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Abstract
In this paper, we investigate dynamic optimization problems featuring both
stochastic control and optimal stopping in a finite time horizon. The paper aims to
develop new methodologies, which are significantly different from those of mixed
dynamic optimal control and stopping problems in the existing literature. We
formulate our model to a free boundary problem of a fully nonlinear equation.
Furthermore, by means of a dual transformation for the above problem, we convert
the above problem to a new free boundary problem of a linear equation. Finally, we
apply the theoretical results to some challenging, yet practically relevant and
important, risk-sensitive problems in wealth management to obtain the properties of
the optimal strategy and the right time to achieve a certain level over a finite time
investment horizon.
MSC: 35R35; 91B28; 93E20

Keywords: optimal investment; optimal stopping; dual transformation; free
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1 Introduction
Optimal stopping problems, a variant of optimization problems allowing investors freely
to stop before or at thematurity in order tomaximize their profits, have been implemented
in practice and given rise to investigation in academic areas such as science, engineering,
economics and, particularly, finance. For instance, pricing American-style derivatives is
a conventional optimal stopping time problem where the stopping time is adapted to the
information generated over time. The underlying dynamic system is usually described by
stochastic differential equations (SDEs). The research on optimal stopping, consequently,
has mainly focused on the underlying dynamic system itself. In the field of financial in-
vestment, however, an investor frequently runs into investment decisions where investors
stop investing in risky assets so as tomaximize their expected utilities with respect to their
wealth over a finite time investment horizon. These optimal stopping problems depend
on the underlying dynamic systems as well as investors’ optimization decisions (controls).
This naturally results in amixed optimal control and stopping problem, and Ceci and Bas-
san [] is one of the typical works along this line of research. In the general formulation of
such models, the control is mixed, composed of a control and a stopping time. The theory
has also been studied in Bensoussan and Lions [], Elliott and Kopp [], Yong and Zhou []
and Fleming and Soner [], and applied in finance in Dayanik and Karatzas [], Henderson
and Hobson [], Li and Zhou [], Li and Wu [, ] and Shiryaev, Xu and Zhou [].
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In the finance field, finding an optimal stopping time point has been extensively stud-
ied for pricing American-style options, which allow option holders to exercise the options
before or at the maturity. Typical examples that are applicable include, but are not limited
to, those presented in Chang, Pang and Yong [], Dayanik and Karatzas [] and Rüschen-
dorf andUrusov []. In themathematical finance literature, choosing an optimal stopping
time point is often related to a free boundary problem for a class of diffusions (see Flem-
ing and Soner [] and Peskir and Shiryaev []). In many applied areas, especially in more
extensive investment problems, however, one often encounters more general controlled
diffusion processes. In real financialmarkets, the situation is evenmore complicatedwhen
investors expect to choose as little time as possible to stop portfolio selection over a given
investment horizon so as to maximize their profits (see Samuelson [], Karatzas and Kou
[], Karatzas and Sudderth [], Karatzas and Wang [], Karatzas and Ocone [], Ceci
and Bassan [], Henderson [], Li and Zhou [] and Li and Wu [, ]).
The initial motivation of this paper comes from our recent studies on choosing an opti-

mal point atwhich an investor stops investing and/or sells all his risky assets (seeChoi, Koo
and Kwak [] and Henderson and Hobson []). The objective is to find an optimization
process and stopping time so as to meet certain investment criteria, such as, the maxi-
mum of an expected utility value before or at the maturity. This is a typical problem in
the area of financial investment. However, there are fundamental difficulties in handling
such optimization problems. Firstly, our investment problems, which are different from
the classical American-style options, involve optimization process over the entire time
horizon. Secondly, they involve the portfolio in the drift and volatility terms so that the
problem of multi-dimensional financial assets are more realistic than those addressed in
finance literature (see Capenter []). Therefore, it is difficult to solve these problems ei-
ther analytically or numerically using current methods developed in the framework of
studying American-style options. In our model, the corresponding HJB equation of the
problem is formulated into a variational inequality of a fully nonlinear equation.Wemake
a dual transformation for the problem to obtain a new free boundary problem with a lin-
ear equation. Tackling this new free boundary problem, we establish the properties of the
free boundary and optimal strategy for the original problem.
The remainder of the paper is organized as follows. In Section , the mathematical for-

mulation of the model is presented, and the corresponding HJB equation is posed. In Sec-
tion , a dual transformation converts the free boundary problem of a fully nonlinear PDE
to a new free boundary problem of a linear equation but with the complicated constraint
(.). In Section  we simplify the constraint condition in (.) to obtain a new free
boundary problem with a simple condition (.). Moreover, we show that the solution of
problem (.) must be the solution of problem (.). Section  is devoted to the study of
the free boundary of problem (.). In Section , we go back to the original problem (.)
to show that its free boundary is decreasing and differentiable. Moreover, we present its
financial meanings. Section  concludes the paper.

2 Model formulation
2.1 The manager’s problem
The manager operates in a complete, arbitrage-free, continuous-time financial market
consisting of a riskless asset with instantaneous interest rate r and n risky assets. The
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risky asset prices Si are governed by the stochastic differential equations

dSi,t
Si,t

= (r +μi)dt + σ ′
i dW

j
t , for i = , , . . . ,n, (.)

where the interest rate r, the excess appreciation rates μi, and the volatility vectors σi are
constants, W is a standard n-dimensional Brownian motion. In addition, the covariance
matrix � = σ ′σ is strongly nondegenerate.
A trading strategy for the manager is an n-dimensional process πt whose ith compo-

nent, where πi,t is the holding amount of the ith risky asset in the portfolio at time t. An
admissible trading strategy πt must be progressively measurable with respect to {Ft} such
that Xt ≥ . Note that Xt = π,t +

∑n
i= πi,t , where π,t is the amount invested in the money

market. The value of the wealth Xt evolves according to

dXt =
(
rXt +μ′πt

)
dt + π ′

tσdWt . (.)

In addition, short-selling is allowed.
The manager controls assets with initial value x. The manager’s dynamic problem is to

choose an admissible trading strategy πt and a stopping time τ to maximize his expected
utility of the exercise wealth:

V (x, t) =max
π ,τ

E
[
e–r(τ–t)U(Xτ +K )

]
, (.)

where r >  is the interest and K is a positive constant (e.g., a fixed salary),

U(x) =

γ
xγ ,  < γ < ,

is the utility function.

2.2 HJB equation
Applying the dynamic programming principle, we get the following Hamilton-Jacobi-
Bellman (HJB) equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{–∂tV –maxπ [  (π
′�π )∂xxV +μ′π∂xV ] – rx∂xV + rV ,V – 

γ
(x +K )γ } = ,

x > , < t < T ,
V (, t) = 

γ
Kγ ,  < t < T ,

V (x,T) = 
γ
(x +K )γ , x > .

(.)

Suppose that V (x) is strictly increasing and strictly concave, i.e., ∂xV > , ∂xxV < . Note
that the gradient of π ′�π with respect to π

∇π

(
π ′�π

)
= �π ,

then

π∗ = –�–μ
∂xV (x, t)
∂xxV (x, t)

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Thus (.) becomes

⎧⎪⎨
⎪⎩
min{–∂tV + 

a
 (∂xV )

∂xxV – rx∂xV + rV ,V – 
γ
(x +K )γ } = , x > , < t < T ,

V (, t) = 
γ
Kγ ,  < t < T ,

V (x,T) = 
γ
(x +K )γ , x > ,

(.)

where a = μ′�–μ. Nowwe find a condition under which the free boundary exists. A sim-
ple calculation shows

U(x +K ) =

γ
(x +K )γ ,

∂xU(x +K ) = (x +K )γ–,

∂xxU(x +K ) = –( – γ )(x +K )γ–.

It follows that

–∂tU(x +K ) +


a

(∂xU(x +K ))

∂xxU(x +K )
– rx∂xU(x +K ) + rU(x +K )

= –
a




 – γ
(x +K )γ – rx(x +K )γ– +

r
γ
(x +K )γ

≥ .

Eliminating 
γ
(x +K )γ– yields

–
aγ

( – γ )
(x +K ) – rγ x + r(x +K ) ≥ ,

i.e.,
(

aγ
( – γ )

– r + rγ
)
x≤

(
–

aγ
( – γ )

+ r
)
K . (.)

If

aγ
( – γ )

– r ≤ –rγ , (.)

then (.) holds for any x > , the solution to problem (.) is U(x +K ).
If

aγ
( – γ )

– r ≥ , (.)

then (.) is impossible for any x > . Therefore, in this case, the solution to problem (.)
satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

–∂tV + a


(∂xV )
∂xxV – rx∂xV + rV = , x > , < t < T ,

V (, t) = 
γ
Kγ ,  < t < T ,

∂xV (+∞, t) = ,  < t < T ,
V (x,T) = 

γ
(x +K )γ , x > .

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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We summarize the above results in the following theorem.

Theorem . In the following cases, problem (.) has a trivial solution.
() If (.) holds, the solution to problem (.) is U(x +K ).
() If (.) holds, the solution to problem (.) is the solution to problem (.) as well.

Recalling (.) and (.), in the following we always assume that

–rγ <
aγ

( – γ )
– r < . (.)

In the case of (.), there exists a free boundary.

3 Dual transformation
Define a dual transformation of V (x, t) (see Pham [])

v(y, t) :=max
x>

(
V (x, t) – xy

)
,  ≤ y ≤ y. (.)

If ∂xV (·, t) is strictly decreasing, which is equivalent to the strict concavity of V (·, t) (we
will show this fact in the end of Section ), then the maximum in (.) will be attained at
just one point

x = I(y, t), (.)

which is the unique solution of

y = ∂xV (x, t). (.)

Using the coordinate transformation (.) yields

v(y, t) =
[
V (x, t) – x∂xV (x, t)

]|x=I(y,t) = V
(
I(y, t), t

)
– yI(y, t). (.)

Differentiating with respect to y and t, we get

∂yv(y, t) = ∂xV
(
I(y, t), t

)
∂yI(y, t) – y∂yI(y, t) – I(y, t) = –I(y, t), (.)

∂yyv(y, t) = –∂yI(y, t) = –


∂xxV (I(y, t), t)
, (.)

∂tv(y, t) = ∂tV
(
I(y, t), t

)
+ ∂xV

(
I(y, t), t

)
∂tI(y, t) – y∂tI(y, t) = ∂tV

(
I(y, t), t

)
. (.)

Substituting (.) into (.), we have

V
(
I(y, t), t

)
= v(y, t) – y∂yv(y, t). (.)

By the transformation (.) and (.)-(.), the HJB equation in (.) becomes

min

{
–∂tv –

a


y∂yyv + rv, v – y∂yv –


γ
(K – ∂yv)γ

}
= ,  < y < y,  < t < T . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Now we derive the terminal condition for v(y,T). Note that

V (x,T) =

γ
(x +K )γ , (.)

so ∂xV (x,T) = (x +K )γ–, i.e., [∂xV (x,T)]


γ– = x +K . It follows that

y


γ– –K = x = I(y,T) = –∂yv(y,T), (.)

and by (.), we have

v(y,T) = V
(
I(y,T),T

)
+ y∂yv(y,T)

=

γ
y

γ
γ– + y

(
K – y


γ–

)

=
 – γ

γ
y

γ
γ– +Ky. (.)

Next, we determine the upper bound y for y. In fact, V (x, t) = 
γ
(x+K )γ in the neighbor-

hood of x = , so the upper bound is

y = ∂xV (, t) = Kγ–. (.)

In addition, we need to determine the value v(y, t). By (.), we also have

v(y, t) = V (, t) + y ·  =

γ
Kγ . (.)

Combining (.) and (.)-(.), we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{–∂tv – a
 y

∂yyv + rv, v – y∂yv – 
γ
(K – ∂yv)γ } = ,

 < y < Kγ–,  < t < T ,
v(Kγ–, t) = 

γ
Kγ ,  < t < T ,

v(y,T) = –γ

γ
y

γ
γ– +Ky,  < y < Kγ–.

(.)

In (.), the equation is a linear parabolic equation, but the constraint condition

v ≥ y∂yv +

γ
(K – ∂yv)γ (.)

is very complicated. In the following section, we simplify this condition.

Remark The equation in (.) is degenerate on the boundary y = . According to
Fichera’s theorem (see Oleı̆nik and Radkević []), we must not put the boundary con-
dition on y = .

4 Simplifying the complicated constraint condition
Note that in the domain {(x, t)|V (x, t) = 

γ
(x +K )γ }, we have

∂xV (x, t) = (x +K )γ–, if V (x, t) =

γ
(x +K )γ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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By the y coordinate,

y = (K – ∂yv)γ–, if v – y∂yv =

γ
(K – ∂yv)γ . (.)

Deriving ∂yv from the first equality in (.) yields

∂yv = K – y


γ– , (.)

and then substituting (.) into (.), we have

v ≥  – γ

γ
y

γ
γ– +Ky. (.)

This is the simplified constraint condition. We assume that u(y, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩
min{–∂tu – a

 y
∂yyu + ru,u – –γ

γ
y

γ
γ– –Ky} = , (y, t) ∈Qy,

u(Kγ–, t) = 
γ
Kγ ,  < t < T ,

u(y,T) = –γ

γ
y

γ
γ– +Ky,  < y < Kγ–,

(.)

where

Qy =
(
,Kγ–) × (,T).

Moreover, we split the domain Qy into two parts; denote (see Figure )

ERy =
{
u(y, t) =

 – γ

γ
y

γ
γ– +Ky

}
, exercise region, (.)

CRy =
{
u(y, t) >

 – γ

γ
y

γ
γ– +Ky

}
, continuation region. (.)

Theorem . The solution u(x, t) to problem (.) is the solution to problem (.) as well.

In order to prove this theorem, we first show the following two lemmas.

Figure 1 CRy and ERy .

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Lemma . For any (y, t) ∈Qy, we have

∂yu = K – y


γ– , (y, t) ∈ ERy, (.)

∂yu≤ K – y


γ– , (y, t) ∈ CRy. (.)

Proof Equation (.) follows from the definition (.) directly. Also, in CRy

–∂tu –
a


y∂yyu + ru = , (y, t) ∈ CRy. (.)

Differentiating (.) to y yields

–∂t(∂yu) –
a


y∂yy(∂yu) – ay∂y(∂yu) + r(∂yu) = , (y, t) ∈ CRy. (.)

Note that

∂yu(y,T) = K – y


γ– ,  < y < Kγ–, (.)

∂yu(y, t) = K – y


γ– , (y, t) ∈ ∂(CRy)∩Qy, (.)

where ∂(CRy) is the boundary of CRy.
Denote w = K – y


γ– , we further show that w is a supersolution to problem (.)-(.)

by

∂yw =


 – γ
y


γ– – =


 – γ

y
–γ
γ– ,

∂yyw = –
 – γ

( – γ )
y


γ– –,

and

–∂tw –
a


y∂yyw – ay∂yw + rw

=
a


 – γ

( – γ )
y


γ– – a


 – γ

y


γ– + r
(
K – y


γ–

)

= rK +
(

aγ
( – γ )

– r
)
y


γ– >  (by the first inequality in (.)).

So w is a supersolution of (.)-(.). This means that (.) holds. �

Lemma . The function

y∂yu +

γ
(K – ∂yu)γ

is increasing with respect to ∂yu if ∂yu≤ K – y


γ– .

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Proof Define a function

f (z) = yz +

γ
(K – z)γ , z ≤ K – y


γ– .

Then

f ′(z) = y – (K – z)γ– ≥ 

if z ≤ K – y


γ– . �

Proof of Theorem . Note that, from (.),

–∂tu –
a


y∂yyu + ru ≥ , (y, t) ∈ ERy, (.)

u =
 – γ

γ
y

γ
γ– +Ky, (y, t) ∈ ERy. (.)

Rewrite (.) as

u = y
(
K – y


γ–

)
+


γ

(
K –

[
K – y


γ–

])γ , (y, t) ∈ ERy. (.)

Applying (.) to (.), we have

u = y∂yu +

γ
(K – ∂yu)γ , (y, t) ∈ ERy. (.)

On the other hand, from (.), in CRy

–∂tu –
a


y∂yyu + ru = , (y, t) ∈ CRy, (.)

u≥  – γ

γ
y

γ
γ– +Ky, (y, t) ∈ CRy. (.)

We rewrite (.) as

u≥ y
(
K – y


γ–

)
+


γ

(
K –

[
K – y


γ–

])γ , (y, t) ∈ CRy. (.)

Applying (.) and Lemma ., we get

u≥ y∂yu +

γ
(K – ∂yu)γ , (y, t) ∈ CRy. �

5 The free boundary of problem (4.5)
Denote

W ,
p,loc(Qy) =

{
u(y, t) : u, ∂yu, ∂yyu, ∂tu ∈ Lp(Q),∀Q⊂⊂Qy

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Theorem . Problem (.) has a unique solution u ∈W ,
p,loc(Qy)∩ (Qy\{y = }), and

 – γ

γ
y

γ
γ– +Ky ≤ u(y, t) ≤ eA(T–t)

(
 – γ

γ
y

γ
γ– +Ky

)
, (.)

∂y

(
u –

 – γ

γ
y

γ
γ– –Ky

)
≤ , (.)

∂t

(
u –

 – γ

γ
y

γ
γ– –Ky

)
≤ , (.)

where A = a


γ

(–γ ) .

Proof According to the existence and uniqueness ofW ,
p,loc(Qy)∩ (Qy\{y = }), the solution

for system (.) can be proved by a standard penalty method (see Friedman []). Here,
we omit the details. The first inequality in (.) follows from (.) directly, and now we
prove the second inequality in (.). Denote

W (y, t) := eA(T–t)
(
 – γ

γ
y

γ
γ– +Ky

)
,

where A >  to be determined later on. We first show that W (y, t) is a supersolution to
problem (.). In fact,

–∂tW –
a


y∂yyW + rW

= AeA(T–t)
(
 – γ

γ
y

γ
γ– +Ky

)
+ eA(T–t)

[(
–
a




 – γ
+ r

 – γ

γ

)
y

γ
γ– + rKy

]

≥ eA(T–t)
(
A
 – γ

γ
–
a




 – γ

)
y

γ
γ– = 

if

A =
a


γ

( – γ )
.

So,W (y, t) is a supersolution to problem (.). Hence, the second inequality in (.) holds.
In addition, inequality (.) follows from (.) and (.). In order to prove (.), we de-

fine

w(y, t) = u(y, t – δ) for small δ > .

From (.), we know that w(x, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩
min{–∂tw – a

 y
∂yyw + rw,w – –γ

γ
y

γ
γ– –Ky} = , y > , δ < t < T ,

w(Kγ–, t) = 
γ
Kγ , δ < t < T ,

w(y,T) = u(y,T – δ) ≥ –γ

γ
y

γ
γ– +Ky,  < y < Kγ–.

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Figure 2 y = h(t), ϕ(y) = 1–γ
γ y

γ
γ –1 + Ky.

Applying the comparison principle to variational inequalities (.) and (.) with respect
to terminal values (see Friedman []), we obtain

u(y, t) ≤ w(y, t) = u(y, t – δ), y > , δ < t < T .

Thus ∂tu ≤  and (.) holds. �

Based on (.), we define the free boundary

h(t) :=min

{
y
∣∣∣ u(y, t) =  – γ

γ
y

γ
γ– +Ky

}
,  ≤ t < T .

Theorem . The free boundary function h(t) is monotonic decreasing (Figure ) with

h(T) := lim
t→T–

h(t) =
(

rK
a



–γ

– r –γ

γ

)γ–

. (.)

Moreover, h(t) ∈ C[,T]∩C∞[,T).

Proof First, from (.), h(t) is monotonic decreasing. Denote

ϕ(y) :=
 – γ

γ
y

γ
γ– +Ky.

In ERy,

–∂tϕ –
a


y∂yyϕ + rϕ =

(
–
a




 – γ
+ r

 – γ

γ

)
y

γ
γ– + rKy ≥ ,

so

h(t) ≥
(

rK
a



–γ

– r –γ

γ

)γ–

,  ≤ t < T .

http://www.journalofinequalitiesandapplications.com/content/2014/1/432
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Hence,

h(T) ≥
(

rK
a



–γ

– r –γ

γ

)γ–

.

In order to prove (.), we suppose

h(T) >
(

rK
a



–γ

– r –γ

γ

)γ–

, (.)

then it is not hard to get

∂tu(y,T) > , for h(T) < y <
(

rK
a



–γ

– r –γ

γ

)γ–

,

which is a contradiction to (.). Therefore, the desired result (.) holds.
Finally, the proof of h(t) ∈ C[,T] ∩ C∞[,T) is similar to the result in Friedman [].

Here, we omit the details. �

Theorem . For any (y, t) ∈Qy, we have

∂yyu(y, t) > . (.)

Proof If (y, t) ∈ ERy, then u = –γ

γ
y

γ
γ– +Ky. Thus,

∂yyu =


 – γ
y


γ– – > , (y, t) ∈ ERy.

If (y, t) ∈ CRy, then

–∂tu –
a


y∂yyu + ru = , (y, t) ∈ CRy. (.)

Differentiating (.) with respect to y twice yields

–∂t(∂yyu) –
a


y∂yy(∂yyu) – ay∂y(∂yyu) +

(
r – a

)
(∂yyu) = , (y, t) ∈ CRy. (.)

Note that

∂yyu(y, t) > , t = T or y = h(t).

Applying the minimum principle, we obtain

∂yyu =


 – γ
y


γ– – > , (y, t) ∈ CRy. �

Remark From (.), we have ∂xxV < , which means V is strict concave to x.

http://www.journalofinequalitiesandapplications.com/content/2014/1/432


Jian et al. Journal of Inequalities and Applications 2014, 2014:432 Page 13 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/432

Figure 3 x = g(t).

6 The free boundary of original problem (2.6)
Recalling on the free boundary y = h(t)

u(y, t) =
 – γ

γ
y

γ
γ– +Ky, y = h(t), (.)

∂yu(y, t) = –y


γ– +K , y = h(t). (.)

From the dual transformation (.) and (.), we know

x = –∂yu(y, t). (.)

Denote the free boundary of (.) by x = g(t). Applying (.) and (.) yields

g(t) = –∂yu
(
h(t), t

)
= h(t)


γ– –K . (.)

Moreover,

g ′(t) =


γ – 
h(t)


γ– –h′(t) > , (.)

g(T) = h(T)


γ– –K =
rK

a



–γ

– r –γ

γ

–K (by (.)). (.)

Thus, we have following theorem.

Theorem . The free boundary x = g(t) of problem (.) is monotonic increasing (Fig-
ure ) and g(T) is determined by (.).Moreover, g(t) ∈ C[,T]∩C∞[,T).

Financial meanings At time t, the manager should continue to invest according to (.)
if x > g(t), while the investor should stop investment if x < g(t).

7 Concluding remarks
We explore a class of optimal investment problems mixed with optimal stopping in the
financial investment. The corresponding HJB equation, a free boundary problem of a fully
nonlinear equation, is posed. By means of a dual transformation, we obtain a new free
boundary problem with a linear equation under a complicated constraint condition. The
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key step is to simplify this complicated constraint condition. In this way we study the
properties of the free boundary and optimal strategy for investors.

Remark on constantK (salary) IfK is a function of time t,K = K (t), the unique difficulty
is the proof of (.). If K (t) is decreasing, then (.) is still right and all results hold as well.
In general case if K (t) is not decreasing, then the free boundary may be not monotonic.
We will consider this problem in the future.
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