ – xn‖ + ( – βn)

[
M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+ ‖xn+ – xn‖ +
∣∣∣∣ γn+

 – βn+
–

γn

 – βn

∣∣∣∣(‖tn‖ + ‖Ttn‖
)
+ |λn+αn+ – λnαn|‖vn‖

+ |λn+ – λn|
∥∥∇f (vn)

∥∥] + |βn+ – βn|‖xn+ –wn+‖

≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+
|γn+ – γn|( – βn) + γn|βn+ – βn|

 – βn+

(‖tn‖ + ‖Ttn‖
)
+ |λn+αn+ – λnαn|‖vn‖

+ |λn+ – λn|
∥∥∇f (vn)

∥∥ + |βn+ – βn|‖xn+ –wn+‖

≤ ‖xn+ – xn‖ + M̃

N∑
i=

|λi,n+ – λi,n| + M̃

M∑
k=

|rk,n+ – rk,n|

+ |γn+ – γn| ‖tn‖ + ‖Ttn‖
 – d

+ |βn+ – βn|
(

‖xn+ –wn+‖ + ‖tn‖ + ‖Ttn‖
 – d

)
+ |λn+αn+ – λnαn|‖vn‖ + |λn+ – λn|

∥∥∇f (vn)
∥∥
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≤ ‖xn+ – xn‖ + M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn|

+ |βn+ – βn| + |λn+αn+ – λnαn| + |λn+ – λn|
)
, (.)

where supn≥{‖xn+ –wn+‖+ ‖tn‖+‖Ttn‖
–d +‖vn‖+‖∇f (vn)‖+M̃+M̃} ≤ M̃ for some M̃ > .

On the other hand, we define zn := δnVxn +(– δn)Sxn for all n ≥ . Then it is well known
that xn+ = εnγ zn + (I – εnμF)yn for all n≥ . Simple calculations show that⎧⎪⎪⎪⎨⎪⎪⎪⎩

zn+ – zn = (δn+ – δn)(Vxn – Sxn) + δn+(Vxn+ –Vxn)
+ ( – δn+)(Sxn+ – Sxn),

xn+ – xn+ = (εn+ – εn)(γ zn –μFyn) + εn+γ (zn+ – zn)
+ (I – λn+μF)yn+ – (I – λn+μF)yn.

Since V is a ρ-contraction with coefficient ρ ∈ [, ) and S is a nonexpansive mapping, we
conclude that

‖zn+ – zn‖ ≤ |δn+ – δn|‖Vxn – Sxn‖ + δn+‖Vxn+ –Vxn‖ + ( – δn+)‖Sxn+ – Sxn‖
≤ |δn+ – δn|‖Vxn – Sxn‖ + δn+ρ‖xn+ – xn‖ + ( – δn+)‖xn+ – xn‖
=
(
 – δn+( – ρ)

)‖xn+ – xn‖ + |δn+ – δn|‖Vxn – Sxn‖,

which, together with (.) and  ≤ γ < τ , implies that

‖xn+ – xn+‖
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ ‖zn+ – zn‖

+
∥∥(I – εn+μF)yn+ – (I – εn+μF)yn

∥∥
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ ‖zn+ – zn‖ + ( – εn+τ )‖yn+ – yn‖
≤ |εn+ – εn|‖γ zn –μFyn‖ + εn+γ

[(
 – δn+( – ρ)

)‖xn+ – xn‖

+ |δn+ – δn|‖Vxn – Sxn‖
]
+ ( – εn+τ )

[
‖xn+ – xn‖ + M̃

( N∑
i=

|λi,n+ – λi,n|

+
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|

+ |λn+αn+ – λnαn| + |λn+ – λn|
)]

≤ (
 – εn+(τ – γ )

)‖xn+ – xn‖ + |εn+ – εn|‖γ zn –μFyn‖ + |δn+ – δn|‖Vxn – Sxn‖

+ M̃

( N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n| + |γn+ – γn| + |βn+ – βn|

+ |λn+αn+ – λnαn| + |λn+ – λn|
)

≤ (
 – εn+(τ – γ )

)‖xn+ – xn‖
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+ M̃

{ N∑
i=

|λi,n+ – λi,n| +
M∑
k=

|rk,n+ – rk,n| + |εn+ – εn|

+ |δn+ – δn| + |βn+ – βn| + |γn+ – γn| + |λn+αn+ – λnαn| + |λn+ – λn|
}
,

where supn≥{‖γ zn –μFyn‖ + ‖Vxn – Sxn‖ + M̃} ≤ M̃ for some M̃ > . Consequently,

‖xn+ – xn‖
δn

≤ (
 – εn(τ – γ )

)‖xn – xn–‖
δn

+ M̃

{ N∑
i=

|λi,n – λi,n–|
δn

+
M∑
k=

|rk,n – rk,n–|
δn

+
|εn – εn–|

δn
+

|δn – δn–|
δn

+
|βn – βn–|

δn

+
|γn – γn–|

δn
+

|λn+αn+ – λnαn|
δn

+
|λn+ – λn|

δn

}

=
(
 – εn(τ – γ )

)‖xn – xn–‖
δn–

+
(
 – εn(τ – γ )

)‖xn – xn–‖
(


δn

–


δn–

)

+ M̃

{ N∑
i=

|λi,n – λi,n–|
δn

+
M∑
k=

|rk,n – rk,n–|
δn

+
|εn – εn–|

δn
+

|δn – δn–|
δn

+
|βn – βn–|

δn
+

|γn – γn–|
δn

+
|λn+αn+ – λnαn|

δn
+

|λn+ – λn|
δn

}

≤ (
 – εn(τ – γ )

)‖xn – xn–‖
δn–

+ εn(τ – γ ) · M̃

τ – γ

{

εn

∣∣∣∣ δn –


δn–

∣∣∣∣ + N∑
i=

|λi,n – λi,n–|
εnδn

+
M∑
k=

|rk,n – rk,n–|
εnδn

+

δn

∣∣∣∣ – εn–

εn

∣∣∣∣ + 
εn

∣∣∣∣ – δn–

δn

∣∣∣∣ + |βn – βn–|
εnδn

+
|γn – γn–|

εnδn

+
|λn+αn+ – λnαn|

εnδn
+

|λn+ – λn|
εnδn

}
, (.)

where supn≥{‖xn – xn–‖ + M̃} ≤ M̃ for some M̃ > . From conditions (C)-(C) it fol-
lows that

∑∞
n= εn(τ – γ ) = ∞ and

lim
n→∞

M̃

τ – γ

{

εn

∣∣∣∣ δn –


δn–

∣∣∣∣ + N∑
i=

|λi,n – λi,n–|
εnδn

+
M∑
k=

|rk,n – rk,n–|
εnδn

+

δn

∣∣∣∣ – εn–

εn

∣∣∣∣
+


εn

∣∣∣∣ – δn–

δn

∣∣∣∣ + |βn – βn–|
εnδn

+
|γn – γn–|

εnδn
+

|λn+αn+ – λnαn|
εnδn

+
|λn+ – λn|

εnδn

}
= .

Thus, utilizing Lemma ., we immediately conclude that

lim
n→∞

‖xn+ – xn‖
δn

= .
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So, from δn →  it follows that

lim
n→∞‖xn+ – xn‖ = .

Step . We prove that limn→∞ ‖xn –un‖ = , limn→∞ ‖xn – vn‖ = , limn→∞ ‖vn – tn‖ = 
and limn→∞ ‖tn – Ttn‖ = .
Indeed, utilizing Lemmas . and .(b), from (.), (.)-(.), and ≤ γ < τ we deduce

that

‖yn – p‖

= ‖βnxn + γntn + σnTtn – p‖

=
∥∥∥∥βn(xn – p) + ( – βn)

(
γntn + σnTtn

 – βn
– p
)∥∥∥∥

= βn‖xn – p‖ + ( – βn)
∥∥∥∥γntn + σnTtn

 – βn
– p
∥∥∥∥ – βn( – βn)

∥∥∥∥γntn + σnTtn
 – βn

– xn
∥∥∥∥

= βn‖xn – p‖ + ( – βn)
∥∥∥∥γn(tn – p) + σn(Ttn – p)

 – βn

∥∥∥∥ – βn( – βn)
∥∥∥∥yn – xn
 – βn

∥∥∥∥
≤ βn‖xn – p‖ + ( – βn)

(γn + σn)‖tn – p‖
( – βn)

–
βn

 – βn
‖yn – xn‖

= βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖

≤ βn
(‖xn – p‖ + λnαn‖p‖

) + ( – βn)
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖

=
(‖xn – p‖ + λnαn‖p‖

) – βn

 – βn
‖yn – xn‖

≤ (‖xn – p‖ + αnb‖p‖
) – βn

 – βn
‖yn – xn‖, (.)

and hence

‖xn+ – p‖

=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
+ (I – εnμF)yn – p

∥∥
=
∥∥εnγ (δnVxn + ( – δn)Sxn

)
– εnμFp + (I – εnμF)yn – (I – εnμF)p

∥∥
=
∥∥εn[δn(γVxn –μFp) + ( – δn)(γ Sxn –μFp)

]
+ (I – εnμF)yn – (I – εnμF)p

∥∥
=
∥∥εn[δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

]
+ (I – εnμF)yn – (I – εnμF)p

+ εn
[
δn(γVp –μFp) + ( – δn)(γ Sp –μFp)

]∥∥
≤ ∥∥εn[δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

]
+ (I – εnμF)yn – (I – εnμF)p

∥∥
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
∥∥δn(γVxn – γVp) + ( – δn)(γ Sxn – γ Sp)

∥∥ + ∥∥(I – εnμF)yn – (I – εnμF)p
∥∥]
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+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εn
(
δnγρ‖xn – p‖ + ( – δn)γ ‖xn – p‖) + ( – εnτ )‖yn – p‖]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ ( – δn)εn

〈
(γ Sp –μFp),xn+ – p

〉
=
[
εn
(
 – δn( – ρ)

)
γ ‖xn – p‖ + ( – εnτ )‖yn – p‖]

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ [

εnγ ‖xn – p‖ + ( – εnτ )‖yn – p‖]
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
=
[
εnτ · γ

τ
‖xn – p‖ + ( – εnτ )‖yn – p‖

]
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ εn

γ 

τ
‖xn – p‖ + ( – εnτ )‖yn – p‖

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ εn

γ 

τ
‖xn – p‖ + ( – εnτ )

[(‖xn – p‖ + αnb‖p‖
) – βn

 – βn
‖yn – xn‖

]
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ εn

γ 

τ

(‖xn – p‖ + αnb‖p‖
) + ( – εnτ )

[(‖xn – p‖ + αnb‖p‖
)

–
βn

 – βn
‖yn – xn‖

]
+ εnδn

〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
=
(
 – εn

τ  – γ 

τ

)(‖xn – p‖ + αnb‖p‖
) – βn( – εnτ )

 – βn
‖yn – xn‖

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (‖xn – p‖ + αnb‖p‖

) – βn( – εnτ )
 – βn

‖yn – xn‖

+ εnδn‖γVp –μFp‖‖xn+ – p‖ + εn‖γ Sp –μFp‖‖xn+ – p‖, (.)

which, together with {βn} ⊂ [c,d]⊂ (, ), immediately yields

c( – εnτ )
 – c

‖yn – xn‖

≤ βn( – εnτ )
 – βn

‖yn – xn‖

≤ (‖xn – p‖ + αnb‖p‖
) – ‖xn+ – p‖ + εnδn‖γVp –μFp‖‖xn+ – p‖

+ εn‖γ Sp –μFp‖‖xn+ – p‖
≤ (‖xn – xn+‖ + αnb‖p‖

)(‖xn – p‖ + ‖xn+ – p‖ + αnb‖p‖
)

+ εnδn‖γVp –μFp‖‖xn+ – p‖ + εn‖γ Sp –μFp‖‖xn+ – p‖.
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Since εn → , δn → , αn → , ‖xn+ – xn‖ → , and {xn} is bounded, we have

lim
n→∞‖yn – xn‖ = . (.)

Observe that∥∥Δk
nxn – p

∥∥ = ∥∥T (Θk ,ϕk )
rk,n (I – rk,nAk)Δk–

n xn – T (Θk ,ϕk )
rk,n (I – rk,nAk)p

∥∥
≤ ∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥

≤ ∥∥Δk–
n xn – p

∥∥ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥
≤ ‖xn – p‖ + rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥ (.)

and ∥∥Λi
nun – p

∥∥ = ∥∥JRi ,λi,n (I – λi,nBi)Λi–
n un – JRi ,λi,n (I – λi,nBi)p

∥∥
≤ ∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥

≤ ∥∥Λi–
n un – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥
≤ ‖un – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥
≤ ‖xn – p‖ + λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥ (.)

for i ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Combining (.), (.), (.), and (.), we get

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖ – βn

 – βn
‖yn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
(‖vn – p‖ + λnαn‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

(‖vn – p‖ + αnb‖p‖
)

= βn‖xn – p‖ + ( – βn)
[‖vn – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)]
≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖un – p‖ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[∥∥Δk
nxn – p

∥∥ + λi,n(λi,n – ηi)
∥∥BiΛ

i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ + rk,n(rk,n – μk)
∥∥AkΔ

k–
n xn –Akp

∥∥
+ λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥] + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
= ‖xn – p‖ + ( – βn)

[
rk,n(rk,n – μk)

∥∥AkΔ
k–
n xn –Akp

∥∥
+ λi,n(λi,n – ηi)

∥∥BiΛ
i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
, (.)
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which immediately leads to

( – βn)
[
rk,n(μk – rk,n)

∥∥AkΔ
k–
n xn –Akp

∥∥ + λi,n(ηi – λi,n)
∥∥BiΛ

i–
n un – Bip

∥∥]
≤ ‖xn – p‖ – ‖yn – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
.

Since ‖xn – yn‖ → , αn → , {βn} ⊂ [c,d] ⊂ (, ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi), {rk,n} ⊂
[ck ,dk] ⊂ (, μk), i ∈ {, , . . . ,N}, k ∈ {, , . . . ,M}, and {vn}, {xn}, {yn} are bounded se-
quences, we have

lim
n→∞

∥∥AkΔ
k–
n xn –Akp

∥∥ =  and lim
n→∞

∥∥BiΛ
i–
n un – Bip

∥∥ =  (.)

for all k ∈ {, , . . . ,M} and i ∈ {, , . . . ,N}.
Furthermore, by Proposition .(ii) and Lemma .(a) we have

∥∥Δk
nxn – p

∥∥
=
∥∥T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn – T (Θk ,ϕk )

rk,n (I – rk,nAk)p
∥∥

≤ 〈
(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p,Δk
nxn – p

〉
=


(∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p
∥∥ + ∥∥Δk

nxn – p
∥∥

–
∥∥(I – rk,nAk)Δk–

n xn – (I – rk,nAk)p –
(
Δk

nxn – p
)∥∥)

≤ 

(∥∥Δk–

n xn – p
∥∥ + ∥∥Δk

nxn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥),
which implies that

∥∥Δk
nxn – p

∥∥
≤ ∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn – rk,n

(
AkΔ

k–
n xn –Akp

)∥∥
=
∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn
∥∥ – rk,n

∥∥AkΔ
k–
n xn –Akp

∥∥
+ rk,n

〈
Δk–

n xn –Δk
nxn,AkΔ

k–
n xn –Akp

〉
≤ ∥∥Δk–

n xn – p
∥∥ – ∥∥Δk–

n xn –Δk
nxn
∥∥ + rk,n

∥∥Δk–
n xn –Δk

nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
≤ ‖xn – p‖ – ∥∥Δk–

n xn –Δk
nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥. (.)

By Lemma .(a) and Lemma ., we obtain

∥∥Λi
nun – p

∥∥
=
∥∥JRi ,λi,n (I – λi,nBi)Λi–

n un – JRi ,λi,n (I – λi,nBi)p
∥∥

≤ 〈
(I – λi,nBi)Λi–

n un – (I – λi,nBi)p,Λi
nun – p

〉
=


(∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p
∥∥ + ∥∥Λi

nun – p
∥∥
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–
∥∥(I – λi,nBi)Λi–

n un – (I – λi,nBi)p –
(
Λi

nun – p
)∥∥)

≤ 

(∥∥Λi–

n un – p
∥∥ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖un – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥)
≤ 


(‖xn – p‖ + ∥∥Λi

nun – p
∥∥ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥),
which immediately leads to

∥∥Λi
nun – p

∥∥
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun – λi,n

(
BiΛ

i–
n un – Bip

)∥∥
= ‖xn – p‖ – ∥∥Λi–

n un –Λk
nun

∥∥ – λ
i,n
∥∥BiΛ

i–
n un – Bip

∥∥
+ λi,n

〈
Λi–

n un –Λi
nun,BiΛ

i–
n un – Bip

〉
≤ ‖xn – p‖ – ∥∥Λi–

n un –Λi
nun

∥∥ + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥. (.)

Combining (.) and (.) we conclude that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Λi
nun – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – p‖ – ( – βn)

∥∥Λi–
n un –Λi

nun
∥∥

+ λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
,

which yields

( – βn)
∥∥Λi–

n un –Λi
nun

∥∥
≤ ‖xn – p‖ – ‖yn – p‖ + λi,n

∥∥Λi–
n un –Λi

nun
∥∥∥∥BiΛ

i–
n un – Bip

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + λi,n
∥∥Λi–

n un –Λi
nun

∥∥∥∥BiΛ
i–
n un – Bip

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
.

Since {βn} ⊂ [c,d] ⊂ (, ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi), i = , , . . . ,N , and {un}, {vn}, {xn} and
{yn} are bounded sequences, we deduce from (.), (.), and αn →  that

lim
n→∞

∥∥Λi–
n un –Λi

nun
∥∥ = , ∀i ∈ {, , . . . ,N}. (.)
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Also, combining (.), (.), and (.) we deduce that

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖vn – p‖ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)‖un – p‖ + αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

∥∥Δk
nxn – p

∥∥ + αnb‖p‖
(
‖vn – p‖ + αnb‖p‖

)
≤ βn‖xn – p‖ + ( – βn)

[‖xn – p‖ – ∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥]
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – p‖ – ( – βn)

∥∥Δk–
n xn –Δk

nxn
∥∥

+ rk,n
∥∥Δk–

n xn –Δk
nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
,

which yields

( – βn)
∥∥Δk–

n xn –Δk
nxn
∥∥

≤ ‖xn – p‖ – ‖yn – p‖ + rk,n
∥∥Δk–

n xn –Δk
nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + rk,n
∥∥Δk–

n xn –Δk
nxn
∥∥∥∥AkΔ

k–
n xn –Akp

∥∥
+ αnb‖p‖

(
‖vn – p‖ + αnb‖p‖

)
.

Since {βn} ⊂ [c,d] ⊂ (, ), {rk,n} ⊂ [ck ,dk]⊂ (, μk) for k = , , . . . ,M, and {vn}, {xn}, {yn}
are bounded sequences, we deduce from (.), (.), and αn →  that

lim
n→∞

∥∥Δk–
n xn –Δk

nxn
∥∥ = , ∀k ∈ {, , . . . ,M}. (.)

Hence from (.) and (.) we get

‖xn – un‖ =
∥∥Δ

nxn –ΔM
n xn

∥∥
≤ ∥∥Δ

nxn –Δ
nxn
∥∥ + ∥∥Δ

nxn –Δ
nxn
∥∥ + · · · + ∥∥ΔM–

n xn –ΔM
n xn

∥∥
→  as n→ ∞ (.)

and

‖un – vn‖ =
∥∥Λ

nun –ΛN
n un

∥∥
≤ ∥∥Λ

nun –Λ
nun

∥∥ + ∥∥Λ
nun –Λ

nun
∥∥ + · · · + ∥∥ΛN–

n un –ΛN
n un

∥∥
→  as n→ ∞, (.)

respectively. Thus, from (.) and (.) we obtain

‖xn – vn‖ ≤ ‖xn – un‖ + ‖un – vn‖
→  as n→ ∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/444


Ceng et al. Journal of Inequalities and Applications 2014, 2014:444 Page 28 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/444

On the other hand, note thatΓ =VI(C,∇f ). Then, utilizing Lemma. and the 
L -inverse

strong monotonicity of ∇f , we deduce from (.) that

‖tn – p‖ ≤ ∥∥(I – λn∇fαn )vn – (I – λn∇f )p
∥∥

=
∥∥vn – p – λn

(∇f (vn) –∇f (p)
)
– λnαnvn

∥∥
≤ ∥∥vn – p – λn

(∇f (vn) –∇f (p)
)∥∥

– λnαn
〈
vn, (I – λn∇fαn )vn – (I – λn∇f )p

〉
≤ ‖vn – p‖ + λn

(
λn –


L

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥. (.)

Combining (.), (.), and (.) we obtain

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[
‖vn – p‖ + λn

(
λn –


L

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ βn‖xn – p‖ + ( – βn)
[
‖xn – p‖ + λn

(
λn –


L

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ ‖xn – p‖ + ( – βn)λn

(
λn –


L

)∥∥∇f (vn) –∇f (p)
∥∥

+ αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥,

which, together with {λn} ⊂ [a,b]⊂ (, L ) and {βn} ⊂ [c,d]⊂ (, ), leads to

( – d)a
(

L
– b
)∥∥∇f (vn) –∇f (p)

∥∥
≤ ( – βn)λn

(

L
– λn

)∥∥∇f (vn) –∇f (p)
∥∥

≤ ‖xn – p‖ – ‖yn – p‖ + αnb‖vn‖
∥∥vn – p – λn

(∇fαn (vn) –∇f (p)
)∥∥

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖) + αnb‖vn‖

∥∥vn – p – λn
(∇fαn (vn) –∇f (p)

)∥∥.
Since {vn}, {xn}, and {yn} are bounded sequences, we deduce from (.) and αn →  that

lim
n→∞

∥∥∇f (vn) –∇f (p)
∥∥ = .

So, it is clear that

lim
n→∞

∥∥∇fαn (vn) –∇f (p)
∥∥ = . (.)
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Again, utilizing Proposition .(iii), from tn = PC(I – λn∇fαn )vn and p = PC(I – λn∇f )p,
we get

‖tn – p‖

=
∥∥PC(I – λn∇fαn )vn – PC(I – λn∇f )p

∥∥
≤ 〈

(I – λn∇fαn )vn – (I – λn∇f )p, tn – p
〉

=


(∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥ + ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
=


(∥∥(I – λn∇fαn )vn – (I – λn∇fαn )p – λnαnp

∥∥ + ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
=


(∥∥(I – λn∇fαn )vn – (I – λn∇fαn )p

∥∥
– λnαn

〈
p, (I – λn∇fαn )vn – (I – λn∇f )p

〉
+ ‖tn – p‖ – ∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
≤ 


(‖vn – p‖ – λnαn

〈
p, (I – λn∇fαn )vn – (I – λn∇f )p

〉
+ ‖tn – p‖

–
∥∥(I – λn∇fαn )vn – (I – λn∇f )p – (tn – p)

∥∥)
≤ 


(‖vn – p‖ + λnαn‖p‖

∥∥(I – λn∇fαn )vn – (I – λn∇f )p
∥∥ + ‖tn – p‖

–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥),

which immediately leads to

‖tn – p‖ ≤ ‖vn – p‖ + λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥. (.)

Combining (.), (.), and (.) we obtain

‖yn – p‖ ≤ βn‖xn – p‖ + ( – βn)‖tn – p‖

≤ βn‖xn – p‖ + ( – βn)
[‖vn – p‖

+ λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ βn‖xn – p‖ + ( – βn)
[‖xn – p‖

+ λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
–
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥]

≤ ‖xn – p‖ + λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
– ( – βn)

∥∥vn – tn – λn
(∇fαn (vn) –∇f (p)

)∥∥,
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which immediately yields

( – d)
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥

≤ ( – βn)
∥∥vn – tn – λn

(∇fαn (vn) –∇f (p)
)∥∥

≤ ‖xn – p‖ – ‖yn – p‖ + λnαn‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥
≤ ‖xn – yn‖

(‖xn – p‖ + ‖yn – p‖) + αnb‖p‖
∥∥(I – λn∇fαn )vn – (I – λn∇f )p

∥∥.
Since {vn}, {xn}, and {yn} are bounded sequences, we deduce from (.) and αn →  that

lim
n→∞

∥∥vn – tn – λn
(∇fαn (vn) –∇f (p)

)∥∥ = . (.)

Observe that

‖vn – tn‖ ≤ ∥∥vn – tn – λn
(∇fαn (vn) –∇f (p)

)∥∥ + λn
∥∥∇fαn (vn) –∇f (p)

∥∥.
Thus, from (.) and (.) we have

lim
n→∞‖vn – tn‖ = . (.)

Taking into account that ‖xn – tn‖ ≤ ‖xn – vn‖ + ‖vn – tn‖, from (.) and (.) we get

lim
n→∞‖xn – tn‖ = . (.)

Utilizing the relation yn – xn = γn(tn – xn) + σn(Ttn – xn), we have

∥∥σn(Ttn – tn)
∥∥ = ∥∥σn(Ttn – xn) – σn(tn – xn)

∥∥
=
∥∥yn – xn – γn(tn – xn) – σn(tn – xn)

∥∥
=
∥∥yn – xn – ( – βn)(tn – xn)

∥∥
≤ ‖yn – xn‖ + ( – βn)‖tn – xn‖
≤ ‖yn – xn‖ + ‖tn – xn‖,

which, together with (.) and (.), implies that

lim
n→∞

∥∥σn(Ttn – tn)
∥∥ = .

Since lim infn→∞ σn > , we obtain

lim
n→∞‖tn – Ttn‖ = . (.)

Step . We prove that ωw(xn) ⊂ Ω .
Indeed, sinceH is reflexive and {xn} is bounded, there exists at least a weak convergence

subsequence of {xn}. Hence we know that ωw(xn) �= ∅. Now, take an arbitrary w ∈ ωw(xn).
Then there exists a subsequence {xni} of {xn} such that xni ⇀ w. From (.)-(.), (.),
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and (.) we have that uni ⇀ w, vni ⇀ w, tni ⇀ w, Λm
niuni ⇀ w and Δk

nixni ⇀ w, where
m ∈ {, , . . . ,N} and k ∈ {, , . . . ,M}. Utilizing Lemma .(ii), we deduce from tni ⇀ w
and (.) that w ∈ Fix(T). Next, we prove that w ∈⋂N

m= I(Bm,Rm). As a matter of fact,
since Bm is ηm-inverse-strongly monotone, Bm is a monotone and Lipschitz-continuous
mapping. It follows from Lemma . that Rm + Bm is maximal monotone. Let (v, g) ∈
G(Rm + Bm), i.e., g – Bmv ∈ Rmv. Again, since Λm

n un = JRm ,λm,n (I – λm,nBm)Λm–
n un, n ≥ ,

m ∈ {, , . . . ,N}, we have

Λm–
n un – λm,nBmΛm–

n un ∈ (I + λm,nRm)Λm
n un,

that is,


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
) ∈ RmΛm

n un.

In terms of the monotonicity of Rm, we get〈
v –Λm

n un, g – Bmv –


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉≥ 

and hence

〈
v –Λm

n un, g
〉

≥
〈
v –Λm

n un,Bmv +


λm,n

(
Λm–

n un –Λm
n un – λm,nBmΛm–

n un
)〉

=
〈
v –Λm

n un,Bmv – BmΛm
n un + BmΛm

n un – BmΛm–
n un +


λm,n

(
Λm–

n un –Λm
n un

)〉
≥ 〈

v –Λm
n un,BmΛm

n un – BmΛm–
n un

〉
+
〈
v –Λm

n un,


λm,n

(
Λm–

n un –Λm
n un

)〉
.

In particular,

〈
v –Λm

niuni , g
〉 ≥ 〈

v –Λm
niuni ,BmΛm

niuni – BmΛm–
ni uni

〉
+
〈
v –Λm

niuni ,


λm,ni

(
Λm–

ni uni –Λm
niuni

)〉
.

Since ‖Λm
n un –Λm–

n un‖ →  (due to (.)) and ‖BmΛm
n un –BmΛm–

n un‖ →  (due to the
Lipschitz-continuity of Bm), we conclude from Λm

niuni ⇀ w and {λi,n} ⊂ [ai,bi] ⊂ (, ηi)
that

lim
i→∞

〈
v –Λm

niuni , g
〉
= 〈v –w, g〉 ≥ .

It follows from the maximal monotonicity of Bm + Rm that  ∈ (Rm + Bm)w, i.e., w ∈
I(Bm,Rm). Therefore, w ∈⋂N

m= I(Bm,Rm). Next we prove that w ∈⋂M
k=GMEP(Θk ,ϕk ,Ak).

Since Δk
nxn = T (Θk ,ϕk )

rk,n (I – rk,nAk)Δk–
n xn, n≥ , k ∈ {, , . . . ,M}, we have

Θk
(
Δk

nxn, y
)
+ ϕk(y) – ϕk

(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y –Δk

nxn
〉

+

rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉≥ .
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By (A), we have

ϕk(y) – ϕk
(
Δk

nxn
)
+
〈
AkΔ

k–
n xn, y –Δk

nxn
〉
+


rk,n

〈
y –Δk

nxn,Δ
k
nxn –Δk–

n xn
〉

≥ Θk
(
y,Δk

nxn
)
.

Let zt = ty + ( – t)w for all t ∈ (, ] and y ∈ C. This implies that zt ∈ C. Then we have

〈
zt –Δk

nxn,Akzt
〉

≥ ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt
〉
–
〈
zt –Δk

nxn,AkΔ
k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)

= ϕk
(
Δk

nxn
)
– ϕk(zt) +

〈
zt –Δk

nxn,Akzt –AkΔ
k
nxn
〉

+
〈
zt –Δk

nxn,AkΔ
k
nxn –AkΔ

k–
n xn

〉
–
〈
zt –Δk

nxn,
Δk

nxn –Δk–
n xn

rk,n

〉
+Θk

(
zt ,Δk

nxn
)
. (.)

By (.), we have ‖AkΔ
k
nxn –AkΔ

k–
n xn‖ →  as n→ ∞. Furthermore, by themonotonic-

ity of Ak , we obtain 〈zt –Δk
nxn,Akzt –AkΔ

k
nxn〉 ≥ . Then by (A) we obtain

〈zt –w,Akzt〉 ≥ ϕk(w) – ϕk(zt) +Θk(zt ,w). (.)

Utilizing (A), (A), and (.), we obtain

 = Θk(zt , zt) + ϕk(zt) – ϕk(zt)

≤ tΘk(zt , y) + ( – t)Θk(zt ,w) + tϕk(y) + ( – t)ϕk(w) – ϕk(zt)

≤ t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)〈zt –w,Akzt〉

= t
[
Θk(zt , y) + ϕk(y) – ϕk(zt)

]
+ ( – t)t〈y –w,Akzt〉,

and hence

 ≤ Θk(zt , y) + ϕk(y) – ϕk(zt) + ( – t)〈y –w,Akzt〉.

Letting t → , we have, for each y ∈ C,

 ≤ Θk(w, y) + ϕk(y) – ϕk(w) + 〈y –w,Akw〉.

This implies that w ∈GMEP(Θk ,ϕk ,Ak) and hence w ∈⋂M
k=GMEP(Θk ,ϕk ,Ak). Thus, w ∈

Ω =
⋂∞

n= Fix(Tn)∩⋂M
k=GMEP(Θk ,ϕk ,Ak)∩⋂N

m= I(Bm,Rm).
Furthermore, let us show that w ∈ Γ . In fact, define

T̃v =

{
∇f (v) +NCv, if v ∈ C,
∅, if v /∈ C,
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where NCv = {u ∈ H : 〈v – x,u〉 ≥ ,∀x ∈ C}. Then T̃ is maximal monotone and  ∈ T̃v if
and only if v ∈ VI(C,∇f ); see []. Let (v, ṽ) ∈ G(T̃). Then we have ṽ ∈ T̃v = ∇f (v) +NCv,
and hence ṽ – ∇f (v) ∈ NCv. So, we have 〈v – x, ṽ – ∇f (v)〉 ≥  for all x ∈ C. On the other
hand, from tn = PC(vn –λn∇fαn (vn)) and v ∈ C, we get 〈vn –λn∇fαn (vn) – tn, tn – v〉 ≥ , and
hence,〈

v – tn,
tn – vn

λn
+∇fαn (vn)

〉
≥ .

Therefore, from ṽ –∇f (v) ∈NCv and tni ∈ C, we have

〈v – tni , ṽ〉 ≥ 〈
v – tni ,∇f (v)

〉
≥ 〈

v – tni ,∇f (v)
〉
–
〈
v – tni ,

tni – vni
λni

+∇fαni (vni )
〉

=
〈
v – tni ,∇f (v)

〉
–
〈
v – tni ,

tni – vni
λni

+∇f (vni )
〉
– αni〈v – tni , vni〉

=
〈
v – tni ,∇f (v) –∇f (tni )

〉
+
〈
v – tni ,∇f (tni ) –∇f (vni )

〉
–
〈
v – tni ,

tni – vni
λni

〉
– αni〈v – tni , vni〉

≥ 〈
v – tni ,∇f (tni ) –∇f (vni )

〉
–
〈
v – tni ,

tni – vni
λni

〉
– αni〈v – tni , vni〉.

Hence, it is easy to see that 〈v – w, ṽ〉 ≥  as i → ∞. Since T̃ is maximal monotone, we
havew ∈ T̃–, and hencew ∈VI(C,∇f ) = Γ . Consequently,w ∈⋂M

k=GMEP(Θk ,ϕk ,Ak)∩⋂N
i= I(Bi,Ri)∩ Fix(T)∩ Γ =:Ω . This shows that ωw(xn)⊂ Ω .
Step . We prove that xn ⇀ x∗ where {x∗} =VI(Ω ,γ S –μF).
Indeed, take an arbitrary w ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such

that xni ⇀ w. Utilizing (.), we find that, for all p ∈ Ω ,

‖xn+ – p‖

≤
(
 – εn

τ  – γ 

τ

)(‖xn – p‖ + αnb‖p‖
) – βn( – εnτ )

 – βn
‖yn – xn‖

+ εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
≤ (‖xn – p‖ + αnb‖p‖

) + εnδn
〈
(γVp –μFp),xn+ – p

〉
+ εn( – δn)

〈
(γ Sp –μFp),xn+ – p

〉
,

which implies that

〈
(μF – γ S)p,xn – p

〉
≤ 〈

(μF – γ S)p,xn – xn+
〉
+
〈
(μF – γ S)p,xn+ – p

〉
≤ ∥∥(μF – γ S)p

∥∥‖xn – xn+‖ + (‖xn – p‖ + αnb‖p‖) – ‖xn+ – p‖
εn( – δn)

+
δn

 – δn

〈
(γV –μF)p,xn+ – p

〉
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≤ ∥∥(μF – γ S)p
∥∥‖xn – xn+‖

+
(‖xn – xn+‖ + αnb‖p‖)(‖xn – p‖ + ‖xn+ – p‖ + αnb‖p‖)

εn( – δn)

+
δn

 – δn

∥∥(γV –μF)p
∥∥‖xn+ – p‖. (.)

Since αn → , αn
δn

→ , ‖xn – xn+‖ → , and

lim
n→∞

‖xn – xn+‖ + αnb‖p‖
εn

= lim
n→∞

‖xn – xn+‖ + αnb‖p‖
δn

· δn

εn
= ,

from (.) we conclude that

〈
(μF – γ S)p,w – p

〉
= lim

i→∞
〈
(μF – γ S)p,xni – p

〉
≤ lim sup

n→∞
〈
(μF – γ S)p,xn – p

〉
≤ , ∀p ∈ Ω ,

that is,

〈
(μF – γ S)p,w – p

〉≤ , ∀p ∈ Ω . (.)

Since μF – γ S is (μη – γ )-strongly monotone and (μκ + γ )-Lipschitz-continuous, by
Minty’s lemma [] we know that (.) is equivalent to the VIP

〈
(μF – γ S)w,p –w

〉≥ , ∀p ∈ Ω . (.)

This shows that w ∈VI(Ω ,μF – γ S). Taking into account {x∗} =VI(Ω ,μF – γ S), we know
that w = x∗. Thus, ωw(xn) = {x∗}; that is, xn ⇀ x∗.
Next we prove that limn→∞ ‖xn – x∗‖ = . As a matter of fact, utilizing (.) with p = x∗,

we get

∥∥xn+ – x∗∥∥
≤
(
 – εn

τ  – γ 

τ

)(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥) – βn( – εnτ )

 – βn
‖yn – xn‖

+ εnδn
〈(
γVx∗ –μFx∗),xn+ – x∗〉 + εn( – δn)

〈(
γ Sx∗ –μFx∗),xn+ – x∗〉

≤
(
 – εn

τ  – γ 

τ

)(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥) + εnδn

∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥
+ εn( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉

=
(
 – εn

τ  – γ 

τ

)[∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb

∥∥x∗∥∥)]
+ εnδn

∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥ + εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉

≤
(
 – εn

τ  – γ 

τ

)∥∥xn – x∗∥∥ + εnδn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥
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+ εn( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉 + αnb

∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥)

=
(
 – εn

τ  – γ 

τ

)∥∥xn – x∗∥∥ + εn
τ  – γ 

τ
· τ
τ  – γ 

[
δn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥

+ ( – δn)
〈
(γ S –μF)x∗,xn+ – x∗〉] + αnb

∥∥x∗∥∥(∥∥xn – x∗∥∥ + αnb
∥∥x∗∥∥). (.)

Since
∑∞

n= αn <∞,
∑∞

n= εn =∞, and limn→∞〈(γ S–μF)x∗,x∗–xn+〉 =  (due to xn ⇀ x∗),
we deduce that

∑∞
n= αnb‖x∗‖(‖xn – x∗‖ + αnb‖x∗‖) <∞,

∑∞
n= εn

τ–γ 

τ
=∞, and

lim
n→∞

τ
τ  – γ 

[
δn
∥∥(γV –μF)x∗∥∥∥∥xn+ – x∗∥∥ + ( – δn)

〈
(γ S –μF)x∗,xn+ – x∗〉] = .

Therefore, applying Lemma . to (.) we infer that limn→∞ ‖xn – x∗‖ = . This com-
pletes the proof. �

In Theorem ., puttingM =  and N = , we obtain the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let f :
C → R be a convex functional with L-Lipschitz-continuous gradient∇f . LetΘ be a bifunc-
tion from C ×C to R satisfying (A)-(A), ϕ : C → R ∪ {+∞} be a proper lower semicon-
tinuous and convex function with restriction (B) or (B), and A : H → H be μ-inverse-
strongly monotone. Let Ri : C → H be a maximal monotone mapping and Bi : C → H be
ηi-inverse-strongly monotone, for i = , . Let T : C → C be a ξ -strictly pseudocontractive
mapping, S :H → H be a nonexpansive mapping and V :H → H be a ρ-contraction with
coefficient ρ ∈ [, ). Let F :H → H be κ-Lipschitzian and η-strongly monotone with posi-
tive constants κ ,η >  such that  ≤ γ < τ and  < μ < η

κ
where τ =  –

√
 –μ(η –μκ).

Assume that Ω := GMEP(Θ,ϕ,A) ∩ I(B,R) ∩ I(B,R) ∩ Fix(T) ∩ Γ �= ∅. Let {λn} ⊂
[a,b] ⊂ (, L ), {αn} ⊂ (,∞) with

∑∞
n= αn < ∞, {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, ) with

βn + γn + σn = , and {r,n} ⊂ [c,d] ⊂ (, μ), {λi,n} ⊂ [ai,bi] ⊂ (, ηi) for i = , . For
arbitrarily given x ∈H , let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
vn = JR,λ,n (I – λ,nB)JR,λ,n (I – λ,nB)un,
yn = βnxn + γnPC(I – λn∇fαn )vn + σnTPC(I – λn∇fαn )vn,
xn+ = εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)yn, ∀n≥ ,

(.)

where ∇fαn = αnI +∇f for all n≥ . Suppose that
(C) limn→∞ εn = ,

∑∞
n= εn =∞ and limn→∞ 

εn
| – δn–

δn
| = ;

(C) lim supn→∞
δn
εn

< ∞, limn→∞ 
εn

| 
δn
– 

δn–
| =  and limn→∞ 

δn
| – εn–

εn
| = ;

(C) limn→∞ |βn–βn–|
εnδn

=  and limn→∞ |γn–γn–|
εnδn

= ;
(C) limn→∞

|r,n–r,n–|
εnδn

=  and limn→∞
|λi,n–λi,n–|

εnδn
=  for i = , ;

(C) limn→∞ |λn–λn–|
εnδn

= , limn→∞ |λnαn–λn–αn–|
εnδn

=  and (γn + σn)ξ ≤ γn for all n≥ ;
(C) {βn} ⊂ [c,d] ⊂ (, ), limn→∞ αn

δn
=  and lim infn→∞ σn > .

Then we have:
(i) limn→∞ ‖xn+–xn‖

δn
= ;

(ii) ωw(xn) ⊂ Ω ;
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(iii) {xn} converges strongly to a minimizer x∗ of the CMP (.), which is a unique
solution x∗ in Ω to the HVIP

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

In Theorem ., puttingM =N = , we obtain the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : C → R be a convex functional with L-Lipschitz-continuous gradient ∇f . Let Θ be a
bifunction from C × C to R satisfying (A)-(A), ϕ : C → R ∪ {+∞} be a proper lower
semicontinuous and convex function with restriction (B) or (B), and A : H → H be μ-
inverse-strongly monotone. Let R : C → H be a maximal monotone mapping and B :
C → H be η-inverse-strongly monotone. Let T : C → C be a ξ -strictly pseudocontractive
mapping, S :H → H be a nonexpansive mapping and V :H → H be a ρ-contraction with
coefficient ρ ∈ [, ). Let F :H → H be κ-Lipschitzian and η-strongly monotone with posi-
tive constants κ ,η >  such that  ≤ γ < τ and  < μ < η

κ
where τ =  –

√
 –μ(η –μκ).

Assume that Ω :=GMEP(Θ,ϕ,A)∩ I(B,R)∩ Fix(T)∩ Γ �= ∅. Let {λn} ⊂ [a,b]⊂ (, L ),
{αn} ⊂ (,∞)with

∑∞
n= αn <∞, {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, )with βn+γn+σn = , and

{r,n} ⊂ [c,d] ⊂ (, μ), {λ,n} ⊂ [a,b] ⊂ (, η). For arbitrarily given x ∈ H , let {xn}
be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
vn = JR,λ,n (I – λ,nB)un,
yn = βnxn + γnPC(I – λn∇fαn )vn + σnTPC(I – λn∇fαn )vn,
xn+ = εnγ (δnVxn + ( – δn)Sxn) + (I – εnμF)yn, ∀n≥ ,

(.)

where ∇fαn = αnI +∇f for all n≥ . Suppose that
(C) limn→∞ εn = ,

∑∞
n= εn =∞ and limn→∞ 

εn
| – δn–

δn
| = ;

(C) lim supn→∞
δn
εn

< ∞, limn→∞ 
εn

| 
δn
– 

δn–
| =  and limn→∞ 

δn
| – εn–

εn
| = ;

(C) limn→∞ |βn–βn–|
εnδn

=  and limn→∞ |γn–γn–|
εnδn

= ;
(C) limn→∞

|λ,n–λ,n–|
εnδn

=  and limn→∞
|r,n–r,n–|

εnδn
= ;

(C) limn→∞ |λn–λn–|
εnδn

= , limn→∞ |λnαn–λn–αn–|
εnδn

=  and (γn + σn)ξ ≤ γn for all n≥ ;
(C) {βn} ⊂ [c,d] ⊂ (, ), limn→∞ αn

δn
=  and lim infn→∞ σn > .

Then we have:
(i) limn→∞ ‖xn+–xn‖

δn
= ;

(ii) ωw(xn) ⊂ Ω ;
(iii) {xn} converges strongly to a minimizer x∗ of the CMP (.), which is a unique

solution x∗ in Ω to the HVIP

〈
(μF – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

In Theorem ., putting M = N = , μ = , and F ≡ 
 I where I is the identity mapping

on H , we obtain the following.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let f :
C → R be a convex functional with L-Lipschitz-continuous gradient∇f . LetΘ be a bifunc-
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tion from C ×C to R satisfying (A)-(A), ϕ : C → R ∪ {+∞} be a proper lower semicon-
tinuous and convex function with restriction (B) or (B), and A : H → H be μ-inverse-
strongly monotone. Let R : C → H be a maximal monotone mapping and B : C → H be
η-inverse-strongly monotone. Let T : C → C be a ξ -strictly pseudocontractive mapping,
S :H →H be a nonexpansive mapping and V :H →H be a ρ-contraction with coefficient
ρ ∈ [, ). Assume that Ω := GMEP(Θ,ϕ,A) ∩ I(B,R) ∩ Fix(T) ∩ Γ �= ∅. Let  ≤ γ < ,
{λn} ⊂ [a,b] ⊂ (, L ), {αn} ⊂ (,∞) with

∑∞
n= αn < ∞, {εn}, {δn}, {βn}, {γn}, {σn} ⊂ (, )

with βn + γn + σn = , and {r,n} ⊂ [c,d] ⊂ (, μ), {λ,n} ⊂ [a,b] ⊂ (, η). For arbi-
trarily given x ∈H , let {xn} be a sequence generated by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(un, y) + ϕ(y) – ϕ(un) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,
vn = JR,λ,n (I – λ,nB)un,
yn = βnxn + γnPC(I – λn∇fαn )vn + σnTPC(I – λn∇fαn )vn,
xn+ = εnγ (δnVxn + ( – δn)Sxn) + ( – εn)yn, ∀n≥ ,

(.)

where ∇fαn = αnI +∇f for all n≥ . Suppose that
(C) limn→∞ εn = ,

∑∞
n= εn =∞ and limn→∞ 

εn
| – δn–

δn
| = ;

(C) lim supn→∞
δn
εn

< ∞, limn→∞ 
εn

| 
δn
– 

δn–
| =  and limn→∞ 

δn
| – εn–

εn
| = ;

(C) limn→∞ |βn–βn–|
εnδn

=  and limn→∞ |γn–γn–|
εnδn

= ;
(C) limn→∞

|λ,n–λ,n–|
εnδn

=  and limn→∞
|r,n–r,n–|

εnδn
= ;

(C) limn→∞ |λn–λn–|
εnδn

= , limn→∞ |λnαn–λn–αn–|
εnδn

=  and (γn + σn)ξ ≤ γn for all n≥ ;
(C) {βn} ⊂ [c,d] ⊂ (, ), limn→∞ αn

δn
=  and lim infn→∞ σn > .

Then we have:
(i) limn→∞ ‖xn+–xn‖

δn
= ;

(ii) ωw(xn) ⊂ Ω ;
(iii) {xn} converges strongly to a minimizer x∗ of the CMP (.), which is a unique

solution x∗ in Ω to the HVIP

〈
(I – γ S)x∗,p – x∗〉≥ , ∀p ∈ Ω .

Remark . It is obvious that our iterative scheme (.) is very different from Xu’s it-
erative one (.) and Yao et al.’s iterative one (.). Here, Xu’s iterative scheme in [,
Theorem .] is extended to develop our four-step iterative scheme (.) for the CMP
(.) with constraints of finite many GMEPs, finite many variational inclusions and the
fixed point problem of a strict pseudocontraction by combining Korpelevich’s extragra-
dient method, the viscosity approximation method, the hybrid steepest-descent method,
Mann’s iterationmethod, and the gradient-projectionmethod (GPM) with regularization.
It is worth pointing out that under the lack of the assumptions similar to those in [,
Theorem .], e.g., {xn} is bounded, Fix(T) ∩ intC �= ∅ and ‖x – Tx‖ ≥ kDist(x,Fix(T)),
∀x ∈ C for some k > , the sequence {xn} generated by (.) converges strongly to a point
x∗ ∈ ⋂M

k=GMEP(Θk ,ϕk ,Ak) ∩ ⋂N
i= I(Bi,Ri) ∩ Fix(T) ∩ Γ =: Ω , which is a unique solu-

tion of the HVIP (over the fixed point set of strictly pseudocontractive mapping T ), i.e.,
〈(μF – γ S)x∗,p – x∗〉 ≥ , ∀p ∈ Ω .

Remark . Our Theorem . improves, extends, supplements, and develops Xu [,
Theorem .] and Yao et al. [, Theorems . and .] in the following aspects:

http://www.journalofinequalitiesandapplications.com/content/2014/1/444


Ceng et al. Journal of Inequalities and Applications 2014, 2014:444 Page 38 of 40
http://www.journalofinequalitiesandapplications.com/content/2014/1/444

(a) Our HVIP with the unique solution x∗ ∈ Ω satisfying

x∗ = P⋂M
k=GMEP(Θk ,ϕk ,Ak )∩

⋂N
i= I(Bi ,Ri)∩Fix(T)∩Γ

(
I – (μF – γ S)

)
x∗

ismore general than the problemof finding a point x̃ ∈ C satisfying x̃ = PFix(T)Sx̃ in [] and
very different from the problemof finding a point x∗ ∈ Γ satisfying x∗ = PΓ Vx∗ in [, The-
orem .]. It is worth emphasizing that the nonexpansive mapping T in [, Theorems .
and .] is extended to the strict pseudocontraction T and the CMP in [, Theorem .]
is generalized to the setting of finitely many GMEPs, finitely many variational inclusions
and the fixed point problem of a strict pseudocontraction T .
(b)Our four-step iterative scheme (.) for theCMPwith constraints of several problems

is more flexible, more advantageous andmore subtle than Xu’s one-step iterative one (.)
and than Yao et al.’s two-step iterative one (.) because it can be used to solve two kinds
of problems, e.g., the HVIP (over the fixed point set of strictly pseudocontractive map-
ping T ), and the problem of finding a common point of four sets:

⋂M
k=GMEP(Θk ,ϕk ,Ak),⋂N

i= I(Bi,Ri), Fix(T) and Γ . In addition, our Theorem . also drops the crucial require-
ments in [, Theorem .(v)] that Fix(T) ∩ intC �= ∅ and ‖x – Tx‖ ≥ kDist(x,Fix(T)),
∀x ∈ C for some k > .
(c) The techniques for the argument in our Theorem . are very different from [,

Theorems . and .] and from [, Theorem .] because we make use of the properties
of strictly pseudocontractive mappings (see Lemmas . and .), the ones of resolvent
operators and maximal monotone mappings (see Proposition ., Remark ., and Lem-
mas .-.), the ones of averaged mappings (see Propositions . and .), the inclusion
problem  ∈ T̃v (⇔ v ∈ VI(C,A) for maximal monotone operator T̃ ) (see (.)), and the
contractive coefficient estimates for the contractions associated with nonexpansive map-
pings (see Lemma .).
(d) Comparedwith the restrictions on the parameter sequences of [, Theorem.] and

[, Theorem .], respectively, the hypotheses (C)-(C) in our Theorem . are added
because ourTheorem. involves the quite complex problem, i.e., theHVIP (over the fixed
point set of strictly pseudocontractive mapping T ) with constraints of several problems:
CMP (.), finitely many GMEPs and finitely many variational inclusions.
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