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Abstract
In this paper, we mainly study the boundedness of unimodular Fourier multipliers
with a time parameter eitp(ξ ) on the modulation spaces where p(ξ ) is a differentiable
real-valued function, namely we estimate eitp(ξ ) under the multiplier norm, denoted
byMs,p. The sharpness of s and the regularity lost are also discussed when the
multiplier acts on functions in modulation spaces. Meanwhile the lower bound of the
multiplier is shown. Finally, we present a discussion of the relationship between the
main result and well-posedness results for nonlinear PDEs already existing in the
literature.
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1 Introduction
Themodulation spaces have been well known as the ‘right’ spaces in time-frequency anal-
ysis. Refer to [–]. Recently Hardy type modulation spaces have been proposed in [].
In this paper, we discuss these spaces in a brief manner, and then study the Fourier multi-
pliers on them.

1.1 Modulation spaces
In this subsection we will introduce modulation spaces and Wiener spaces briefly. We
adopt the definitions and notation in [] mainly.
Denote the frequency-uniform decomposition operators

�kf =F –(ψkF f ), k ∈ Zn,

where ψk(ξ ) = ψ(ξ – k) constitute a so-called unity partition with good properties, and ψ

is a bump-like function.Ms
p,q is a subspace of the distribution space S′ with the norm

‖f ‖Ms
p,q :=

(∑
k

〈k〉sq‖�kf ‖qp
) 

p
, ()

where 〈x〉 = + |x|. Strictly speaking, only when  ≤ p,q ≤ ∞, () becomes a norm. If s = ,
we simply writeMp,q instead ofM

p,q.
The modulation spaces can be regarded as an example of the Wiener amalgam spaces

[, , ]. Now we fix the definition of the class of spaces in the present paper.
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Definition . Given ψ ∈ S as in the modulation spaces, a function Banach space X and
a sequence Banach space Y , the spaceW (X,Y ) consists of all distributions u ∈ S′ (u ∈ Xloc

precisely) for which

‖u‖W (X,Y ) :=
∥∥{‖ψku‖X

}∥∥
Y < ∞.

Another class of spaces mentioned in the paper is

F X := {F f | f ∈ X} whose norm is ‖f ‖F X := ‖F f ‖X ,

whereX is Lp or any other known space for whichF f , f ∈ X, makes sense. Actually,Ms
p,q =

F W (F Lp,�s,q), where �s,q is the q-summable sequence with the weight 〈k〉s. Moreover,
Hardy type modulation spaces μs

p,q = F W (F Hp,�s,q),  < p ≤  are introduced in []
where Hp is the Hardy space.

1.2 Fourier multipliers on modulation spaces
In this section, we review the previous work about Fourier multipliers on modulation
spaces. Then we introduce the main contribution of the present paper.
The Fourier multipliersm(ξ ) as an operator are defined in [, –] with

Tmf (x) :=
∫
Rn

m(ξ )F f (ξ )eπ ix·ξ dξ ,

where π is unessential and the Fourier transform is normalised to be

f̂ =F f :=
∫
Rn

f (x)e–π ix·ξ dx.

The set of the Fourier multipliers from the function space X to Y is denoted with
M(X,Y ) as a subspace of the bounded linear operator space L(X,Y ) and T :m 	→ Tm =
m(D) is the embedding mapping. Fourier multipliers and the corresponding operators
are seldom distinct. Notice Mp,q = M(Lp,Lq) and denote Mp = Mp,p,  ≤ p ≤ q ≤ ∞
[–].
The Fourier multipliers discussed in this paper generally do not preserve most of the

Lebesgue spaces or even the Besov spaces (see [, ]). This is themotivation to study the
boundedness properties on other function spaces. The Fourier multipliers for the mod-
ulation spaces have been developed in many papers [, , –] where the so-called
unimodular Fourier multipliers were studied and applied into PDEs. One of the most fa-
mous examples is ei|ξ | ∈M(Ms

p,q) as occurs in the Schrödinger equation.
Let us recall the main results relating with our study. Reference [] (Theorem  as its

main result) proved that ei|ξ |α ∈ M(Ms
p,q), α ∈ [, ]. Moreover, we have the following es-

timate of eit|ξ | under the normM(Ms
p,q) (see Corollary  in [] and also [, ]):

∥∥u(t)∥∥Mp,q
� 〈t〉 n

 ‖f ‖Mp,q , u(t) = eit|D| f .

The case α >  is well discussed in [] where |ξ |α has been replaced with a real-valued
homogeneous function of degree α.

http://www.journalofinequalitiesandapplications.com/content/2014/1/43
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Furthermore, [] (Theorem  and Theorem ) gave the following estimate:

∥∥eit|D|α f
∥∥
Ms

p,q
� 〈t〉n|  – 

p |‖f ‖Ms
p,q ,



< α ≤ .

However, when α > , the multiplier loses a regularity γ = (α – )n|  – 
p |, precisely

∥∥eit|D|α f
∥∥
Ms–γ

p,q
� 〈t〉n|  – 

p |‖f ‖Ms
p,q , α > ,

while the sharpness of the regularity lost is discussed in []. [, ] studied the Hardy
type modulation spaces and have shown a similar estimate, namely

∥∥eit|D|α f
∥∥

μ
s–γ
p,q

� 〈t〉n|  – 
p |‖f ‖μs

p,q ,

where γ = n(α – )|  – 
p |.

The purpose of the paper is to study the unimodular multipliers with a time parameter
m(ξ , t) = eitp(ξ ) and to estimate

C(t) =
∥∥eitp(ξ )∥∥M(Mp,q ,Ms

p,q)
,

where p(ξ ) is a real-valued function satisfying the Mihilin type condition

∣∣∂γ p(ξ )
∣∣� |ξ |α–|γ |,

where α is extended to (,+∞) and  < δ <N for large N .
DenoteMs,p =M(Mp,q,Ms

p,q) where s represents the regularity that the multiplier gains
(or loses when s < ). The main result of this paper can be stated in the following form. It
indeed contains most results of the previous work.

Theorem. If the real-valued function p(ξ )mentioned above satisfies |∂γ p(ξ )| ∼ |ξ |α–|γ |,
then

C(t) =
∥∥eitp(ξ )∥∥

Ms,p � 〈t〉(n+η)|  – 
p |,

where s =
{ ,  < α ≤ ,
( – α)n|  – 

p |, α >  and  ≤ η ≤  will be determined in Section  when α is
small. (It was shown that η =  when α > 

 .)

It will be restated in Theorem . in more precise form. In Theorem . we estimate
the lower bound that the η can reach. Furthermore, we will discuss the sharpness of s in
Section ., namely the maximum value for s is ( – α)n|  – 

p | such that ‖eitp(ξ )‖Ms,p is
controlled by C(t).
Simply stated, we will do three things mainly in the paper:
(i) refine η so that ‖eitp(ξ )‖Ms,p � 〈t〉(n+η)|  – 

p | when α is small,
(ii) discuss the sharpness of s with a lemma,
(iii) show the lower bound of ‖eitp(ξ )‖Ms,p .

Feature (i) is the main contribution of the paper. We obtain the smallest value of η among
the related research. As far as this author knows, (iii) is seldom discussed in the previous
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works. Meanwhile, we propose a generic process that is different from previous papers,
and which allows us to handle the estimate of the unimodular multipliers (to be compared
with [, ]).

1.3 Notations and organisation
Throughout this paper,A(x)� B(x) means that there exists a positive constantC such that
A(x)≤ CB(x) for all x in an abstract spacewhereA, B are two non-negative functions in the
space, while A(x) ∼ B(x) is used to denote A(x)� B(x)� A(x). x �  means that x ≥  is
less than a small number.

∑
k∈Zn (supk∈Zn ) will be simply written as

∑
k(supk), if there is no

ambiguity. Lp(Rn) is shortened as Lp, if n is arbitrary and kept uniform. Notice that p ≥ 
throughout this paper. Finally, we define |Dδf | = ∑

|γ |=δ |∂γ f |. In fact, Dδf ∼ {∂γ f , |γ | = δ}
is regarded as a vector. Ḣs,p denotes the homogeneous Sobolev space, and Ḣs = Ḣs,.
This paper is organised as follows. In Section , we mainly discuss the representation

of the Fourier multipliers on the modulation spaces. In Section , we refine the bound
of the part near  of the multipliers as the main contribution of the paper. In Section ,
we study the boundedness of the unimodular Fourier multipliers by oscillatory integral
theory (Lemma .). We also give the sharpness argument as regards the regularity lost by
the multipliers and prove the lower bound. The result in the previous section is applied to
the local well-posedness of the dispersive equations in Section .

2 Representation of Fourier multipliers
In this section, we will discuss the representation of Fourier multipliers that is the funda-
mental step for the estimate and shown in () and (). Several well-known lemmata are
listed as follows which will be used in the sequel.

Lemma . (Sobolev embedding []) Hs ↪→ Lp, 
p =


 –

s
n ,

s
n < 

 .

Lemma . (Bernstein theorem []) Let L > n
 be an integer, then

‖f ‖F L � ‖f ‖– n
L

L ‖f ‖ n
L
ḢL .

By checking the proof Proposition . in [], for any t >  we have

‖f ‖F L �
∫

|x|<t
|F f |dx +

∫
|x|>t

|F f |dx

� t
n
 ‖F f ‖L +

∫
|x|>t

∣∣|x|–LF (
DLf

)∣∣dx
� t

n
 ‖f ‖L + t

n
r –L

∥∥DLf
∥∥

F Lr′

� t
n
 ‖f ‖L + t

n
r –L

∥∥DLf
∥∥
Lr , ()

where L > n
r , ≤ r ≤  is an integer. From the Sobolev embedding theorem,

‖f ‖F L � t
n
 ‖f ‖L + t

n
r –L

∥∥|ξ |sDLf
∥∥
L , ()

where 
r′ =


 –

s
n (or s = n

 –
n
r′ ),  ≤ s < n

 .
By (), it follows a generalised version of Bernstein’s theorem that will be used in Re-

mark ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/43


Song Journal of Inequalities and Applications 2014, 2014:43 Page 5 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/43

Lemma . Let L > n
 be an integer, then

‖f ‖F L � ‖f ‖– n
rL

Lr ‖f ‖ n
rL
ḢL,r ,

where ≤ r ≤ , rL > n.

Lemma . F L ↪→Mp, for all ≤ p≤ ∞.More precisely

(
F L,L∞)

θ
↪→Mp, θ = 

∣∣∣∣  –

p

∣∣∣∣.
Lemma . (Nikol’skij-Triebel’s inequality [, ]) If  < p≤ q ≤ ∞, f ∈ Lp whose Fourier
transform is supported in a compact subset  of Rn, then ‖�kf ‖q � ‖f ‖p uniformly for
k ∈ Zn.

Now we assume that the multiplierm is bounded fromMs
p,q toM

s
p,q , p ≤ p, namely

(∑
k

〈k〉sq∥∥F –(ψkmF f )
∥∥q
p

) 
q

�
(∑

k

〈k〉sq∥∥F –(ψkF f )
∥∥q
p

) 
q
.

If f ∈ Lp , supp f̂ ⊂  where  is a compact subset of Rn then

� =
{
k ∈ Zn ∣∣  ∩ suppψk �= ∅}

has finitely many elements and

f =
∑
k∈�

F –(ψkF f ),

and from Nikol’skij-Triebel’s inequality,

〈k〉s∥∥F –(ψkmF f )
∥∥
p

�
∑
k∈�

〈k〉s∥∥F –(ψkF f )
∥∥
p

�
∑
k∈�

〈k〉s‖f ‖p .

Then we have

∥∥F –(mF f )
∥∥
p

�
∑
k∈�

∥∥F –(ψkmF f )
∥∥
p

�
∑

k,k∈�

〈k〉–s〈k〉s‖f ‖p

� 〈ξ〉s–s‖f ‖p ,

where ξ ∈ .
Replacing f with F –(ψkF f ), we have

∥∥F –(ψkmF f )
∥∥
p
� 〈k〉s–s‖f ‖p ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/43
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which implies a representation of the multipliers on the modulation spaces,

M
(
Ms

p,q ,M
s
p,q

)
=W

(
Mp,p ,�s–s,+∞)

, ≤ p ≤ p,q ≤ q. ()

By this fact, we only need to studyM(Mp,q,Ms
p,q), but in this paper we are only interested

in the following class of multipliers.

Lemma . (also see []) For ≤ p≤ ∞,

M
(
Mp,q,Ms

p,q
)
=W

(
Mp,�s,+∞)

. ()

Denote Ms,p =M(Mp,q,Ms
p,q) for short. When s = , it is written as Mp. The represen-

tation of multipliers on modulation spaces leads us to Hormander’s multipliers.

Remark . When p ≤ p < , one only has

W
(
Mp,p ,�s–s,+∞)

↪→M
(
Ms

p,q ,M
s
p,q

)
, ()

where Mp,p = {m ∈ S′ | ‖m(D)f ‖Lp ≤ C(R)‖f ‖Lp ,R < ∞ is the size of the support of f̂ }.
One has to apply () in extending the results to Hardy type spaces.

Our proof is based on the previous work, especially [, , ]. By Lemma .,
Lemma . and the interpolation theory, we have

‖m‖Ms,p ≤ sup
k

{〈k〉s‖ψkm‖|

p–


 |

F L
}
. ()

It remains to calculate ‖ψkm‖F L for the estimate of ‖m‖Ms,p , while the Bernstein theorem
suggests calculating ‖ψkm‖ḢL . Thus the primary task is to calculate ∂γ ψ(ξ )eitp(ξ ).
It is easy to see that

∂γ eitp(ξ ) = eitp(ξ )
∑
m≤|γ |

tm
∑

∑
i βi=γ

Cβ···βm∂βp · · · ∂βmp,

which is a polynomial about t multiplied by eitp(ξ ) with functional coefficients; then

∂γ φ(ξ )eitp(ξ ) = eitp(ξ )
∑
m≤|γ |

tm
∑

∑
i βi≤γ

|βi|>

φβ···βm∂βp · · · ∂βmp, ()

where φ,φβ···βm ∈ S. Equation () yields

∣∣DLφ(ξ )eitp(ξ )
∣∣ � ∑

m≤L

|t|m
∑

m≤|∑i βi|≤L
|βi|>

∣∣∂βp · · · ∂βmp
∣∣, ()

where φ ∈ S. Equations () and () will be applied in estimating the multipliers. With the
assumption ∂γ p(ξ )� |ξ |α–|γ |, |γ | > , it follows from () that

∣∣DLφ(ξ )eitp(ξ )
∣∣ � 〈t〉L|ξ |α–L.

This implies the basic thought of the paper (see Lemma . and Remark .).

http://www.journalofinequalitiesandapplications.com/content/2014/1/43
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3 Near the origin
We shall show the estimates of ‖ψkm‖F L by distinguishing between the cases when k
near the origin and k near infinity. In this section, we focus on the former.
The following lemma generalises Lemma  in [] as the main contribution of the paper.

It shows a more precise upper bound.

Lemma . If p ∈ CL(Rn \ {}), L = [ n ] + , |∂γ p(ξ )|� |ξ |α–|γ | for  < |γ | ≤ L and φ ∈ C∞
 ,

then

∥∥φ(ξ )eitp(ξ )
∥∥

F L �

⎧⎨
⎩〈t〉 n

 , α > 
n+ ,  � n or α > 

n+ ,  | n,
〈t〉 n

 +η, otherwise,

where η ∈ [, ) is selected corresponding to α.

L is assumed to be large, but we will see that L can be chosen as small as [ n ] + .

Proof As in [], from () we get

∣∣DLφ(ξ )eitp(ξ )
∣∣ � 〈t〉L|ξ |α–Lφ̃(ξ ). ()

Consider the following two cases.
Case : α >  or α > 

 when n is odd. With Lemma . and (), it follows that

C(t) :=
∥∥φ(ξ )eitp(ξ )

∥∥
F L � 〈t〉 n


∥∥|ξ |α–Lφ̃(ξ )∥∥ n

L
 ,

where φ̃ ∈ C∞
C . Take L = [ n ]+ . whenever α >  or α > 

 if n is odd, L–α < n
 , so |ξ |α–Lφ̃(ξ )

must be square integrable.
Case : α ≤ . Decompose () as a polynomial into

⎧⎨
⎩H := eitp(ξ )tLP(ξ ), the leading term,

R := eitp(ξ )
∑

m<L tmPm(ξ ), the lower terms.

We have ∂γ ψ(ξ )eitp(ξ ) = R +H , and near 

|H|� tL|ξ |L(α–), |R|� tL–|ξ |α–L. ()

Unlike [], we go back to the second step of (). For any t̄ >  we have

C(t) � t̄
n
 +

∫
|x|>t̄

∣∣|x|–LF R
∣∣dx + ∫

|x|>t̄

∣∣|x|–LF H
∣∣dx

� t̄
n
 + t̄

n
r
–L∥∥|ξ |sR∥∥

L + t̄
n
r

–L∥∥|ξ |sH∥∥
L

� t̄
n
 + I + I. ()

Take t̄ = 〈t〉. For the lower terms, we have

I � 〈t〉 n
r
–∥∥|ξ |α–L+s φ̃(ξ )∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/43
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To make it finite, we have to find  < r ≤  and an integer L > n
r
satisfying

⎧⎨
⎩


r′
= 

 –
s
n ,  ≤ s < n

 ,

L – α – s < n
 .

()

For the leading term, we have

I � 〈t〉 n
r

∥∥|ξ |L(α–)+s φ̃(ξ )∥∥.

As above, we have to find  < r ≤  and L > n
r
so that

⎧⎨
⎩


r′
= 

 –
s
n ,  ≤ s < n

 ,

L( – α) – s < n
 .

()

Equations () and () are equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L – α < n
r
,

L( – α) < n
r
,

L ∈ Z > n
r
, n
r
,

n
 ≤ n

r
, n
r
< n,

()

where n
r
, n
r
are both regarded as two variables. The mission is to find a solution (L, n

r
, n
r
)

to () such that n
r
, n
r
are small enough, and then

C(t)� 〈t〉max{ n
r
–, nr }.

Obviously, if n is odd and α > 
n+ , then (L, n

r
, n
r
) = ([ n ] + , [ n ] + , n ) is a solution, while

if n is even and α > 
n+ , then (L, n

r
, n
r
) = ([ n ] + , [ n ] + , n ) is a solution. Now we try to

find a solution on n
r
= n

r
. Since L( – α) ≤ L – α, it is only need to consider () that is

equivalent to  – { n
r

} < α. It is easy to see that there exists n
 ≤ n

r
< [ n ] +  satisfying the

inequality, since –{ n
r

} runs through (,  ) at least whenever n is odd or even. This implies
the following result:

C(t)�

⎧⎨
⎩〈t〉 n

 , α > 
n+ ,  � n or α > 

n+ ,  | n,
〈t〉 n

 +η, otherwise,
()

where

η =

⎧⎨
⎩


 – α+,  � n

 – α+,  | n.

As a result, n
r
, n
r
can be restrained on n

 ≤ n
r

≤ n
r
< [ n ] +  and

L =
[
n


]
+ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/43
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Figure 1 To find the optimistic η. Two solid lines
are y = x and y = (1 – α)(x + α), respectively, whose
intersection point is (1 – α, 1 – α). Note x0 < [ n2 ] + 1
– α . As is shown, we only need consider the grey
domain.

As is illustrated by Figure , in domain I, () is reduced to (), while in domain II, it is
reduced to

⎧⎪⎪⎨
⎪⎪⎩
L( – α) < n

r
,

L ∈ Z > n
r
,

n
 ≤ n

r
, n
r
< n,

()

which implies n
r
> ( – α)([ nr ] + ).

Noticing that I � 〈t〉 n
 , we will only focus on I, i.e. r. Figure  shows that the point

A([ n ] +  – α, ( – α)([ n ] + )) is the optimal one. Now () can be modified as

C(t)�

⎧⎨
⎩〈t〉 n

 , α > 
n+ ,  � n or α > 

n+ ,  | n (esp. α > 
 ),

〈t〉 n
 +η, otherwise,

where

η =

⎧⎨
⎩


 –

n+
 α+,  � n,

 – n+
 α+,  | n,

()

which is determined by the coordinates of point A. �

Remark . If we take t̄ = 〈t〉β where n
β = β( n

r
– L) + L, β > , then η = n

 (β – ) can be
smaller. Thus one can see

η =

⎧⎨
⎩


 –

n+
 α,  � n,

 – n+
 α,  | n.

Remark . We introduce another approach which is easier but less accurate. Applying
Lemma ., we have

∥∥φ(ξ )eitp(ξ )
∥∥

F L � 〈t〉 n
r
∥∥|ξ |α–Lφ̃(ξ )∥∥ n

rL
r ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/43


Song Journal of Inequalities and Applications 2014, 2014:43 Page 10 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/43

where ≤ r ≤ , rL > n, φ̃ ∈ C∞
C . To ensure |ξ |α–Lφ̃(ξ ) ∈ Lr , we choose  ≤ r ≤  satisfying

{
r(L – α) < n,
L = [ nr ] + ,

namely α >  –
{
n
r

}
.

Obviously there exists such r and a real number η := n
r –

n
 >


 – α. Then

∥∥φ(ξ )eitp(ξ )
∥∥

F L � 〈t〉 n
 +η,  ≤ η < .

We still have η =  when α >  – { n } as ().

Remark . The inequality () is the key to the proof. Actually, given any multiplier
∂γm(ξ , t) =H + R,m(ξ , t) ∈ L∞

t Lloc,ξ satisfying

|H|� 〈t〉|γ ||ξ ||γ |(α–), |R|� 〈t〉|γ |–|ξ |α–|γ |, ξ is near ,α >  ()

which yields |DLm(ξ , t)|� 〈t〉L|ξ |α–L, and we have the same result.

Remark . A simple example is p(ξ ) = |ξ |α (or 〈ξ〉α). It occurs in the wave equation
(α = ) or the Schrödinger equation (α = ).

4 Near infinity
In this section we come to the infinite case with oscillatory integrals. The sharpness and
the lower bound will be discussed in the second subsection.

4.1 Oscillatory integrals
By Lemma  in [] (also see []), we have

∥∥ψk(ξ )eit|ξ |∥∥
F L =

∥∥ψ(ξ )eit|ξ |∥∥
F L .

Thus we can state the classical result here that

∥∥eit|ξ |∥∥
Mp � 〈t〉n|  – 

p |.

This technique makes a linear alteration of the phase without affecting the norm. More
generally,

∥∥ψk(ξ )eitp(ξ )
∥∥

F L =
∥∥ψ(ξ )eitqk (ξ )

∥∥
F L , ()

where qk(ξ ) := p(ξ + k) –p(k) –∇p(k) · ξ and we have (see Lemma . in [] and Lemma 
in [])

∣∣∂γ qk(ξ )
∣∣� |k|α–, ξ ∈ suppψ . ()

Equations () and () imply that for large k and α > 

∥∥ψk(ξ )eitp(ξ )
∥∥

F L � 〈t〉 n

∥∥|k|L(α–)ψ̃(ξ )

∥∥ n
L
 � 〈t〉 n

 |k| n (α–), ()

where ψ̃ ∈ C∞
 has the same support as ψ . Therefore, we have the following results.
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Theorem . If  < α ≤  with the assumption of Lemma ., then

∥∥eitp(ξ )∥∥
Mp � 〈t〉(n+η)|  – 

p |.

Proof It is true when  < α ≤  obviously (consider () at infinity), while with () it holds
in the case  < α ≤ . �

Now it is sufficient to consider the case α > , for Theorem .. Denote

Jk(x) = F –(ψkeitp(ξ )
) ∼

∫
Rn

ei�(ξ ,x,t,k)ψ(ξ ) dξ , ()

where �(ξ ,x, t,k) = tp(ξ + k) + x · ξ and the implicative constant is unessential. Then
‖ψk(ξ )eitp(ξ )‖F L = ‖Jk‖L .
We need the following lemma, which is due to Littman [, ] but has been refined.

Lemma . Let ψ ∈ C∞
C be supported in . If p ∈ C∞ and its Hessian matrix Hp is non-

singular in , then there exists a large a such that

∫
Rn

ei�(ξ ,x)ψ(ξ ) dξ � 〈detHp〉– 


(
 +

|x|
〈∇p〉

)–a

,

where �(ξ ,x) = p(ξ ) + x · ξ .

One also can get it with oscillatory integrals [] considering the two cases |x| ∼ |∇p|
and |x| � |∇p| separatively. Strictly speaking, it should be ensured that 〈detHp〉 � 〈∇p〉
for the inequality holds, and it indeed does in this context.

�k(ξ ,x, t) = tqk(ξ ) + x · ξ does not have any critical point out of the domain |x| ∼ t|k|α–
where qk(ξ ) := p(ξ + k) – p(k) – ∇p(k) · ξ defined as (). With the classical argument of
oscillatory integrals (see []) and replacing p with tqk in Lemma ., we have for |k| ≥ 

∥∥eitp(ξ )ψk(ξ )
∥∥

F L =
∥∥eitqk (ξ )ψ(ξ )

∥∥
F L

∼
∫

|x|∼t|k|α–
dx

∣∣∣∣
∫
Rn

ei�k (ξ ,x,t)ψ(ξ ) dξ
∣∣∣∣

� 〈t〉 n
 |k| n (α–), ()

where p satisfies, additionally to the assumptions of Lemma ., |Dp(ξ )| ∼ |ξ |α–, and the
Hessian matrix Hp is nonsingular on Rn \ {}. The last assumption yields

∣∣detHqk(ξ )∣∣ ∼ ∣∣Dqk(ξ )
∣∣ ∼ ∣∣∇qk(ξ )

∣∣ ∼ |k|α–, |ξ | ∼ |k|.

We have the following.

Theorem . If p(ξ ) from Lemma . satisfies |Dp(ξ )| ∼ |ξ |α– and the Hessian matrix
Hp is nonsingular on Rn \ {}, then

∥∥eitp(ξ )∥∥
Ms,p � 〈t〉(n+η)|  – 

p |,

where s =
{ ,  < α ≤ ,
( – α)n|  – 

p |, α > , and η is the same as in Lemma ..
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Proof The discussion above shows that for large k

∥∥ψkeitp(ξ )
∥∥
Mp � 〈t〉n|  – 

p ||k|–s.

Then we combine this estimate with Lemma . to complete the proof. �

Remark . An example for such p(ξ ) ∈ CL(Rn \ {}) is the homogeneous function of
degree α.

4.2 Sharpness and lower bound
The multiplier will lose a regularity s = ( – α)n|  – 

p | when α >  in Theorem .. To
show an easy proof of the sharpness, we employ a lemma implicit in [] as the key of the
argument. In particular, we only need to estimate the upper bound of ‖ · ‖F L∞ to get the
lower bound of ‖ · ‖F L .

Lemma .

‖ψkm‖F L‖ψkm‖F L∞ ≥ C(ψ) > ,

where m is any Fourier multiplier whose inverse is m–(ξ , t) =m(ξ , t).

Proof Notice that F L ↪→ Mp, F L∞ ↪→ Mp,p′ ,  ≤ p < . With the interpolation theo-
rems, we have

‖ψkm‖F L‖ψkm‖F L∞ �
∥∥ψkm–∥∥ 

θ

Mp,p‖ψkm‖

θ

Mp,p′

�
∥∥ψ

k
∥∥ 

θ

Mp,p′

= C(ψ),

where θ = ( p –

 ), ≤ p <  and C(ψ) does not depend on k or t. �

On the other hand,

∥∥ψkeitp(ξ )
∥∥

F L∞ � |t|– n
 |k| n (–α) ()

for Lemma .. We obtain

∥∥ψkeitp(ξ )
∥∥

F L ∼ 〈t〉 n
 |k| n (α–), ()

where p(ξ ) is a function as in Theorem .. Equation () implies the sharpness of s in the
case α > . Replacing F L withMp in Lemma ., we get the lower bound

∥∥ψkeitp(ξ )
∥∥
Mp �

(〈t〉n|k|n(α–))|  – 
p |,

which yields

∥∥eitp(ξ )∥∥
Ms,p � 〈t〉n|  – 

p |. ()

When α = , we have ‖eitp(ξ )‖Mp ∼ 〈t〉n|  – 
p |. However, () will not be applied to the

Cauchy problem.
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Remark . Reference [] provided an alternative method for the sharpness argument.
It can be summarised in the following steps:

(i) establish the identity m(D)Uλ =Uλm(λD) orm(λD) =U 
λ
m(D)Uλ,

(ii) calculate ‖m(λD)‖� λs′ with the identity for s′ > ,
(iii) estimate ‖m(λD)‖� λs with oscillatory integrals,

where Uλf (x) = f (λx). Combining the results listed above, we conclude s ≤ s′. Notice that
the dilation properties of modulation spaces are employed in the step (ii). Generally, it is
advocated to find a one-parameter group ρ(λ) acting on multipliers so that

λs �
∥∥(

ρ(λ)m
)
(D)

∥∥� λs′ .

Remark . () is also the key to get the Strichartz estimates since F L∞ ↪→Mp,p′ .

5 Application to Cauchy problem
Theorem . provides the time-space estimate [] for the linear dispersive equations,
namely

∥∥u(t)∥∥Ms
p,q

� C(t)‖u‖Mp,q ,

where u(t) = eitp(D)u and C(t) is estimated by Theorem .. When s = , {eitp(D)} forms a
C semigroup named the dispersive semigroup.
Now we consider the Cauchy problem for the nonlinear dispersive equation,

⎧⎨
⎩i∂tu – p(D)u + F(u) = ,

u(,x) = u(x),
()

where the complex variable function F(u) = λ|u|ku. If the initial condition is u(t,x) =
u(x), we have u(t,x) = v(t – t,x) where v is the solution to (). The Cauchy problem can
be written in an equivalent integral form,

u(t) = eitp(D)u – i
∫ t


ei(t–τ )p(D)F

(
u(τ )

)
dτ .

In this section,we shall apply the estimate of themultipliers into the localwell-posedness
of the equation on the modulation spaces. Define two operators on X = C([,T],Ms

p,):

T u := eitp(D)u – i
∫ t


ei(t–τ )p(D)F

(
u(τ )

)
dτ ,

Au :=
∫ t


ei(t–τ )p(D)F

(
u(τ )

)
dτ .

Assuming α ≤ , we immediately have

‖T u‖X ≤ C(T)
(‖u‖Ms

p,
+ T

∥∥F(u)∥∥X

)
,

‖T u – T v‖X ≤ C(T)T
∥∥F(u) – F(v)

∥∥
X ,
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where C(t) ∼ ‖eitp(ξ )‖Mp . Restrained to the ball BR = {‖u‖X ≤ R},
⎧⎨
⎩‖T u‖X ≤ C(T)(‖u‖Ms

p,
+ TRk+),

‖T u – T v‖X ≤ C(T)TRk‖u – v‖X .
()

With (), we obtain a quantitative form of the local well-posedness for () (see []).

Corollary . Assume p is the same as in Theorem . and  < α ≤ . If

‖u‖Ms
p,

≤ C〈T〉–(n+η)|  – 
p |(+ 

k )–

k , ()

then () has a unique solution u ∈ C([,T],Ms
p,)where the constant C depends on k and n.

Proof For (), T is a contraction mapping on BR, if R satisfies

⎧⎨
⎩C(T)(‖u‖Ms

p,
+ TRk+) ≤ R,

C(T)TRk ≤ 
 .

Now () suffices for the previous two inequalities to hold. �

Remark . The assumption α ≤  is indispensable for Theorem . (see []). F(u) can
be chosen as eρ|u|k u. Then Rk will be replaced with eρRk in (). The key point is that F
has Lipschitz type property. Note that η =  when α > 

 as is shown in the literature.

Remark . The results can be generalised to α-modulation spaces analogically where
one should consider the so-called α-covering rather than the uniform decomposition.
See [] for the basic concepts.

Remark . Our method can also be applied in the estimate of the multipliers on Hardy
type modulation spaces where we shall use F Lp,  < p <  rather than F L. First of all,
one should return to Remark ., then use Nikol’skij-Triebel’s inequality (see Lemma 
in []), say F Lp ↪→ Mp,p. Then one employs the following Bernstein type theorem: if
integer L > n( p +


r – ), then

‖f ‖F Lp � ‖f ‖–θ
Lq ‖f ‖θ

ḢL,r ,

where θ = n(/p+/q–)
L+n(/q–/r) ,


 ∨ ( – 

p ) ≤ 
r ,


q ≤ . In the particular case when q = r,

‖f ‖F L � ‖f ‖–
n
L (


p+


r –)

Lr ‖f ‖ n
Lr
ḢL,r ,




∨
(
 –


p

)
≤ 

r
,

q

≤ .

Once again, it leads to the partial derivatives of multipliers.
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