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Abstract
In this paper, we study an operator version of the modified Browder-Tikhonov
regularization method for finding a common solution for a system of ill-posed
operator equations involvingm-accretive operators Ai , i = 0, . . . ,N, in a reflexive
Banach space. The convergence rates of the regularized solutions are estimated not
only in the infinite-dimensional space, but also in connection with its
finite-dimensional approximations without the weakly sequential continuity of the
dual mapping.
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1 Introduction
Let X be a real reflexive Banach space with the property of approximations and its dual
space X∗ be strictly convex. The norms of X and X∗ are denoted by the symbol ‖ · ‖. We
write 〈x,x∗〉 instead of x∗(x) for x∗ ∈ X∗ and x ∈ X.

Definition . A Banach space X is said to be strictly convex if for x, y ∈ SX with x �= y,
then

∥∥( – λ)x + λy
∥∥ <  ∀λ ∈ (, ),

where SX is the unit sphere SX = {x ∈ X : ‖x‖ = }.

Definition . A mapping j from X onto X∗ is called the normalized dual mapping of X,
if it satisfies the condition

〈
x, j(x)

〉
= ‖x‖, ∥∥j(x)∥∥ = ‖x‖ ∀x ∈ X.

It is well known that if X∗ is strictly convex then j is single-valued.

Definition . An operator A from X to X is said to be accretive, if

〈
A(x) –A(y), j(x – y)

〉 ≥  ∀x, y ∈D(A),
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whereD(A) denotes the domain of A. An accretive operator A is said to be anm-accretive,
ifR(A+λI) = X for λ > whereR(A) and I denote the range ofA and the identitymapping
of X, respectively.

Definition . An operator A from X to X is said to be
(i) demicontinuous if xn → x in X implies A(xn) ⇀ A(x),
(ii) weakly continuous if xn ⇀ x implies A(xn)⇀ A(x).

It is well known that if A is accretive, and is continuous, demicontinuous, or weakly
continuous, then it ism-accretive [–].

Definition . A mapping A from X to X is called Fréchet differentiable at a point x ∈
D(A), if

A(x + h) –A(x) = B(x)h + o
(‖h‖) ∀x + h ∈D(A),

where B(x) is a bounded linear mapping from X to X. And the Fréchet derivative of A at
x ∈D(A) is denoted by A′(x).

Let {Ai}Ni= be a family of N +  accretive operators in X and satisfy one of the above
mentioned three continuities.
Our problem is to find a common solution of the following operator equations:

Ai(x) = fi, fi ∈R(Ai), i = , . . . ,N . (.)

Set

S =
N⋂
i=

Si,

where Si is the solution set of (.), that is, Si = {x : Ai(x) = fi}.
Suppose that S �= ∅.
Form-accretive operators, some results of the approximating solution for each equation

in (.) under suitable different conditions are investigated in [–], and [].
The system of equations (.) is ill-posed, because each one of the system is ill-posed. By

ill-posedness, we mean that its solutions do not depend continuously on the data (Ai, fi).
Therefore, we have to use the stable methods in order to solve the problem. Some stable
methods of approximating solution for each equation in (.) with m-accretive operator
are investigated in [, ], and [] having the weakly sequentially continuous duality
mapping j. In [–], the authors considered the modified Browder-Tikhonov regular-
ization method with the regularization parameter choice without the property for j, for
the case of demicontinuous or weakly continuous accretive operators Ai satisfying the
condition

∥∥Ai(y) –Ai
(
xi

)
– j∗A′

i
(
xi

)
j
(
y – xi

)∥∥ ≤ τ̃
∥∥y – xi

∥∥∥∥A′
i(x∗)j

(
y – xi

)∥∥ (.)

for y in some neighborhood of Si, where A′
i(xi) is the Fréchet derivative of Ai at xi ∈ Si,

τ̃ is some positive constant, and j∗ is the normalized duality mapping of X∗.
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In many papers, for each i, the regularized solution of (.) is constructed by the follow-
ing operator equation:

Ah
i (x) + αx = f δ

i ,

where (Ah
i , f δ

i ) is the approximation of (Ai, fi) satisfying the conditions:

∥∥Ah
i (x) –Ai(x)

∥∥ ≤ hg
(‖x‖), ∥∥fi – f δ

i
∥∥ ≤ δ, h, δ → , (.)

g(t) is a nonnegative bounded (image of bounded set is bounded) real function, and Ah
i is

also accretive and the same continuity as Ai.
The system of equations (.) can be written in the form

A(x) = f , (.)

where A : X → X := X × · · · × X is defined by A(x) := (A(x), . . . ,AN (x)), and f :=
(f, . . . , fN ).
Note that (.) can be seen as a special case of (.) with N = . However, one potential

advantage of (.) over (.) can be that it might better reflect the structure of the underly-
ing information (f, . . . , fN ) leading to the couplet system, than a plain concatenation into
one single data element f could. In particular, the second advantage is that in estimat-
ing convergence rates of regularization solution, which is showed later, we need only the
smooth property for one amongAi, while for (.) we need the property forAi, i = , . . . ,N .
When for each i, Ai is the nonlinear Fréchet differentiable operator from the Hilbert

space X to the Hilbert space Yi with derivative being uniformly bounded in a neighbor-
hood of a common solution, a stable method for problem (.) is considered in [].
In this paper, we show that a common solution of (.) involving m-accretive opera-

tors Ai, without the weakly sequentially continuous property of j, can be approximated by
the modified Browder-Tikhonov regularization method which is described by the follow-
ing operator equation:

Ah
(x) + α+μ

N∑
i=

(
Ah
i (x) – f δ

i
)
+ αx = f δ

 , μ ≥ , (.)

where α >  is a small regularization parameter. Since the operator

Ah
 + α+μ

N∑
i=

(
Ah
i – f δ

i
)

has the same properties as each Ah
i , it is also m-accretive. Therefore, (.) has a unique

solution denoted by xτ
α , τ = (δ,h), for every value α > .

In the following section, the convergence rates of the regularized solution xτ
α and its

finite-dimensional approximations xτ
α,n are established under an assumption similar to

(.).
The symbols ‘→’ and ‘⇀’ denote strong and weak convergence, respectively, and the

notation a∼ bmeans that a = o(b) and b = o(a).
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2 Main results
Assumption A There exists a constant τ >  such that

∥∥A(x) –A(x) – j∗A′
(x)

∗j(x – x)
∥∥ ≤ τ

∥∥A(x) –A(x)
∥∥, ∀x ∈ X.

Now, we are in a position to introduce the main theorem.

Theorem . Let X be a real reflexive Banach space with the property of approximations
and its dual space X∗ be strictly convex. Let {Ai}Ni= be a family of N + accretive operators in
X and satisfy one of the abovementioned continuities.Assume that the following conditions
hold:

(i) A is Fréchet differentiable at x with Assumption A.
(ii) There exists an element z ∈ X such that

A′
(x)z = –x.

(iii) The parameter α is chosen such that α ∼ (δ + h)μ,  < μ < .
Then, for  < δ + h < , we have

∥∥xτ
α – x

∥∥ = o
(
(δ + h)θ

)
, θ =min{ –μ,μ/}.

Proof From the property of j, Ah
i , (.), (.), (.), and condition (ii), it follows that

∥∥xτ
α – x

∥∥ =
〈
xτ

α – x, j
(
xτ

α – x
)〉

=

α

〈
f δ
 –Ah


(
xτ

α

)
+ α+μ

N∑
i=

(
f δ
i –Ah

i
(
xτ

α

))
– αx, j

(
xτ

α – x
)〉

≤  +Nα+μ

α

[
δ + hg

(‖x‖)]∥∥xτ
α – x

∥∥
+

〈
z,A′

(x)
∗j

(
xτ

α – x
)〉
. (.)

Therefore, {xτ
α} is a bounded set. Since

〈
z,A′

(x)
∗j

(
xτ

α – x
)〉 ≤ ‖z‖∥∥A′

(x)
∗j

(
xτ

α – x
)∥∥,

by virtue of Assumption A, we have

∥∥A′
(x)

∗j
(
xτ

α – x
)∥∥

=
∥∥j∗A′

(x)
∗j

(
xτ

α – x
)∥∥

≤ (τ + )
∥∥A

(
xτ

α

)
– f

∥∥
≤ (τ + )

[∥∥Ah

(
xτ

α

)
– f δ


∥∥ + δ + hg

(∥∥xδ
α

∥∥)]

≤ (τ + )

[
α+μ

N∑
i=

∥∥Ah
i
(
xτ

α

)
– f δ

i
∥∥ + α

∥∥xδ
α

∥∥ + δ + hg
(∥∥xδ

α

∥∥)]
.
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Since α ∼ (δ + h)μ,  < μ < , and g(t) is a bounded function, from (.) and the last in-
equality, we obtain

∥∥xτ
α – x

∥∥ ≤ C(δ + h)–μ
∥∥xτ

α – x
∥∥ +C(δ + h)μ,  < δ + h < ,

where C and C are positive constants. Now, by using the implication

a,b, c≥ ,p > q, ap ≤ baq + c �⇒ ap = o
(
bp/(p–q) + c

)
,

we obtain

∥∥xτ
α – x

∥∥ = o
(
(δ + h)θ

)
, θ =min{ –μ,μ/}.

This completes the proof. �

Now, we consider the problem of approximating (.) by the sequence of finite-
dimensional problems

Ah
,n(x) + α+μ

N∑
i=

(
Ah
i,n(x) – f δ

i,n
)
+ αx = f δ

,n, x ∈ Xn, (.)

where f δ
i,n = Pnf δ

i , Ah
i,n = PnAh

i Pn, Pn is the linear projection from X onto Xn, Pnx → x for
all x ∈ X, ‖Pn‖ ≤ C, C is some positive constant, and {Xn} is the sequence of finite-
dimensional subspaces of X such that

X ⊂ X ⊂ · · · ⊂ X.

It is easy to see thatAh
i,n are alsom-accretive. The aspects of existence and convergence of

the solution xτ
α,n of problem (.), as n → ∞, to the solution xτ

α of the operator equation
(.) for each α >  has been studied in []. The question under which conditions the
sequence {xτ

α,n} converges to a solution x, as α, δ,h→  and n→ ∞, and the convergence
rates of {xτ

α,n} are subject of our further investigations.
In addition, suppose that j satisfies the following inequality:

∥∥j(x) – j(y)
∥∥ ≤ C(R)‖x – y‖ν ,  < ν < , (.)

where C(R), R >  is positive increasing function on R =max{‖x‖,‖y‖} (see []).
Set

γn =
∥∥(I – Pn)x

∥∥.
Theorem . Let X be a real reflexive Banach space with the property of approximations
and its dual space X∗ be strictly convex. Let {Ai}Ni= be a family of N + accretive operators in
X and satisfy one of the abovementioned continuities. Suppose that the following conditions
hold:

(i) A is Fréchet differentiable with Assumption A and the derivative A′
 being

uniformly bounded at x.
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(ii) There exists an element z ∈ X such that

A′
(x)z = –x.

(iii) The parameter α is chosen such that α ∼ (δ + h + γn)μ,  < μ < .
Then, for  < δ + h < , we have

∥∥xτ
α,n – x

∥∥ = o
(
(δ + h + γn)θ + γ ν/

n
)
, θ =min{ –μ,μ/}.

Proof Set xn = Pnx. From (.) and the property jn(x) = j(x) for all x ∈ Xn, where jn = P∗
njPn

is the dual mapping of Xn (see []), it follows that

∥∥xτ
α,n – xn

∥∥ =
〈
xτ

α,n – xn, j
n(xτ

α,n – xn
)〉

=

α

〈
f δ
,n –Ah

,n
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

+
〈
–xn, j

n(xτ
α,n – xn

)〉

+ αμ
N∑
i=

〈
f δ
i,n –Ah

i,n
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉
. (.)

Clearly,

〈
f δ
,n –Ah

,n
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

=
〈
f δ
 – f +A(x) –A

(
xn

)
+A

(
xn

)
–Ah


(
xn

)
, jn

(
xτ

α,n – xn
)〉

+
〈
Ah

(
xn

)
–Ah


(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

≤ [
δ +

∥∥A(x) –A
(
xn

)∥∥ + hg
(∥∥xn∥∥)]∥∥xτ

α,n – xn
∥∥.

Due to condition (i) and xn → x as n→ ∞, we have

∥∥A
(
xn

)
–A(x)

∥∥ ≤ C′
γn,

where C′
 is a positive constant such that

∥∥A′
(x)

∥∥ ≤ C′


for x in a neighborhood of x. Thus, we have

〈
f δ
,n –Ah

,n
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉 ≤ [

δ + hg
(∥∥xn∥∥)

+C′
γn

]∥∥xτ
α,n – xn

∥∥. (.)

Each term of the sum in (.) is estimated as follows:

〈
f δ
i,n –Ah

i,n
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

=
〈
f δ
i –Ah

i
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

=
〈
f δ
i –Ah

i
(
xn

)
+Ah

i
(
xn

)
–Ah

i
(
xτ

α,n
)
, jn

(
xτ

α,n – xn
)〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/440
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≤ 〈
f δ
i –Ah

i
(
xn

)
, jn

(
xτ

α,n – xn
)〉

≤ [
δ + hg

(∥∥xn∥∥)
+

∥∥Ai(x) –Ai
(
xn

)∥∥]∥∥xτ
α,n – xn

∥∥. (.)

By virtue of the continuity of Ai, there exists a positive constant C′ such that

∥∥Ai(x) –Ai
(
xn

)∥∥ ≤ C′, i = , . . . ,N .

From (.)-(.), we see that

∥∥xτ
α,n – xn

∥∥ ≤
[

α

(
δ + h +C′

γn
)
+ αμ

(
δ + hg

(∥∥xn∥∥)
+C′)]∥∥xτ

α,n – xn
∥∥

+
〈
–x, j

(
xτ

α,n – xn
)〉
. (.)

Consequently, {xτ
α,n} is bounded as δ,h,α →  and n → ∞. Obviously, from (.), As-

sumption A, and condition (ii), it follows that

〈
–x, j

(
xτ

α,n – xn
)〉
=

〈
z,A′

(x)
∗[j(xτ

α,n – xn
)
– j

(
xτ

α,n – x
)]〉

+
〈
z,A′

(x)
∗j

(
xτ

α,n – x
)〉

≤ C(R)
∥∥A′

(x)
∗∥∥‖z‖γ ν

n + ‖z‖∥∥A′
(x)

∗j
(
xτ

α,n – x
)∥∥,

where R is a positive constant with R ≥max{‖x‖,‖xτ
α,n‖}.

On the other hand,

∥∥A′
(x)

∗j
(
xτ

α,n – x
)∥∥ ≤ (τ + )

∥∥A
(
xτ

α,n
)
– f

∥∥
≤ (τ + )

[∥∥Ah

(
xτ

α,n
)
– f h

∥∥ + δ + hg
(∥∥xτ

α,n
∥∥)]

.

By virtue of the Hahn-Banach theorem, there exists an element y∗ ∈ X∗ with ‖y∗‖ =  such
that

∥∥Ah

(
xτ

α,n
)
– f h

∥∥ =
〈
Ah

(
xτ

α,n
)
– f h , y

∗〉.
Since

〈
Ah

(
xτ

α,n
)
– f h , y

∗〉 = 〈
Ah

(
xτ

α,n
)
– f h ,

(
I∗ – P∗

n
)
y∗〉 + 〈

Ah

(
xτ

α,n
)
– f h ,P

∗
ny

∗〉

and

∥∥(
I∗ – P∗

n
)
y∗∥∥ ≤ /,

for sufficiently large n, where I∗ is the identity operator in X∗, we have

∥∥Ah

(
xτ

α,n
)
– f h

∥∥ ≤ 
∥∥Ah

,n
(
xτ

α,n
)
– f h,n

∥∥.
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Therefore,

∥∥A′
(x)

∗j
(
xτ

α,n – x
)∥∥ ≤ (τ + )C

[
α+μ

N∑
i=

∥∥Ah
i
(
xτ

α,n
)
– f δ

i
∥∥

+ α
∥∥xτ

α,n
∥∥ + δ + hg

(∥∥xτ
α,n

∥∥)]
.

Thus, (.) has the form

∥∥xτ
α,n – xn

∥∥ ≤ C̃(δ + h + γn)–μ
∥∥xτ

α,n – xn
∥∥ + C̃

[
(δ + h + γn)μ + γ ν

n
]
,

where C̃i >  (i = , ). Consequently, we have

∥∥xτ
α,n – x

∥∥ =O
(
(δ + h + γn)θ + γ ν/

n
)
, θ =min{ –μ,μ/}.

This completes the proof. �
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