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Abstract
In this paper, we are concerned with the following elliptic equation

–div(ϕ(x,∇u)) = λf (x,u) in R
N ,

where the function ϕ(x, v) is of type |v|p–2v and f :RN ×R → R satisfies a
Carathéodory condition. We establish the existence of at least three weak solutions
for the problem above which is based on an abstract three critical points theory due
to Ricceri. Moreover, we determine precisely the intervals of λ’s for which the given
problem possesses either only the trivial solution or at least two nontrivial solutions.
MSC: 35D30; 35D50; 35J15; 35J60; 35J62

Keywords: p-Laplacian; weighted Lebesgue-Sobolev spaces; three critical points
theorem; multiple solutions

1 Introduction
In this paper, we establish the existence of at least three solutions for equations of the
p-Laplace type

(Pλ) –div
(
ϕ(x,∇u)

)
= λf (x,u) in R

N ,

where the function ϕ(x, v) is of type |v|p–v and f : RN × R → R satisfies a Carathéodory
condition. A Ricceri-type three critical points theorem has been extensively studied by
many researchers (see [–] and the references therein), but the results on the localization
of the interval for the existence of three solutions are rare. The authors in [, ] investi-
gated the existence of multiple solutions for quasilinear nonhomogeneous problems with
Dirichlet boundary conditions by applying an abstract three critical points theoremwhich
is the extension of the famous result of Ricceri [, ].
Ricceri’s theorems in [–] gave no further information on the size and location of an

interval of values λ ∈R for the existence of at least three critical points. However, further
information concerning these points was given in []. Also the authors in [] investigated
the localization of the interval for the existence of three solutions for theDirichlet problem
involving the p-Laplace type operators which was motivated by the work of Arcoya and
Carmona []. It is well known that the first eigenvalue of the p-Laplacian plays a decisive
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role in obtaining these results in [, ]. Hence, by using the positivity of the principal
eigenvalue of the p-Laplacian inRN , whichwas given in [–], we localize a three critical
points interval for the problem above as in [, ]. Especially, the main aim of this paper is
to determine precisely the intervals of λ’s for which problem (Pλ) admits only the trivial
solution and for which problem (Pλ) has at least two nontrivial solutions, following the
basic idea in []. To do this, we consider some of the basic properties for the integral
operator corresponding to problem (Pλ) in the setting of weighted Sobolev spaces.
To this end, we recall in what follows some definitions of the basic function space which

will be treated in the next sections. For a deeper treatment on these spaces, we refer to
[, ].
Let 〈·, ·〉 be the Euclidean scalar product on R

N or the usual pairing of X∗ and X, where
X∗ denotes the dual space of X. Let  < p < N and set p∗ :=Np/(N – p). Let ω be a weight
function defined by

ω(x) =


( + |x|)p for x ∈R
N .

Assume that
(A) a belongs to L∞(RN ) and there is a positive constant a such that

a(x)≥ a for almost all x ∈R
N .

Let X be the completion of C∞
 (RN ) with respect to the norm

‖u‖X =
(∫

RN
a(x)|∇u|p dx +

∫
RN

ω(x)|u|p dx
) 

p
.

From Hardy’s inequality and assumption (A), it follows that

∫
RN

ω(x)|u|p dx ≤ 
a

(
p

N – p

)p ∫
RN

a(x)|∇u|p dx,

which implies that on X, the norm ‖ · ‖X is equivalent to the other norm ‖ · ‖a given by

‖u‖a =
(∫

RN
a(x)|∇u|p dx

) 
p
.

Note that there exist positive constants c∗ and c∗ such that

c∗‖u‖X ≤ ‖u‖a ≤ c∗‖u‖X (.)

for all u ∈ X. The following Sobolev inequality will be used in the sequel:

(∫
RN

|u|p∗
dx

) 
p∗ ≤ c

(∫
RN

a(x)|∇u|p dx
) 

p

for some positive constant c (see []).
This paper is organized as follows. We first present some properties of the correspond-

ing integral operators. Then we give and prove our main results in Theorem . and
Theorem ..
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2 Main results
Definition . We say that u ∈ X is a weak solution of problem (Pλ) if

∫
RN

ϕ(x,∇u) · ∇vdx = λ

∫
RN

f (x,u)vdx

for all v ∈ X.

We assume that ϕ(x, v) : RN ×R
N → R

N is a continuous derivative with respect to v of
the mapping � : RN × R

N → R, � = �(x, v), that is, ϕ(x, v) = d
dv�(x, v). Suppose that

ϕ and � satisfy the following assumptions:
(J) The following equalities

�(x, ) =  and �(x, v) = �(x, –v)

hold for all x ∈ R
N and for all v ∈R

N .
(J) ϕ :RN ×R

N → R
N satisfies the following conditions: ϕ(·, v) is measurable for all

v ∈R
N and ϕ(x, ·) is continuous for almost all x ∈R

N .
(J) There are a function σ ∈ Lp′ (RN ) and a positive constant d such that

∣∣ϕ(x, v)∣∣ ≤ σ(x) + d|v|p–

for almost all x ∈R
N and for all v ∈R

N .
(J) �(x, ·) is strictly convex in R

N for all x ∈R
N .

(J) The following relations

ca(x)|v|p ≤ ϕ(x, v) · v and ca(x)|v|p ≤ p�(x, v)

hold for all x ∈ R
N and v ∈R

N , where c is a positive constant.
Let us define the functional � : X →R by

�(u) =
∫
RN

�(x,∇u)dx

for any u ∈ X. Under assumptions (J)-(J) and (J), it follows from [, Lemma .] that
the functional � is well defined on X, � ∈ C(X,R) and its Fréchet derivative is given by

〈
�′(u), v

〉
=

∫
RN

ϕ(x,∇u) · ∇vdx (.)

for any u ∈ X.
Next, taking inspiration from the argument given in [], we will show that the operator

�′ is a mapping of type (S+) which plays an important role in obtaining our main results.

Lemma . Assume that (A) and (J)-(J) hold. Then the functional � : X → R is convex
andweakly lower semicontinuous on X.Moreover, the operator�′ is amapping of type (S+),
i.e., if un ⇀ u in X as n→ ∞ and lim supn→∞〈�′(un) –�′(u),un – u〉 ≤ , then un → u in
X as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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Proof Fromassumption (J), the operator� is strictly convex and thus�′ is strictlymono-
tone (see [, Proposition .]), namely

〈
�′(u) –�′(v),u – v

〉
>  (.)

for u = v. The convexity of � also implies that � is weakly lower semicontinuous in X,
that is, un ⇀ u implies

�(u) ≤ lim inf
n→∞ �(un). (.)

Now we claim that the operator �′ is a mapping of type (S+). Let {un} be a sequence in
X such that un ⇀ u in X as n→ ∞ and

lim sup
n→∞

〈
�′(un) –�′(u),un – u

〉 ≤ . (.)

From relations (.) and (.), we have

lim
n→∞

∫
RN

(
ϕ(x,∇un) – ϕ(x,∇u)

) · (∇un –∇u)dx = lim
n→∞

〈
�′(un) –�′(u),un – u

〉
= ,

that is, the sequence {(ϕ(x,∇un) – ϕ(x,∇u)) · (∇un – ∇u)} converges to  in L(RN ) as
n→ ∞. Hence the sequence {un} has a subsequence {unk } such that

lim
k→∞

(
ϕ
(
x,∇unk (x)

)
– ϕ

(
x,∇u(x)

)) · (∇unk (x) –∇u(x)
)
=  (.)

for almost all x ∈R
N . Thus there existsM >  such that

ϕ
(
x,∇unk (x)

) · ∇unk (x)≤ M +
∣∣ϕ(

x,∇unk (x)
)∣∣∣∣∇u(x)

∣∣
+

∣∣ϕ(
x,∇u(x)

)∣∣∣∣∇unk (x)
∣∣ + ∣∣ϕ(

x,∇u(x)
)∣∣∣∣∇u(x)

∣∣
for almost all x ∈R

N . It follows from conditions (A), (J) and (J) that

ca
∣∣∇unk (x)

∣∣p ≤ ca(x)
∣∣∇unk (x)

∣∣p ≤ ϕ
(
x,∇unk (x)

) · ∇unk (x)

≤ M +
∣∣ϕ(

x,∇unk (x)
)∣∣∣∣∇u(x)

∣∣
+

∣∣ϕ(
x,∇u(x)

)∣∣∣∣∇unk (x)
∣∣ + ∣∣ϕ(

x,∇u(x)
)∣∣∣∣∇u(x)

∣∣
≤ M +

(
σ(x) + d

∣∣∇unk (x)
∣∣p–)∣∣∇u(x)

∣∣
+

∣∣ϕ(
x,∇u(x)

)∣∣∣∣∇unk (x)
∣∣ + ∣∣ϕ(

x,∇u(x)
)∣∣∣∣∇u(x)

∣∣ (.)

for almost all x ∈R
N . By using Young’s inequality, we deduce that

d
∣∣∇unk (x)

∣∣p–∣∣∇u(x)
∣∣ ≤ ca


∣∣∇unk (x)

∣∣p +
(
dp′

ca

)p–∣∣∇u(x)
∣∣p,

and

∣∣ϕ(
x,∇u(x)

)∣∣∣∣∇unk (x)
∣∣ ≤

(


ca

) 
p– ∣∣ϕ(

x,∇u(x)
)∣∣p′

+
ca


∣∣∇unk (x)
∣∣p

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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for almost all x ∈R
N . These together with relation (.) imply that

ca


∣∣∇unk (x)
∣∣p ≤ M + σ(x)

∣∣∇u(x)
∣∣ +

(
dp′

ca

)p–∣∣∇u(x)
∣∣p

+
(


ca

) 
p– ∣∣ϕ(

x,∇u(x)
)∣∣p′

+
∣∣ϕ(

x,∇u(x)
)∣∣∣∣∇u(x)

∣∣

for almost all x ∈ R
N . Since c and a are positive constants, the above inequality implies

that the sequence {|∇unk (x)|} is bounded, and so {∇unk (x)} is bounded in R
N for almost

all x ∈ R
N . By passing to a subsequence, we can suppose that ∇unk (x) → ξ as k → ∞ for

some ξ ∈ R
N and for almost all x ∈ R

N . Then we have ϕ(x,∇unk (x)) → ϕ(x, ξ ) as k → ∞
for almost all x ∈R

N . It follows from (.) that

 = lim
k→∞

(
ϕ
(
x,∇unk (x)

)
– ϕ

(
x,∇u(x)

)) · (∇unk (x) –∇u(x)
)

=
(
ϕ(x, ξ ) – ϕ

(
x,∇u(x)

)) · (ξ –∇u(x)
)

for almost all x ∈ R
N . Since ϕ is strictly monotone by (J), this means ξ = ∇u(x), that is,

∇unk (x) → ∇u(x) as k → ∞ for almost all x ∈ R
N . The arguments above hold for any

subsequence {unk } of the sequence {un}. Hence we obtain ∇un(x) → ∇u(x) as n → ∞ for
almost all x ∈R

N . Then it implies that

lim
n→∞

∫
RN

ϕ(x,∇un) · (∇un –∇u)dx = . (.)

Since the functional � is convex, it is obvious that

�(u) +
∫
RN

ϕ(x,∇un) · (∇un –∇u)dx ≥ �(un),

and so we get �(u) ≥ lim supn→∞ �(un). Therefore, it is derived from (.) that

�(u) = lim
n→∞�(un). (.)

Consider the sequence {gn} in L(RN ) defined pointwise by

gn(x) =


(
�(x,∇un) +�(x,∇u)

)
–�

(
x,



(∇un –∇u)

)
.

Then gn ≥  for all n ∈N by (J) and (J). Since�(x, ·) is continuous for almost all x ∈R
N ,

we obtain that gn → �(x,∇u) as n → ∞ for almost all x ∈ R
N . Therefore, by the Fatou

lemma and relation (.), we have

�(u) ≤ lim inf
n→∞

∫
RN

gn(x)dx = �(u) – lim sup
n→∞

∫
RN

�

(
x,



(∇un –∇u)

)
dx.

Hence

lim sup
n→∞

∫
RN

�

(
x,



(∇un –∇u)

)
dx ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/427


Choi and Kim Journal of Inequalities and Applications 2014, 2014:427 Page 6 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/427

that is,

lim
n→∞

∫
RN

�

(
x,



(∇un –∇u)

)
dx = ,

in other words, limn→∞ ‖un – u‖a =  by (J). Since ‖un – u‖X ≤ 
c∗ ‖un – u‖a by (.), in

conclusion, limn→∞ ‖un – u‖X = , as claimed. �

Corollary . Assume that (A) and (J)-(J) hold. Then the operator �′ : X → X∗ is
bounded homeomorphism onto X∗.

Proof It is immediate that the operator�′ is strictly monotone, coercive, and hemicontin-
uous. Hence the Browder-Minty theorem implies that the inverse operator (�′)– : X∗ →
X exists and is bounded; see Theorem .A in []. Since the operator �′ is a mapping of
type (S+) by Lemma ., it is easy to prove that the inverse operator (�′)– is continuous
and is omitted here. �

Before dealing with our main results in this section, we need the following assumptions
for f . Let us put F(x, t) =

∫ t
 f (x, s)ds.

(F) f :RN ×R →R satisfies the Carathéodory condition in the sense that f (·, t) is
measurable for all t ∈R and f (x, ·) is continuous for almost all x ∈R

N .
(F) f satisfies the following growth condition: for all (x, t) ∈R

N ×R,

∣∣f (x, t)∣∣ ≤ σ (x) + ρ(x)|t|γ–,

where σ ∈ L(p∗)′ (RN )∩ L∞(RN ), γ ∈R such that γ < p, ρ ∈ Ls(RN )∩ L∞(RN ) with
(/s) + (γ /p∗) = .

(F) There exist a real number s and a positive constant r so small that

∫
BN (x,r)

F(x, s)dx > ,

and F(x, t)≥  for almost all x ∈ BN (x, r) \ BN (x,σ r) with σ ∈ (, ) and for all
 ≤ t ≤ |s|, where BN (x, r) = {x ∈ R

N : |x – x| ≤ r} ⊂R
N .

Then we define the functionals � , Iλ : X →R by

�(u) = –
∫
RN

F(x,u)dx and Iλ(u) = �(u) + λ�(u)

for any u ∈ X. It is easy to check that � ∈ C(X,R) and its Fréchet derivative is

〈
� ′(u), v

〉
= –

∫
RN

f (x,u)vdx (.)

for any u, v ∈ X.

Lemma . Assume that (A), and (F)-(F) hold. Then � and� ′ are weakly-strongly con-
tinuous on X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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Proof The analogous arguments as in Lemma . of [] imply that functionals � and � ′

are weakly-strongly continuous on X. �

Lemma . Assume that (A), (J)-(J), (J), and (F)-(F) hold. Then we have

lim‖u‖X→∞
(
�(u) + λ�(u)

)
= +∞

for all λ ∈R.

Proof If ‖u‖X is large enough and λ ∈ R, then it follows from (J), (F) and Hölder’s in-
equality that

�(u) + λ�(u) =
∫
RN

�(x,∇u)dx – λ

∫
RN

F(x,u)dx

≥ c
p

∫
RN

a(x)|∇u|p dx – |λ|
∫
RN

∣∣σ (x)∣∣|u|dx – |λ|
∫
RN


γ

∣∣ρ(x)∣∣|u|γ dx

≥ c
p

‖u‖pa – |λ|‖σ‖L(p∗)′ (RN )‖u‖Lp∗ (RN ) –
|λ|
γ

‖ρ‖Ls(RN )‖u‖γ

Lp∗ (RN )

≥ cc
p
∗

p
‖u‖pX – |λ|C‖u‖X –

|λ|C

γ
‖u‖γ

X

for some positive constants C and C. Since p > γ , we get that

lim‖u‖X→∞
(
�(u) + λ�(u)

)
= +∞

for all λ ∈R. �

Now we will localize the interval for which problem (Pλ) has at least three solutions as
the application of three critical points theorems given in [] and [], respectively. To do
this, we consider the following eigenvalue problem:

(E) –div
(
a(x)|∇u|p–∇u

)
= λm(x)|u|p–u in R

N .

Proposition . ([, ]) Assume that (A) and (J)-(J) hold.Moreover, suppose that
(M) m(x) >  for all x ∈R

N such that m ∈ L∞(RN )∩ LN/p(RN ), andm ∈ Lκ (RN ), where

κ =
p∗

p∗ – κ
with p < κ < p∗.

Denote the quantity

λ = inf
u∈X\{}

(∫
RN a(x)|∇u|p dx∫
RN m(x)|u|p dx

)
.

Then the eigenvalue problem (E) has a pair (λ,u) of a principal eigenvalue λ and an
eigenfunction u with λ >  and  < u ∈ X ∩ L∞(RN ). Moreover, λ is simple and u(x)
decays uniformly as |x| → ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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Definition . Let X be a real Banach space.We call thatWX is the class of all functionals
� : X → R satisfying the following property: if {un} is a sequence such that un ⇀ u in X
as n→ ∞ and lim infn→∞ �(un) ≤ �(un), then {un} has a subsequence {unk } and unk → u
in X as k → ∞.

The following lemma is three critical points theory which was introduced by Ricceri
[].

Lemma . ([]) Let X be a separable and reflexive real Banach space; let � : X → R

be a coercive, sequentially weakly lower semicontinuous C-functional, belonging to WX ,
bounded on each bounded subset of X and whose derivative admits a continuous inverse
on X∗. Let � : X → R be a C-functional with compact derivative. Assume that � has a
strict local minimum u with �(u) = �(u) = . Finally, set

α =max

{
, lim sup

‖u‖X→∞

(
–

�(u)
�(u)

)
, lim sup

u→u

(
–

�(u)
�(u)

)}
, β = sup

u∈�–((,+∞))

(
–

�(u)
�(u)

)
.

Assume that α < β . Then, for each compact interval [a,b] ⊂ ( 
β
, 

α
) (with the conventions


 = +∞, 

+∞ = ), there exists R >  with the following property: for every λ ∈ [a,b], the
equation �′(u) + λ� ′(u) =  has at least three solutions whose norms are less than R.

In order to apply the above lemma to (Pλ), we have to show that the functional� belongs
toWX . To do this, we need the following additional assumption:
(J) The following relation holds for all u, v ∈ R

N :



(
�(x,u) +�(x, v)

) ≥ �

(
x,
u + v


)
+�

(
x,
u – v


)
.

To consider some examples that satisfy hypothesis (J), we observe the following argu-
ment which is given in [].

Remark . If φ(t) is a continuous, strictly increasing function for t ≥  with φ() = 
and

t �→ φ(
√
t) is convex for all t ∈ [,∞), (.)

then the following estimate



(
φ
(|u|) + φ

(|v|)) ≥ φ

(∣∣∣∣u + v


∣∣∣∣
)
+ φ

(∣∣∣∣u – v


∣∣∣∣
)

holds for all u, v ∈ R
N .

Example . Let us consider

ϕ(x, v) = |v|p–v and �(x, v) =

p
|v|p

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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for all v ∈R
N . If p ≥ , then we obtain a Clarkson-type inequality for the function �, i.e.,



(|u|p + |v|p) ≥

∣∣∣∣u + v


∣∣∣∣
p

+
∣∣∣∣u – v



∣∣∣∣
p

for all u, v ∈R
N . Therefore assumption (J) holds.

Example . Let p ≥ . Suppose that w ∈ Lp′ (RN ) and there exists a positive constant
w such that w(x) ≥ w for almost all x ∈ R

N . Let us consider

ϕ(x, v) =
(
w(x) + |v|) p

 –v and �(x, v) =

p
[(
w(x) + |v|) p

 – 
]

for all v ∈ R
N . Set φ(t) = (/p)[(w(x) + t)p/ – ] for t ≥ . Then it is easy to calculate that

φ satisfies all the assumptions of Remark . and therefore condition (J) is verified.

Combining with Proposition . and Lemma ., we derive the following consequence.

Theorem . Assume that conditions (A), (J)-(J), (F)-(F) and (M) hold. Moreover,
suppose that
(F) lim sup|s|→∞

F(x,s)
m(x)|s|p ≤  for x ∈R

N uniformly.
(F) lim sups→

F(x,s)
m(x)|s|p ≤  for x ∈R

N uniformly.
(F) For all compact K ⊂R, there exists a function ψK ∈ L(RN ) such that

F(x, s)≤ ψK (x)

for almost all x ∈R
N and for all s ∈ K .

Assume also that the condition γ < p is removed and replaced by the more general condi-
tion γ < p∗ in assumption (F). Set ξ = supu∈X\{}(–

�(u)
�(u) ). Then, for each compact interval

[a,b]⊂ ( 
ξ
, +∞), there exists R >  with the following property: for every λ ∈ [a,b], problem

(Pλ) has at least three solutions whose norms are less than R.

Proof It is obvious that the functional� is coercive, sequentially weakly lower semicontin-
uous of class C, bounded on each subset of X, and whose derivative is a homeomorphism
by Corollary .. Moreover, the functional � ∈ C(X,R) has a compact derivative due to
Lemma ..
First of all, let us claim that the functional � belongs to WX . It follows from the same

argument as in the proof of Theorem . in []. For the sake of convenience, we give
the proof. Let {un} be a sequence in X that converges weakly to u in X as n → ∞ and
lim infn→∞ �(un) ≤ �(u). By Lemma ., � is sequentially weakly lower semicontinuous,
namely �(u)≤ lim infn→∞ �(un). Thus there exists a subsequence of {un}, still denoted by
{un}, such that limn→∞ �(un) = �(u). Since un ⇀ u as n → ∞, the sequence {(un + u)/}
also converges weakly to u in X as n→ ∞, and we get

�(u) ≤ lim inf
n→∞ �

(
un + u



)
. (.)

If {un} does not converge to u as n approaches infinity, the sequence {(un –u)/} also does
not converge to  as n → ∞. So we can choose ε >  and a subsequence {unk } of {un}
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Choi and Kim Journal of Inequalities and Applications 2014, 2014:427 Page 10 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/427

such that ‖(unk – u)/‖X ≥ ε for all k ∈N. By assumption (J) and (.), we deduce that

�

(
unk – u



)
=

∫
RN

�

(
x,

∇unk –∇u


)
dx ≥ c

p

∫
RN

a(x)
∣∣∣∣∇unk –∇u



∣∣∣∣
p

dx

=
c
p

∥∥∥∥unk – u


∥∥∥∥
p

a
≥ cc

p
∗

p

∥∥∥∥unk – u


∥∥∥∥
p

X
≥ cc

p
∗

p
ε
p


for all k ∈N. From (J), we know




(∫
RN

�(x,∇unk )dx +
∫
RN

�(x,∇u)dx
)

≥
∫
RN

�

(
x,

∇unk +∇u


)
dx +

∫
RN

�

(
x,

∇unk –∇u


)
dx.

Thus we deduce that the following relation



(
�(unk ) +�(u)

) ≥ �

(
unk + u



)
+�

(
unk – u



)
≥ �

(
unk + u



)
+
cc

p
∗

p
ε
p
 (.)

holds for all k ∈ N. From (.) and (.), we have �(u) ≥ �(u) + (cc
p
∗/p)εp as k → ∞,

a contradiction. Therefore, we conclude that un → u as n→ ∞ and so � ∈WX .
Observe now that �(u) >  for every u ∈ X \ {}. Then  is a strict local (even global)

minimum with �() = �() = . By assumptions (F) and (F), for every ε > , we get

F(x, s)≤ εm(x)|s|p +ψε(x)

for almost all x ∈R
N and for all s ∈R, where ψε ∈ L(RN ). It implies that

∫
RN

F(x,u)dx ≤ ε

∫
RN

m(x)|u|p dx +
∫
RN

ψε(x)dx. (.)

Notice that

λ = inf
u∈X\{}

(∫
RN a(x)|∇u|p dx∫
RN m(x)|u|p dx

)
>  (.)

by Proposition .. Then it follows from (.), (.) and (J) that

∫
RN

F(x,u)dx ≤ ε

λ

∫
RN

a(x)|∇u|p dx +
∫
RN

ψε(x)dx

≤ εp
λc

∫
RN

�(x,∇u)dx +
∫
RN

ψε(x)dx

≤ εp
λc

�(u) +
∫
RN

ψε(x)dx.

Hence we have

lim sup
‖u‖X→∞

∫
RN F(x,u)dx

�(u)
≤ ε

(
p

λc

)
.
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Since ε is arbitrary, the following inequality holds:

lim sup
‖u‖X→∞

(
–

�(u)
�(u)

)
= lim sup

‖u‖X→∞

∫
RN F(x,u)dx

�(u)
≤ . (.)

On the other hand, by conditions (F) and (F), we have that for every ε > , there exists
Cε >  verifying that

F(x, s)≤ εm(x)|s|p +Cεm(x)|s|κ (.)

for almost all x ∈R
N and for all s ∈R. From (.), (.) and (J), we deduce

∫
RN

F(x,u)dx ≤ ε

∫
RN

m(x)|u|p dx +Cε

∫
RN

m(x)|u|κ dx

≤ ε

λ

∫
RN

a(x)|∇u|p dx +Cε‖m‖Lκ (RN )

(∫
RN

|u|p∗
dx

) κ
p∗

≤ εp
λc

∫
RN

�(x,∇u)dx +Cε‖m‖Lκ (RN )‖u‖κ

Lp∗ (RN )

≤ εp
λc

�(u) +CεC‖u‖κ
X

for some positive constant C. Then it follows that

∫
RN F(x,u)dx

�(u)
≤ ε

(
p

λc

)
+CεC

‖u‖κ
X

�(u)
.

Hence we obtain

lim sup
‖u‖X→

(
–

�(u)
�(u)

)
= lim sup

‖u‖X→

∫
RN F(x,u)dx

�(u)
≤ ε

(
p

λc

)

for all ε > , which leads to

lim sup
‖u‖X→

(
–

�(u)
�(u)

)
≤ . (.)

Taking now assumption (F) into account, it follows from (.) and (.) that

max

{
, lim sup

‖u‖X→∞

(
–

�(u)
�(u)

)
, lim sup

u→

(
–

�(u)
�(u)

)}
=  < sup

u∈�–((,+∞))

(
–

�(u)
�(u)

)
.

Therefore, all the conditions of Lemma . are fulfilled and thus the proof is completed.
�

In the rest of this section, we determine precisely the intervals of λ’s for which problem
(Pλ) possesses either only the trivial solution or at least two nontrivial solutions. To do
this, we assume that
(F) lim sups→

|f (x,s)|
m(x)|s|κ– < +∞ uniformly for almost all x ∈ R

N .
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Then we get that lim sups→
|F(x,s)|
m(x)|s|κ < +∞ uniformly for almost all x ∈ R

N by the
L’Hôspital’s rule. Let us consider that two functions

χ(r) = inf
u∈�–((–∞,r))

infv∈�–(r) �(v) –�(u)
�(u) – r

, (.)

χ(r) = sup
u∈�–((r,+∞))

infv∈�–(r) �(v) –�(u)
�(u) – r

(.)

for every r ∈ (infu∈X �(u), supu∈X �(u)). Also we consider the following crucial value:

Cf = ess sup
s =,x∈RN

|f (x, s)|
m(x)|s|p– .

Then the same arguments in [] imply that Cf is a positive constant. From this fact, we
obtain

ess sup
s =,x∈RN

|F(x, s)|
m(x)|s|p =

Cf

p
. (.)

The next lemma represents the differentiable form of the Arcoya and Carmona Theo-
rem . in [].

Lemma . Let � and � be two functionals on X such that � and � are weakly lower
semicontinuous and continuously Gâteaux differentiable in X, and � is nonconstant. Let
also �′ : X → X∗ have the (S+) property, and that � ′ is a compact operator. Assume that
there exists an interval I ⊂R such that the one parameter family of functionals Iλ = �+λ�

is coercive in X for all λ ∈ I . Let us assume that there exists

r ∈
(
inf
u∈X �(u), sup

u∈X
�(u)

)
such that χ(r) < χ(r), (.)

then the following properties hold.
(i) The functional Iλ admits at least one critical point for every λ ∈ I .
(ii) If furthermore (χ(r),χ(r))∩ I = , then

(a) Iλ has at least three critical points for every λ ∈ (χ(r),χ(r))∩ I .
(b) Iχ(r)has at least two critical points provided that χ(r) ∈ I .
(c) Iχ(r)has at least two critical points provided that χ(r) ∈ I .

Theorem . Assume that (A), (J)-(J), (F)-(F) and (M) hold. Then we have
(i) If λ ∈ [,�∗), where �∗ = cλ/Cf , then problem (Pλ) has only the trivial solution,

where λ is the principal eigenvalue of problem (E), c is a positive constant in (J),
and both of c∗ and c∗ are positive constants from (.).

(ii) If furthermore f satisfies condition (F), then there exists a positive constant �∗ with
�∗ ≥ �∗ such that problem (Pλ) has at least two nontrivial solutions for all
λ ∈ (�∗, +∞).

Proof By Lemma ., the functional � : X → R is a sequentially weakly lower semicon-
tinuous C-functional and the operator �′ is a mapping of type (S+). It follows from

http://www.journalofinequalitiesandapplications.com/content/2014/1/427
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Lemma . that the functional � is also sequentially weakly lower semicontinuous C-
functional and the operator � ′ : X → X∗ is compact. Due to Lemma ., we have

lim‖u‖X→∞
(
�(u) + λ�(u)

)
= +∞

for all u ∈ X and for all λ ∈ R.
First we claim the assertion (i). Let u ∈ X be a nontrivial weak solution of problem (Pλ),

that is,
∫
RN

ϕ(x,∇u) · ∇vdx = λ

∫
RN

f (x,u)vdx

for all v ∈ X. If we put v = u, then it follows from (J) that

cλ‖u‖pa ≤ λ

∫
RN

ϕ(x,∇u) · ∇udx = λλ

∫
RN

f (x,u)udx

= λλ

∫
RN

f (x,u)
m(x)|u|p–m(x)|u|p dx≤ λλCf

∫
RN

m(x)|u|p dx

≤ λCf

∫
RN

a(x)|∇u|p dx = λCf ‖u‖pa.

Thus if u is a nontrivial weak solution of problem (Pλ), then necessarily λ ≥ �∗ = cλ/Cf ,
as required.
Next let us prove assertion (ii). Let s =  be from (F). For σ ∈ (, ), define

uσ (x) =

⎧⎪⎪⎨
⎪⎪⎩
 if x ∈R

N \ BN (x, r),

|s| if x ∈ BN (x,σ r),
|s|

r(–σ ) (r – |x – x|) if x ∈ BN (x, r) \ BN (x,σ r).

(.)

Then it is obvious that ≤ uσ (x)≤ |s| for all x ∈R
N and uσ ∈ X. From condition (F),

–�(uσ ) =
∫
BN (x,σ r)

F
(
x, |s|

)
dx

+
∫
BN (x,r)\BN (x,σ r)

F
(
x,

|s|
r( – σ )

(
r – |x – x|

))
dx

> .

It follows that the crucial number

�∗ = χ() = inf
u∈�–((–∞,))

–
�(u)
�(u)

is well defined. Let u be in X with u ≡ . Using (J) and (.), we have

�(u)
|�(u)| =

∫
RN �(x,∇u)dx∫
RN F(x,u)dx

≥
c
p

∫
RN a(x)|∇u|p dx∫

RN
|F(x,u)|
m(x)|u|p m(x)|u|p dx

≥
c
p

∫
RN a(x)|∇u|p dx

Cf
p

∫
RN m(x)|u|p dx

≥ cλ

Cf
= �∗.
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Hence we get �∗ ≥ �∗. To employ Lemma ., we have to verify assumption (.). For all
u ∈ �–((–∞, )), we have that

χ(r) = inf
u∈�–((–∞,r))

infv∈�–(r) �(v) –�(u)
�(u) – r

≤ infv∈�–(r) �(v) –�(u)
�(u) – r

≤ �(u)
r –�(u)

for all r ∈ (�(u), ), and hence

lim sup
r→–

χ(r) ≤ –
�(u)
�(u)

for all u ∈ �–((–∞, )). Then it implies that

lim sup
r→–

χ(r) ≤ χ() = �∗.

By assumption (F), there exists a positive real numberM∗ >  such that

∣∣F(x, s)∣∣ ≤ M∗m(x)|s|κ (.)

for almost all x ∈R
N and for all s ∈R. Indeed, denote

M = lim sup
s→

|F(x, s)|
m(x)|s|κ .

Then there exists δ >  such that |F(x, s)| ≤ (M + )m(x)|s|κ for almost all x ∈ R
N and for

all s ∈R with |s| < δ. Let s be fixed with |s| ≥ δ. According to (.),

∣∣F(x, s)∣∣ ≤ Cf

p
|s|p–κm(x)|s|κ ≤ Cf δ

p–κ

p
m(x)|s|κ

for almost all x ∈R
N . PutM∗ =max{M + ,Cf δ

p–κ/p}. Then relation (.) holds.
Hence we deduce that

∣∣�(u)
∣∣ ≤

∫
RN

M∗m(x)|u|κ dx ≤ C‖m‖Lκ (RN )‖u‖κ
X

for some positive constant C. If r <  and v ∈ �–(r), then we obtain by (J) that

r = �(v)≥ –C‖m‖Lκ (RN )‖v‖κ
X ≥ –C‖m‖Lκ (RN )

(
p

cc
p
∗
�(v)

) κ
p
.

Since u =  ∈ �–((r,∞)), by using (.), we have

χ(r) ≥ 
|r| inf

v∈�–(r)
�(v)≥ |r| pκ –

C
p
κ
 ‖m‖

p
κ

Lκ (RN )

cc
p
∗

p
,

and so limr→– χ(r) = ∞ since κ > p. Therefore, we conclude

lim sup
r→–

χ(r) ≤ χ() = �∗ < lim
r→–

χ(r) = +∞.
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It means that there exists a negative sequence {rn} such that rn →  as n → ∞, so that
χ(rn) < �∗ + /n < n < χ(rn) for all integers n with n≥ n∗ = + [�∗]. By Lemma ., we put
I = R. Since u ≡  is a critical point of Iλ, according to the part (a) of (ii) in Lemma .,
problem (Pλ) admits at least two nontrivial solutions for all

λ ∈ (
�∗, +∞)

=
∞⋃

n=n∗

[
�∗ +


n
,n

]
⊂

∞⋃
n=n∗

(
χ(rn),χ(rn)

)
,

as claimed. �
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