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Abstract
First, we will see that if T is a contraction of the k-quasi-∗-classA operator, then the
nonnegative operator D = T∗k(|T2| – |T∗|2)Tk is a contraction whose power sequence
{Dn}∞n=1 converges strongly to a projection P and TT∗kP = 0. Second, it will be proved
that if T is a contraction of the k-quasi-∗-classA operator, then either T has a
non-trivial invariant subspace or T is a proper contraction. Finally it will be proved that
if T belongs to the k-quasi-∗-classA and is a contraction, then T has aWold-type
decomposition and T has the PF property.
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1 Introduction
Throughout this paper, let H and K be infinite dimensional separable complex Hilbert
spaces with inner product 〈·, ·〉. We denote by L(H ,K) the set of all bounded operators
from H into K . To simplify, we put L(H) := L(H ,H). For T ∈ L(H), we denote by kerT the
null space and by T(H) the range of T . The closure of a set M will be denoted by M. We
shall denote the set of all complex numbers by C and the set of all nonnegative integers
by N.
For an operator T ∈ L(H), as usual, by T∗ we mean the adjoint of T and |T | = (T∗T)  .

An operator T is said to be hyponormal, if |T | ≥ |T∗|. An operator T is said to be para-
normal, if

∥∥Tx
∥∥ ≥ ‖Tx‖

for any unit vector x in H []. Further, T is said to be ∗-paranormal, if
∥∥Tx

∥∥ ≥ ∥∥T∗x
∥∥

for any unit vector x in H []. T is said to be a k-paranormal operator if ‖Tx‖k+ ≤
‖Tk+x‖‖x‖k for all x ∈ H , and T is said to be a k-∗-paranormal operator if ‖T∗x‖k+ ≤
‖Tk+x‖‖x‖k , for all x ∈H .
Furuta et al. [] introduced a very interesting class of bounded linear Hilbert space op-

erators: class A defined by
∣∣T∣∣ ≥ |T |,

© 2014 Hoxha and Braha; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/433
mailto:ilmihoxha011@gmail.com
http://creativecommons.org/licenses/by/2.0


Hoxha and Braha Journal of Inequalities and Applications 2014, 2014:433 Page 2 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/433

and they showed that the class A is a subclass of paranormal operators and contains hy-
ponormal operators. Jeon and Kim [] introduced the quasi-classA. An operator T is said
to be a quasi-classA, if

T∗∣∣T∣∣T ≥ T∗|T |T .

We denote the set of quasi-class A byQA. An operator T is said to be a k-quasi-class A,
if

T∗k∣∣T∣∣Tk ≥ T∗k|T |Tk .

We denote the set of quasi-classA byQA(k).
Duggal et al. [], introduced ∗-classA operator. An operator T is said to be a ∗-classA

operator, if

∣∣T∣∣ ≥ ∣∣T∗∣∣.
A ∗-classA is a generalization of a hyponormal operator [, Theorem .], and ∗-classA
is a subclass of the class of ∗-paranormal operators [, Theorem .]. We denote the set of
∗-classA byA∗. Shen et al. in [] introduced the quasi-∗-classA operator: an operator T
is said to be a quasi-∗-classA operator, if

T∗∣∣T∣∣T ≥ T∗∣∣T∗∣∣T .
We denote the set of quasi-∗-classA byQA∗. Mecheri [] introduced the k-quasi-∗-class
A operator.

Definition . An operator T ∈ L(H) is said to be a k-quasi-∗-classA operator, if

T∗k(∣∣T∣∣ – ∣∣T∗∣∣)Tk ≥ O

for a nonnegative integer k.
We denote the set of the k-quasi-∗-classA byQA∗(k).

Example . Let T be an operator defined by

T =

⎛
⎜⎝
  
  
  

⎞
⎟⎠ .

Then |T| – |T∗| �O and so T is not a classA∗. However, T∗k(|T| – |T∗|)Tk =O for
every positive number k, which implies that T is a k-quasi-classA∗ operator.

A contraction is an operator T such that ‖Tx‖ ≤ ‖x‖ for all x ∈H . A proper contraction
is an operator T such that ‖Tx‖ < ‖x‖ for every nonzero x ∈ H []. A strict contraction is
an operator such that ‖T‖ <  (i.e., supx 
=

‖Tx‖
‖x‖ < ). Obviously, every strict contraction is

a proper contraction and every proper contraction is a contraction. An operator T is said
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to be completely non-unitary (c.n.u.) if T restricted to every reducing subspace of H is
non-unitary.
An operator T on H is uniformly stable, if the power sequence {Tn}∞n= converges uni-

formly to the null operator (i.e., ‖Tn‖ → O). An operator T on H is strongly stable, if the
power sequence {Tn}∞n= converges strongly to the null operator (i.e., ‖Tnx‖ → , for every
x ∈H).
A contraction T is of class C· if T is strongly stable (i.e., ‖Tnx‖ →  and ‖Tx‖ ≤ ‖x‖ for

every x ∈ H). If T∗ is a strongly stable contraction, then T is of class C·. T is said to be
of class C· if limn→∞ ‖Tnx‖ >  (equivalently, if Tnx�  for every nonzero x in H). T is
said to be of class C· if limn→∞ ‖T∗nx‖ >  (equivalently, if T∗nx�  for every nonzero x
in H). We define the class Cαβ for α,β = ,  by Cαβ = Cα· ∩C·β . These are the Nagy-Foiaş
classes of contractions [, p.]. All combinations are possible leading to classes C, C,
C, and C. In particular, T and T∗ are both strongly stable contractions if and only if T
is a C contraction. Uniformly stable contractions are of class C.

Lemma . [, Holder-McCarthy inequality] Let T be a positive operator. Then the fol-
lowing inequalities hold for all x ∈ H :
() 〈Trx,x〉 ≤ 〈Tx,x〉r‖x‖(–r) for  < r < ;
() 〈Trx,x〉 ≥ 〈Tx,x〉r‖x‖(–r) for r ≥ .

Lemma . [, Lemma .] Let T be a k-quasi-∗-classA operator,where Tk does not have
a dense range, and let T have the following representation:

T =

(
A B
O C

)
on H = Tk(H)⊕ kerT∗k .

Then A is classA∗ on Tk(H), Ck =O, and σ (T) = σ (A)∪ {}.

2 Main results
Theorem . If T is a contraction of the k-quasi-∗-classA operator, then the nonnegative
operator

D = T∗k(∣∣T∣∣ – ∣∣T∗∣∣)Tk

is a contraction whose power sequence {Dn}∞n= converges strongly to a projection P and
T∗TkP =O.

Proof Suppose that T is a contraction of the k-quasi-∗-classA operator. Then

D = T∗k(∣∣T∣∣ – ∣∣T∗∣∣)Tk ≥O.

Let R = D 
 be the unique nonnegative square root of D, then for every x in H and any

nonnegative integer n, we have

〈
Dn+x,x

〉
=

∥∥Rn+x
∥∥

=
〈
DRnx,Rnx

〉
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=
〈
T∗k∣∣T∣∣TkRnx,Rnx

〉
–

〈
T∗k∣∣T∗∣∣TkRnx,Rnx

〉
≤ ∥∥∣∣T∣∣ 

TkRnx
∥∥ –

∥∥T∗TkRnx
∥∥

≤ ∥∥Rnx
∥∥ –

∥∥T∗TkRnx
∥∥

≤ ∥∥Rnx
∥∥

=
〈
Dnx,x

〉
.

Thus R (and so D) is a contraction (set n = ), and {Dn}∞n= is a decreasing sequence of
nonnegative contractions. Then {Dn}∞n= converges strongly to a projection P. Moreover,

m∑
n=

∥∥T∗TkRnx
∥∥ ≤

m∑
n=

(∥∥Rnx
∥∥ –

∥∥Rn+x
∥∥) = ‖x‖ – ∥∥Rm+x

∥∥ ≤ ‖x‖

for all nonnegative integersm and for every x ∈H . Therefore ‖T∗TkRnx‖ →  as n → ∞.
Then we have

T∗TkPx = T∗Tk lim
n→∞Dnx = lim

n→∞T∗TkRnx = 

for every x ∈H . So that T∗TkP =O. �

A subspace M of space H is said to be non-trivial invariant (alternatively, T-invariant)
under T if {} 
= M 
= H and T(M) ⊆ M. A closed subspace M ⊆ H is said to be a non-
trivial hyperinvariant subspace for T if {} 
=M 
=H and is invariant under every operator
S ∈ L(H), which fulfills TS = ST .
Recently Duggal et al. [] showed that if T is a classA contraction, then either T has a

non-trivial invariant subspace or T is a proper contraction and the nonnegative operator
D = |T| – |T | is strongly stable. Duggal et al. [] extended these results to contractions
in QA. Jeon and Kim [] extended these results to contractions QA(k). Gao and Li []
have proved that if a contraction T ∈A∗ has a no non-trivial invariant subspace, then (a)
T is a proper contraction and (b) the nonnegative operator D = |T| – |T∗| is a strongly
stable contraction. In this paper we extend these results to contractions in the k-quasi-∗-
class A for k > .

Theorem . Let T be a contraction of the k-quasi-∗-classA for k > . If T has a no non-
trivial invariant subspace, then:
() T is a proper contraction;
() the nonnegative operator

D = T∗k(∣∣T∣∣ – ∣∣T∗∣∣)Tk

is a strongly stable contraction.

Proof We may assume that T is a nonzero operator.
() If either kerT or Tk(H) is a non-trivial subspace (i.e., kerT 
= {} or Tk(H) 
=H), then

T has a non-trivial invariant subspace. Hence, if T has no non-trivial invariant subspace,

http://www.journalofinequalitiesandapplications.com/content/2014/1/433
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then T is injective and Tk(H) =H . Furthermore, T is a class A∗ operator. The proof now
follows from [, Theorem .].
() Let T be a contraction of the k-quasi-∗-class A. By the above theorem, we see that

D is a contraction, {Dn}∞n= converges strongly to a projection P, and T∗TkP = O. So,
PT∗kT =O. Suppose T has no non-trivial invariant subspaces. Since kerP is a nonzero
invariant subspace for T whenever PT∗kT =O and T 
=O, it follows that kerP =H . Hence
P =O, and we see that {Dn}∞n= converges strongly to the null operatorO, soD is a strongly
stable contraction. Since D is self-adjoint, D ∈ C. �

Corollary . Let T be a contraction of the k-quasi-∗-class A. If T has no non-trivial
invariant subspace, then both T and the nonnegative operators

D = T∗k(∣∣T∣∣ – ∣∣T∗∣∣)Tk

are proper contractions.

Proof A self-adjoint operator T is a proper contraction if and only if T is a C contrac-
tion. �

Definition . If the contraction T is a direct sum of the unitary and C· (c.n.u.) contrac-
tions, then we say that T has aWold-type decomposition.

Definition . [] An operator T ∈ L(H) is said to have the Fuglede-Putnam commuta-
tivity property (PF property for short) if T∗X = XJ for any X ∈ L(K ,H) and any isometry
J ∈ L(K) such that TX = XJ∗.

Lemma . [, ] Let T be a contraction. The following conditions are equivalent:
() For any bounded sequence {xn}n∈N∪{} ⊂H such that Txn+ = xn the sequence

{‖xn‖}n∈N∪{} is constant;
() T has aWold-type decomposition;
() T has the PF property.

Duggal and Cubrusly in [] have proved: Each k-paranormal contraction operator has
aWold-type decomposition. Pagacz in [] has proved the same and also proved that each
k-∗-paranormal operator has aWold-type decomposition. In this paper, we extend to con-
tractions inQA∗(k).

Theorem . Let T be a contraction of the k-quasi-∗-class A. Then T has a Wold-type
decomposition.

Proof Since T is a contraction operator, the decreasing sequence {TnT∗n}∞n= converges
strongly to a nonnegative contraction. We denote by

S =
(
lim
n→∞TnT∗n

) 
 .

The operatorsT and S are related byT∗ST = S,O ≤ S ≤ I and S is self-adjoint operator.
By [] there exists an isometry V : S(H) → S(H) such that VS = ST∗, and thus SV ∗ = TS,

http://www.journalofinequalitiesandapplications.com/content/2014/1/433
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and ‖SVmx‖ → ‖x‖ for every x ∈ S(H). The isometry V can be extended to an isometry
on H , which we still denote by V .
For an x ∈ S(H), we can define xn = SVnx for n ∈N∪ {}. Then for all nonnegative inte-

gersm we have

Tmxn+m = TmSVm+nx = SV ∗mVm+nx = SVnx = xn,

and for allm ≤ n we have

Tmxn = xn–m.

Since T is a k-quasi-∗-classA operator and the non-trivial x ∈ S(H) we have

‖xn‖ =
∥∥Tkxn+k

∥∥

=
〈
T∗TTk–xn+k ,Tk–xn+k

〉
≤ ∥∥T∗Tkxn+k

∥∥∥∥Tk–xn+k
∥∥

=
〈
T∗k∣∣T∗∣∣Tkxn+k ,xn+k

〉‖xn+‖
≤ 〈

T∗k∣∣T∣∣Tkxn+k ,xn+k
〉‖xn+‖

≤ 〈∣∣T∣∣Tkxn+k ,Tkxn+k
〉 

∥∥Tkxn+k

∥∥(– 
 )‖xn+‖

=
∥∥Tk+xn+k

∥∥∥∥Tkxn+k
∥∥‖xn+‖

= ‖xn–‖‖xn‖‖xn+‖.

Then

‖xn‖ ≤ ‖xn–‖‖xn+‖;

hence

‖xn‖ ≤ ‖xn–‖ 
 ‖xn+‖ 

 ≤ 

(‖xn–‖ + ‖xn+‖

)
.

Thus


(‖xn+‖ – ‖xn‖

) ≥ ‖xn‖ – ‖xn–‖ =
(‖xn‖ – ‖xn–‖

)
+

(‖xn–‖ – ‖xn–‖
)
.

Put

bn = ‖xn‖ – ‖xn–‖,

and we have

bn+ ≥ bn + bn–. ()

Since xn = Txn+, we have

‖xn‖ = ‖Txn+‖ ≤ ‖xn+‖ for every n ∈N,

http://www.journalofinequalitiesandapplications.com/content/2014/1/433


Hoxha and Braha Journal of Inequalities and Applications 2014, 2014:433 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/433

then the sequence {‖xn‖}n∈N∪{} is increasing. From

SVn = SV ∗Vn+ = TSVn+

we have

‖xn‖ =
∥∥SVnx

∥∥ =
∥∥TSVn+x

∥∥ ≤ ∥∥SVn+x
∥∥ ≤ ‖x‖

for every x ∈ S(H) and n ∈ N ∪ {}. Then {‖xn‖}n∈N∪{} is bounded. From this we have
bn ≥  and bn →  as n→ ∞.
It remains to check that all bn equal zero. Suppose that there exists an integer i ≥  such

that bi > . Using the inequality () we get bi+ >  and bi+ > , so there exists ε >  such
that bi+ > ε and bi+ > ε. From that, and using again the inequality (), we can show by
induction that bn > ε for all n > i, thus arriving at a contradiction. So bn =  for all n ∈ N

and thus ‖xn–‖ = ‖xn‖ for all n≥ . Thus the sequence {‖xn‖}n∈N∪{} is constant.
From Lemma ., T has aWold-type decomposition. �

For T ∈ L(H) and x ∈ H , {Tnx}∞n= is called the orbit of x under T , and is denoted by
O(x,T). When the linear span of the orbit O(x,T) is norm dense in H , x is called a cyclic
vector for T and T is said to be a cyclic operator. If O(x,T) is norm dense in H , then x is
called a hypercyclic vector for T . An operator T ∈ L(H) is called hypercyclic if there is at
least one hypercyclic vector for T . We say that an operator T ∈ L(H) is supercyclic if there
exists a vector x ∈H such thatCO(x,T) = {λTnx : λ ∈C,n = , , , . . .} is norm dense inH .

Theorem . Let T ∈ L(H) be a quasi-∗-class A such that σ (T) ⊆ {λ ∈ C : |λ| = }. If the
inverse of T is a quasi-∗-classA, then T is not a supercyclic operator.

Proof Let T ∈ L(H) be a quasi-∗-classA. Since σ (T) ⊆ {λ ∈ C : |λ| = }, T is an invertible
operator. From [] T is normaloid, thus ‖T‖ = r(T) = . Since T– ∈ Q(A∗), ‖T–‖ = .
Consequently, T is unitary. Since no unitary operator on an infinite dimensional Hilbert
space can be supercyclic, we see that T is not a supercyclic operator. �

Remark . The condition that the inverse of the operator T belongs to quasi-∗-classA
cannot be removed from Theorem ., because there are invertible operators from the
quasi-∗-class A, such that their inverse does not belong to the quasi-∗-class A. This is
shown in the following example.

Given a bounded sequence of complex numbers {αn : n ∈ Z} (called weights), let T be
the bilateral weighted shift on an infinite dimensional Hilbert space operator H = l, with
the canonical orthonormal basis {en : n ∈ Z}, defined by Ten = αnen+ for all n ∈ Z.

Lemma . Let T be a bilateral weighted shift operator with weights {αn : n ∈ Z}. Then
T is a quasi-∗-classA operator if and only if

|αn| ≤ |αn+||αn+|

for all n ∈ Z.

http://www.journalofinequalitiesandapplications.com/content/2014/1/433
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Lemma . Let T be a non-singular bilateral weighted shift operator with weights {αn :
n ∈ Z}. Then T– is a quasi-∗-classA operator if and only if

|αn–| ≥ |αn–||αn–|

for all n ∈ Z.

Example . Let us denote by T the bilateral weighted shift operator, with weighted
sequence {αn : n ∈ Z}, given by the relation

αn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if n≤ ,
 if n = ,
 if n = ,
 if n = ,
 if n = ,
 if n≥ .

From Lemma . it follows that T is a quasi-∗-class A operator. Since {αn : n ∈ Z} is a
bounded sequence of positive numbers with inf{αn : n ∈ Z} > , T is an invertible opera-
tor [, Proposition II..]. But T– is not a quasi-∗-class A operator, which follows from
Lemma ., for n = .

Theorem . Let T ∈ L(H) be a quasi-∗-class A operator and D = {z : |z| < }. If T∗ is a
hypercyclic operator and for every hyperinvariantM ⊆H of T , the inverse of T |M ,whenever
it exists, is a normaloid operator, then σ (T |M)∩D 
= ∅ and σ (T |M)∩ (C \D) 
= ∅.

Proof Assume that T∗ is a hypercyclic operator. Then there exists a vector x ∈ H such
that {(T∗)nx}∞n= = H . Let S = T |M for some closed T-invariant subspace and let P be the
orthogonal projection of H ontoM. Since (S∗)nPx = P(T∗)nx for each n ∈ N∪ {} we have

{(
S∗)n(Px)}∞

n= = P
{(
T∗)nx}∞

n= = P(H) =M,

thus S∗ is hypercyclic.
From [, Corollary ] we have ‖S∗‖ > . Since S is a quasi-∗-class A, S is normaloid,

thus r(T |M) = ‖S‖ = ‖S∗‖ > . Therefore σ (T |M)∩ (C \D) 
= ∅.
Suppose that σ (T |M) ⊂ (C \ D). Then σ (S–) ⊂ D, and since S– is normaloid, ‖S–‖ =

r(S–) ≤ . Since S∗ is hypercyclic, from [, Theorem ] (S∗)– is hypercyclic, so
‖(S∗)–‖ > . Thus ‖S–‖ = ‖(S∗)–‖ > . This is a contradiction, therefore σ (T |M) ∩D 
= ∅.

�
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9. Sz-Nagy, B, Foiaş, C: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam (1970)
10. McCarthy, CA: Cp . Isr. J. Math. 5, 249-271 (1967)
11. Duggal, BP, Jeon, IH, Kubrusly, CS: Contractions satisfying the absolute value property |A|2 ≤ |A2|. Integral Equ. Oper.

Theory 49, 141-148 (2004)
12. Duggal, BP, Jeon, IH, Kim, IH: On quasi-classA contractions. Linear Algebra Appl. 436, 3562-3567 (2012)
13. Jeon, IH, Kim, IH: On k-quasi-classA contractions. Korean J. Math. 22(1), 85-89 (2014)
14. Gao, F, Li, X: On ∗-classA contractions. J. Inequal. Appl. 2013, 239 (2013). doi:10.1186/1029-242X-2013-239
15. Duggal, BP: On characterising contractions with C10 pure part. Integral Equ. Oper. Theory 27, 314-323 (1997)
16. Duggal, BP, Cubrusly, CS: Paranormal contractions have property PF. Far East J. Math. Sci. 14, 237-249 (2004)
17. Pagacz, P: On Wold-type decomposition. Linear Algebra Appl. 436, 3065-3071 (2012)
18. Durszt, E: Contractions as restricted shifts. Acta Sci. Math. 48, 129-134 (1985)
19. Conway, JB: The Theory of Subnormal Operators. Mathematical Surveys and Monographs, vol. 36. Am. Math. Soc.,

Providence (1991)
20. Miller, VG: Remarks on finitely hypercyclic and finitely supercyclic operators. Integral Equ. Oper. Theory 29, 110-115

(1997)

doi:10.1186/1029-242X-2014-433
Cite this article as: Hoxha and Braha: The k-quasi-∗-classA contractions have property PF. Journal of Inequalities and
Applications 2014 2014:433.

http://www.journalofinequalitiesandapplications.com/content/2014/1/433
http://dx.doi.org/10.1186/1029-242X-2013-239

	The k-quasi-*-class A contractions have property PF
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Competing interests
	Authors' contributions
	References


