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Abstract
In this paper, we identify the unknown source which depends only on spatial variable
for a fractional diffusion equation using the Fourier method. Not alike the previous
literature, we propose to choose the regularization parameter by an a posteriori rule,
with which we can obtain error estimate of Hölder type between the exact solution
and the regularized approximation. Numerical simulations show that the proposed
scheme is effective and stable.
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1 Introduction
Nowadays, the study of fractional differential equations receives a lot of attention. The
interest in fractional calculus and fractional differential equations has rapidly increased
among engineers and scientists due to their vast potential of applications, including phys-
ical, chemical, mechanical engineering, signal processing and systems identification, bi-
ology systems, control theory, finance etc. In fact, it can be noticed that one of the most
successful and concrete applications of fractional calculus and fractional differential equa-
tions is to effectively characterize the anomalous diffusion. It is well known that the or-
dinary diffusion process is intimately related to the validity of the central limit theo-
rem, which is characterized by the linear dependence of the mean square displacement
〈x(t)〉 ∼ κt with the diffusion coefficient κ . However, some diffusion processes, espe-
cially in various complex systems, no longer follow Gaussian behavior. This phenomenon
is named anomalous diffusion which is described by the nonlinear growth of the mean
square displacement x(t) of a diffusion particle over time t: 〈x(t)〉 ∼ καtα , where κα is
the diffusion coefficient, and α is the anomalous diffusion exponent. For different α, the
anomalous diffusion is classified into subdiffusion ( < α < ), normal diffusion (α = ),
superdiffusion (α > ), and ballistic diffusion (α = ) [, ]. And the Fick’s law is inevitable
to be modified in order to precisely describe the anomalous diffusion behavior [].
Much progress has been made for numerically solving space fractional partial differen-

tial equations [–]. Here, instead of further pursuing research in this direction, we dis-
cuss the space fractional inverse diffusion equation, i.e., to determine an unknown source,
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which depends only on the spatial variable, in the one-dimensional space fractional diffu-
sion equation. Determination of an unknown source is obtaining the information about
a physical object or system by observed datum, and it is one of the most important and
well-studied problems in many branches of engineering sciences, e.g., heat conduction,
crack identification, electromagnetic theory, geophysical prospecting and pollutant de-
tection. For the heat source identification, there have been a large number of research
results for different forms of heat source [–]. To the authors’ knowledge, there were
few papers for identifying an unknown source for a fractional diffusion equation by the
regularization method. In [], the authors proved the uniqueness of the identification of
the unknown source dependent only on spatial variable for the fractional diffusion equa-
tion in a bound domain. In [], using the coupled method, the authors identified the
unknown source for the spatial fractional diffusion equations. In [], the authors identi-
fied the unknown source for the time fractional diffusion equation using the mollification
method. In [], the authors identified the unknown source dependent only on time vari-
able in a time-fractional diffusion equation using the boundary element method. In [],
the authors identified the unknown source dependent only on spatial variable for the time-
fractional diffusion equation using the Tikhonov regularizationmethod and the simplified
Tikhonov regularizationmethod, respectively. In [], the authors identified the unknown
source dependent only on spatial variable for the time-fractional diffusion equation using
the truncation regularization method.
In this paper, we consider the following inverse source problems of determining the

unknown source term f (x), in the following a Riesz-Feller space-fractional equation:

⎧⎪⎪⎨
⎪⎪⎩
ut(x, t) – xDα

θ u(x, t) = f (x), x ∈R,  < t < ,

u(x, ) = , x ∈R,

u(x, ) = g(x), x ∈R,

(.)

where the space-fractional derivative xDα
θ is the Riesz-Feller fractional derivative of order

α ( < α < ) and skewness θ (|θ | ≤ min{α,  – α}, θ �= ±) which is defined by the Fourier
transform in [], i.e., []

F
{
xDα

θ f (x); ξ
}
= –ψθ

α (ξ )f̂ (ξ ), (.)

where

ψθ
α (ξ ) = |ξ |αei(sign(ξ )) θπ

 . (.)

Moreover, from [], the Riesz-Feller fractional derivative can be written as

xDα
θ f (x) =

�( + α)
π

{
sin

(α + θ )π


∫ ∞



f (x + ξ ) – f (x)
ξ +α

dξ

+ sin
(α – θ )π



∫ ∞



f (x + ξ ) – f (x)
ξ +α

dξ

}
,  < α < ,

xD
f (x) =

df (x)
dx

, α = ,
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where �(·) is a gamma function. However, for the convenience of numerical calculation,
the Riesz-Feller fractional derivative xDα

θ can also be defined as follows (see []):

xDα
θ f (x) = –


�( – α) sin(απ )

{
sin

(α – θ )π


d
dx

∫ x

–∞
f (ξ )

(x – ξ )α
dξ

+ sin
(α + θ )π


d
dx

∫ ∞

x

f (ξ )
(ξ – x)α

dξ

}
,  < α < ,

xD
θ f (x) = –


π
cos

θπ


d
dx

∫ ∞

–∞
f (ξ )
x – ξ

dξ + sin
θπ


df (x)
dx

, α = ,

xDα
θ f (x) = –


�( – α) sin(απ )

{
sin

(α – θ )π


d

dx

∫ x

–∞
f (ξ )

(x – ξ )α–
dξ

+ sin
(α + θ )π


d

dx

∫ ∞

x

f (ξ )
(ξ – x)α–

dξ

}
,  < α < ,

xD
f (x) =

df (x)
dx

, α = .

f (x) denotes the source term. Our purpose is to identify f (x) from the additional data
u(x, ) = g(x). Since the data g(x) is based on (physical) observation, there must exist mea-
surement errors, and we assume the measured data gδ(x) ∈ L(R), which satisfies

‖g – gδ‖ ≤ δ, (.)

where ‖ · ‖ denotes L-norm and the constant δ >  is a noise level.
The problem is ill-posed in the sense of Hadamard, i.e., small changes in the measured

data can blow up the solution. The ill-posedness can be seen by solving the problem in the
frequency domain. In order to analyze problem (.) in L(R), we define

f̂ (ξ ) :=
√
π

∫ ∞

–∞
e–iξxf (x)dx, (.)

which is the Fourier transform of the function f (x).
Using the Fourier transform, we obtain the solution of (.) as follows:

f̂ (ξ ) =
ψθ

α (ξ )
 – e–ψθ

α (ξ )
ĝ(ξ ), (.)

or equivalently,

f (x) =
√
π

∫ ∞

–∞
eiξx

ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝ(ξ )dξ . (.)

Note that ψθ
α (ξ ) (|θ | ≤ min{α,  – α}, θ �= ±) has a positive real part |ξ |α , the small error

in the high-frequency components will be amplified by the factor |ξ |α as |ξ | → ∞. The
small disturbance for the data g(x) will be amplified infinitely by this factor and lead to the
integral (.) blow-up. So identifying the unknown source f (x) from the measured data
gδ(x) is severely ill-posed. Therefore, when we consider our problem in L(R), the exact
data function ĝ(ξ ) must decay fast. However, the measured data function gδ(x), which is

http://www.journalofinequalitiesandapplications.com/content/2014/1/434


Li et al. Journal of Inequalities and Applications 2014, 2014:434 Page 4 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/434

merely in L(R), does not posses such a decay property in general. Thus if we try to obtain
the unknown source f (x), high frequency components in the error are magnified and can
destroy the solution. It is impossible to solve problem (.) by using classical methods.
In the following section, we will use the Fourier regularization method to deal with the
ill-posed problem. Before doing that, we impose an a priori bound on the input data, i.e.,

∥∥f (·)∥∥Hp ≤ E, p > , (.)

where E >  is a constant, ‖ · ‖Hp denotes the norm in the Sobolev space Hp(R) defined by

∥∥f (·)∥∥Hp :=
(∫ ∞

–∞

∣∣f̂ (ξ )∣∣( + ξ )p dξ

) 

. (.)

In [], the authors used the Fourier method to identify the unknown source which
depends only on the spatial variable for the space-fractional diffusion equation, but the
regularization parameter is an a priori choice rule. Generally speaking, there is a defect in
any a priorimethods; i.e., the a priori choice of the regularization parameter depends ob-
viously on the a priori bound E of the unknown solution. But the a priori bound E cannot
be known exactly in practice, and working with a wrong constant E may lead to the bad
regularization solution. In the present paper, an a posteriori choice of the regularization
parameter will be given. To the authors’ knowledge, there are few papers for choosing the
regularization parameter by the a posteriori rule for this problem.
The Fourier regularization method has been studied for solving various types of inverse

problems. Eldén et al. [] used the truncation method to analyze and compute a one-
dimensional inverse heat conduction problem. Xiong et al. [] used it to consider the
surface heat flux for the sideways heat equation. Fu et al. [] used it to solve the backward
heat conduction problem. Qian et al. [] used it to consider the numerical differentiation.
Regińska and Regiński [] applied it to a Cauchy problem for the Helmholtz equation.
Dou et al. [] used it to identify the unknown heat source dependent only on spatial
variable. Yang and Fu [] used it to identify the unknown heat source dependent only on
time variable. But in these papers, the regularization parameters were an a priori choice
rule. In this paper, we will give the a posteriori choice rule for identifying the unknown
source in the fractional diffusion equation.
The outline of the paper is as follows. Section  gives some auxiliary results, the Fourier

regularization method and an a posteriori parameter choice rule. In Section , some nu-
merical examples are proposed to show the effectiveness of this method. Section  puts
an end to this paper with a brief conclusion.

2 An a posteriori regularization parameter choice rule for the Fourier method
and convergence estimate

It is obvious that the ill-posedness of problem (.) is caused by disturbance of high fre-
quencies. A natural way to stabilize problem (.) is to eliminate all high frequencies from
the solution f (x). We define a regularization approximation solution of problem (.) for
noisy data gδ(x) as follows:

fδ,ξmax (x) :=
√
π

∫ ∞

–∞
eiξx

ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝδ(ξ )χmax dξ , (.)
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which is called the Fourier truncation regularized solution of problem (.), where χmax is
the characteristic function of the interval [–ξmax, ξmax], i.e.,

χmax(ξ ) =

⎧⎨
⎩, |ξ | ≤ ξmax,

, |ξ | > ξmax,
(.)

and ξmax is a constant which will be selected appropriately as regularization parameter.
We consider an a posteriori regularization parameter choice by the discrepancy principle.
Choose the regularization parameter ξmax as the solution of the equation

∥∥(
 – χmax(ξ )

)
ĝδ(ξ )

∥∥ = τδ, τ >  is a constant, (.)

where χmax(ξ ) is defined by (.). To establish the existence and uniqueness of the solution
for equation (.), we need the following lemma and remark.

Lemma . Let ρ(ξmax) := ‖( – χmax(ξ ))ĝδ(ξ )‖, then, for δ > , the following hold:
(a) ρ(ξmax) is a continuous function;
(b) limξmax→∞ ρ(ξmax) = ;
(c) limξmax→ ρ(ξmax) = ‖ĝδ‖;
(d) ρ(ξmax) is a strictly decreasing function.

The proof is very easy and we omit it here.

Remark . To establish the existence and uniqueness of the solution for equation (.),
we always suppose  < δ < ‖gδ‖.

To establish the error estimate for the a posteriori choice rule of the regularization pa-
rameter, we need the following lemmas.

Lemma . If x > , the following inequality holds:


 – e–x

< . (.)

Lemma . If ξ ∈R, the following inequality holds:

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣ ≤ |ξ |α
 – e–|ξ |α cos( θπ

 )
. (.)

Proof With the fact |ez| = eRe(z), we obtain

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣ ≤ |ψθ
α (ξ )|

| – |e–ψθ
α (ξ )|| =

|ξ |α
 – e–Re(ψθ

α (ξ ))
=

|ξ |α
 – e–|ξ |α cos( θπ

 )
. (.)

�

Lemma . If ξmax is the solution of Eq. (.), then the following inequality holds:

|ξmax| ≤
(

E
(τ – )δ

) 
p+α

. (.)
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Proof Due to (.), we obtain

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥
=

(∫
|ξ |≥ξmax

∣∣ĝ(ξ )∣∣ dξ

) 


=
(∫

|ξ |≥ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝ(ξ )
∣∣∣∣
(
 + ξ )p∣∣∣∣ ψθ

α (ξ )
 – e–ψθ

α (ξ )

∣∣∣∣
–(

 + ξ )–p dξ

) 


≤ sup
|ξ |≥ξmax

∣∣∣∣
∣∣∣∣ – e–ψθ

α (ξ )

ψθ
α (ξ )

∣∣∣∣( + ξ )– p


∣∣∣∣E ≤ sup
|ξ |≥ξmax


|ξ |α+p E ≤ 

|ξmax|p+α
E.

So

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ ≤ 
|ξmax|p+α

E. (.)

On the other hand, using the triangle inequality, (.) and (.), we obtain

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ =
∥∥(
 – χmax(ξ )

)(
ĝ(ξ ) – ĝδ(ξ ) + ĝδ(ξ )

)∥∥
=

∥∥(
 – χmax(ξ )

)
ĝδ(ξ ) +

(
 – χmax(ξ )

)(
ĝ(ξ ) – ĝδ(ξ )

)∥∥
≥ ∥∥(

 – χmax(ξ )
)
ĝδ(ξ )

∥∥ –
∥∥(
 – χmax(ξ )

)(
ĝ(ξ ) – ĝδ(ξ )

)∥∥
≥ τδ – δ = (τ – )δ.

So

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ ≥ (τ – )δ. (.)

Combining (.) with (.), we obtain

(τ – )δ ≤ ∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ ≤ 
|ξmax|p+α

E. (.)

So

|ξmax| ≤
(

E
(τ – )δ

) 
p+α

. (.)
�

Lemma . If ξmax is the solution of Eq. (.), then the following inequality also holds:

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ ≤ (τ + )δ. (.)

Proof Due to (.) and (.), we obtain

∥∥(
 – χmax(ξ )

)
ĝ(ξ )

∥∥ =
∥∥(
 – χmax(ξ )

)(
ĝ(ξ ) – ĝδ(ξ ) + ĝδ(ξ )

)∥∥
≤ ∥∥(

 – χmax(ξ )
)(
ĝ(ξ ) – ĝδ(ξ )

)∥∥ +
∥∥(
 – χmax(ξ )

)
ĝδ(ξ )

∥∥
≤ δ + τδ = (τ + )δ. �
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Now we give the main result of this section.

Theorem. Suppose that conditions (.) and (.) hold and take the solution ξmax of Eq.
(.) as the regularization parameter, then we have the following error estimate:

∥∥f (·) – fδ,ξmax (·)
∥∥ ≤

((
(τ + )

) p
p+α + 

(


τ – 

) α
p+α

)

× E
α

p+α δ
p

p+α
(
 + o()

)
as δ → . (.)

Proof Using the Parseval formula and the triangle inequality, we obtain

∥∥f (·) – fδ,ξmax (·)
∥∥ =

∥∥f̂ (·) – f̂δ,ξmax (·)
∥∥

=
∥∥∥∥ ψθ

α (ξ )
 – e–ψθ

α (ξ )
ĝ(ξ ) –

ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝδ(ξ )χmax

∥∥∥∥
≤

∥∥∥∥ ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝ(ξ ) –
ψθ

α (ξ )
 – e–ψθ

α (ξ )
ĝ(ξ )χmax

∥∥∥∥
+

∥∥∥∥ ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝ(ξ )χmax –
ψθ

α (ξ )
 – e–ψθ

α (ξ )
ĝδ(ξ )χmax

∥∥∥∥
=

(∫
|ξ |>ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
∣∣ĝ(ξ )∣∣ dξ

) 


+
(∫

|ξ |≤ξmax

(
ψθ

α (ξ )
 – e–ψθ

α (ξ )

(
ĝ(ξ ) – ĝδ(ξ )

))

dξ

) 


= I + I.

Using the Hölder inequality and (.), we obtain

I =
∫

|ξ |>ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
∣∣ĝ(ξ )∣∣ dξ

=
∫

|ξ |>ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
∣∣ĝ(ξ )∣∣ α

p+α
∣∣ĝ(ξ )∣∣(– α

p+α ) dξ

≤
(∫

|ξ |>ξmax

(∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
∣∣ĝ(ξ )∣∣ α

p+α

) p+α
α

dξ

) α
p+α

×
(∫

|ξ |>ξmax

(∣∣ĝ(ξ )∣∣(– α
p+α )) p+α

p dξ

) p
p+α

=
(∫

|ξ |>ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
(p+α)

α ∣∣ĝ(ξ )∣∣ dξ

) α
p+α

(∫
|ξ |>ξmax

∣∣ĝ(ξ )∣∣ dξ

) p
p+α

=
(∫

|ξ |>ξmax

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

∣∣∣∣
p
α

∣∣∣∣ ψθ
α (ξ )

 – e–ψθ
α (ξ )

ĝ(ξ )
∣∣∣∣


dξ

) α
p+α

(∫
|ξ |>ξmax

∣∣ĝ(ξ )∣∣ dξ

) p
p+α

=
(∫

|ξ |>ξmax

(
 + ξ )–p∣∣∣∣ ψθ

α (ξ )
 – e–ψθ

α (ξ )

∣∣∣∣
p
α (

 + ξ )p∣∣f̂ (ξ )∣∣ dξ

) α
p+α

×
(∫

|ξ |>ξmax

∣∣ĝ(ξ )∣∣ dξ

) p
p+α

http://www.journalofinequalitiesandapplications.com/content/2014/1/434
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≤ sup
|ξ |>ξmax

∣∣∣∣( + ξ )–p∣∣∣∣ |ξ |α
 – e–|ξ |α cos( θπ

 )

∣∣∣∣
p
α

∣∣∣∣
α

p+α

E
α
p+α

(∫
|ξ |>ξmax

∣∣ĝ(ξ )∣∣ dξ

) p
p+α

≤ sup
|ξ |>ξmax

∣∣∣∣ 
 – e–|ξ |α cos( θπ

 )

∣∣∣∣
p
p+α

E
α
p+α

∥∥( – χmax)
∣∣ĝ(ξ )∣∣∥∥ p

p+α

≤ 
p
p+α E

α
p+α

(
(τ + )δ

) p
p+α .

So

I ≤ 
p

p+α E
α

p+α
(
(τ + )δ

) p
p+α = 

p
p+α (τ + )

p
p+α E

α
p+α δ

p
p+α . (.)

Combining (.) with (.), we obtain

I =
(∫

|ξ |≤ξmax

(
(iξ )α

 – e–|ξ |α cos( θπ
 )

(
ĝ(ξ ) – ĝδ(ξ )

))

dξ

) 
 ≤ sup

|ξ |≤ξmax

∣∣∣∣ |ξ |α
 – e–|ξ |α cos( θπ

 )

∣∣∣∣δ
≤ sup

|ξ |≤

∣∣∣∣ |ξ |α
 – e–|ξ |α cos( θπ

 )

∣∣∣∣δ + sup
<|ξ |≤ξmax

∣∣∣∣ |ξ |α
 – e–|ξ |α cos( θπ

 )

∣∣∣∣δ
≤

(


cos( θπ
 )

+ ξα
max

)
δ.

Using (.), we obtain

I ≤
(


cos( θπ

 )
+ ξα

max

)
δ ≤ 

(
E

(τ – )δ

) α
p+α

δ +


cos( θπ
 )

δ

= 
(


τ – 

) α
p+α

E
α

p+α δ
p

p+α +


cos( θπ
 )

δ.

So

I ≤ 
(


τ – 

) α
p+α

E
α

p+α δ
p

p+α +


cos( θπ
 )

δ. (.)

Combining (.) with (.), we obtain

∥∥f (·) – fδ,ξmax (·)
∥∥ ≤ 

p
p+α (τ + )

p
p+α E

α
p+α δ

p
p+α + 

(


τ – 

) α
p+α

E
α

p+α δ
p

p+α +


cos( θπ
 )

δ

=
((

(τ + )
) p
p+α + 

(


τ – 

) α
p+α

)
E

α
p+α δ

p
p+α

(
 + o()

)
as δ → .

The proof of Theorem . is completed. �

3 Several numerical examples
In this section, we present two numerical examples to verify the validity of the theoretical
result of these methods. Moreover, we would like to compare numerical results of the a
posteriori parameter choice (.) with one of the a priori parameter choice rules ξmax =
( E

δ
)


p+α in [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/434
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The numerical examples were constructed in the following way: First we selected the
exact solution f (x) and obtained the exact data function g(x) through solving the forward
problems. Then we added a normally distributed perturbation to each data function and
obtained vectors gδ(x). Finally we obtained the regularization solution through solving
the inverse problem. The bisection method is used to solve Eq. (.) with τ = .. In the
following experiments, we choose x ∈ [–, ].
Suppose that the sequence {gk}nk= represents samples from the function g(x) on an

equidistant grid, then we add a random uniform perturbation to each data, which forms
the vector gδ , i.e.,

gδ = g + ε randn
(
size(g)

)
, (.)

where

g =
(
g(x), . . . , g(xn)

)T , xi = – + (i – )�x,�x =


n – 
, i = , , . . . ,n. (.)

The function ‘randn(·)’ generates arrays of random numbers whose elements are normally
distributed with mean , variance σ  = . ‘randn(size(g))’ returns an array of random en-
tries that is of the same size as g . The total noise level δ can be measured in the sense of
root mean square error (RMSE) according to

δ = ‖gδ – g‖l =
(

n

n∑
i=

(gi – gi,δ)
) 



. (.)

The approximation of the regularization solution is computed by using the fast Fourier
transform algorithm [].

Example  Consider a piecewise smooth unknown source as follows:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
, – ≤ x≤ –,

 – x, – < x ≤ ,

,  < x ≤ .

(.)

Example  Consider the following discontinuous unknown source:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
, – ≤ x≤ –

 ,

, – 
 < x≤ 

 ,

, 
 < x ≤ .

(.)

From Figures -, we find that the smaller ε, the better the computed approximation is,
and the smaller the α is, the better the computed approximation is. These are consistent
with our theoretical analysis.Moreover, we can also easily find that the a posteriori param-
eter choice rule also works well. Finally, from Figures -, it can be seen that the numerical
solutions of Example  are less ideal than these of Example . It is not difficult to see that
thewell-knownGibbs phenomenon and the recovered data near the discontinuities points
are not accurate.
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Figure 1 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 0.3 with Example 1: (a) ε = 0.1, (b) ε = 0.01.

Figure 2 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 0.7 with Example 1: (a) ε = 0.1, (b) ε = 0.01.

Figure 3 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 1.1 with Example 1: (a) ε = 0.1, (b) ε = 0.01.
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Figure 4 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 1.4 with Example 1: (a) ε = 0.1, (b) ε = 0.01.

Figure 5 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 0.3 with Example 2: (a) ε = 0.1, (b) ε = 0.01.

Figure 6 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 0.7 with Example 2: (a) ε = 0.1, (b) ε = 0.01.
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Figure 7 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 1.1 with Example 2: (a) ε = 0.1, (b) ε = 0.01.

Figure 8 The comparison of the numerical effects between the exact solution and its computed
approximations for p = 1, θ = 0.1 and α = 1.4 with Example 2: (a) ε = 0.1, (b) ε = 0.01.

4 Conclusions
In this paper, the Fourier method is used to identify the unknown source term depending
only on the spatial variable for a Riesz-Feller space-fractional diffusion equation. We pro-
pose to choose the regularization parameter by an a posteriori rule using the discrepancy
principle. The corresponding error estimate between the exact solution and the regular-
ization solution is obtained. Numerical tests show that the proposed scheme is accurate,
stable and convergent with respect to decreasing the amount of noise added into the data.
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