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Abstract

Let X be a non-empty set. We say that an element x € X is a ¢-fixed point of T, where
@ :X—[0,00)and T:X — X, if xis a fixed point of T and ¢(x) = 0. In this paper, we
establish some existence results of ¢-fixed points for various classes of operators in
the case, where X is endowed with a metric d. The obtained results are used to
deduce some fixed point theorems in the case where X is endowed with a partial
metric p.
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1 Introduction and preliminaries

In 1994, Matthews [1] introduced the concept of partial metric spaces as a part of the study
of denotational semantics of dataflow networks and showed that the Banach contraction
principle can be generalized to the partial metric context for applications in program ver-
ification.

We start by recalling some basic definitions and properties of partial metric spaces (see
(1, 2] for more details).

A partial metric on a non-empty set X is a function p : X — X — [0, 00) such that for all
x,9,z € X, we have

(P1) p(x,x) = p(0,y) = plx,y) & x = y;

(P2) plx,x) < px,y);

(P3) plx,y) = p(y,x);

(P4) plx,y) < px,2) + p(z,y) - p(z,2).

A partial metric space is a pair (X, p) such that X is a non-empty set and p is a par-
tial metric on X. It is clear that, if p(x, y) = 0, then from (P1) and (P2), x = y; but if x = y,
p(x,y) may not be 0. A basic example of a partial metric space is the pair ([0, 00), p), where
p(x,y) = max{x,y}. Other examples of partial metric spaces which are interesting from a
computational point of view may be found in [1].

Each partial metric p on X generates a T, topology 7, on X which has as a base the

family of open p-balls {B,(x,¢) : x € X, & > 0}, where

B,(x,¢€) := {y eX:px,y) <plxx) + s}.
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Let (X, p) be a partial metric space. A sequence {x,} C X converges to some x € X with
respect to p if and only if

lim p(x,,x) = p(x,x).
n—00

A sequence {x,} C X is said to be a Cauchy sequence if and only if lim,, ;o p(%y, %4,)

exists and is finite. The partial metric space (X, p) is said to be complete if and only if every

Cauchy sequence {x,} in X converges to some x € X such that lim,, ;,—, oo p(%4, X)) = p(x, X).
If p is a partial metric on X, then the function d, : X — X — [0, 00) defined by

dp(x,y) = 2p(x,) — p(%,%) = p(3,9),  (x,y) € X* 1)
is a metric on X.

Lemma 1.1 Let (X, p) be a partial metric space. Then
(i) {xn} is a Cauchy sequence in (X, p) if and only if {x,} is a Cauchy sequence in the
metric space (X, d,);
(ii) the partial metric space (X, p) is complete if and only if the metric space (X,d,,) is
complete.

Recently, many works on fixed point theory in the partial metric context have been pub-
lished. For more details, we refer to [2—22]. On the other hand, Haghi et al. [10] observed
that some fixed point theorems for certain classes of operators can be deuced easily from
the same theorems in metric spaces. The idea presented in [10] is interesting, however it
cannot be applied for a large class of operators, as, for example, in the case of an implicit
contraction.

In [23], Rus presented three interesting open problems in the context of a complete
partial metric space (X, p).

Problem 1. If T': (X, p) — (X, p) is an operator satisfying a certain contractive condition
with respect to p, which condition satisfies T with respect to the metric d, defined by (1)?

Problem 2. The problem is to give fixed point theorems for these new classes of operators
on a metric space.

Problem 3. Use the results for the above problems to give fixed point theorems in a
partial metric space.

In [18], Samet answered to the above problems by considering Boyd-Wong contraction
mappings. Other types of contractions were considered in [11, 19].

In this paper, we introduce the concept of a ¢-fixed point, and we establish some ¢-fixed
point results for various classes of operators defined on a metric space (X, d). The obtained
results are then used to obtain some fixed point theorems, in the case where X is endowed
with a partial metric p.

2 @-Fixed point results
Let (X,d) be a metric space, ¢ : X — [0,00) be a given function, and T : X — X be an
operator.

We denote by

TO =1y, T =T, T"':=ToT", neN
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the iterate operators of 7. The set of all fixed points of the operator T will be denoted by
Fr={xeX:Tx=x}.
The set of all zeros of the function ¢ will be denoted by
Zy = {x eX:px) = 0}.
We introduce the notion of ¢-fixed point as follows.

Definition 2.1 An element z € X is said to be a ¢-fixed point of the operator T if and only
ifze FT N Zq,.

Definition 2.2 We say that the operator T is a ¢-Picard operator if and only if
(i) FrNZ, ={z};
(if) T"x — zas n — oo, for each x € X.

Definition 2.3 We say that the operator T is a weakly ¢-Picard operator if and only if
() FrNZ, #0;
(ii) the sequence {T"x} converges for each x € X, and the limit is a ¢-fixed point of T

We denote by F the set of functions F : [0,00)> — [0, 00) satisfying the following con-
ditions:
(F1) max{a,b} < F(a,b,c), forall a,b,c € [0,0);
(F2) F(0,0,0) =0;
(F3) F is continuous.
As examples, the following functions belong to F:
(i) F(a,b,c)=a+b+c;
(ii) F(a,b,c) = max{a, b} + c;
(iii) F(a,b,c)=a+a’>+b+c.
In this section, we study the existence and uniqueness of ¢-fixed points for various

classes of operators.

2.1 (F, ¢)-Contraction mappings

Definition 2.4 Let (X, d) be a metric space, ¢ : X — [0, 00) be a given function, and F € F.
We say that the operator T': X — X is an (F, ¢)-contraction with respect to the metric d
if and only if

F(d(Tx, Ty), o(Tx), (Ty)) < kF(d(%,9), 9 (%), 0(9)),  (x,9) € X%, (2)
for some constant k € (0,1).
Our first main result is the following.

Theorem 2.1 Let (X,d) be a complete metric space, ¢ : X — [0,00) be a given function,
and F € F. Suppose that the following conditions hold:

(H1) ¢ is lower semi-continuous;

(H2) T:X — X is an (F, p)-contraction with respect to the metric d.
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Then
(i) Fr S Zy;
(ii) T is a g-Picard operator;
(iti) forallx € X, for all n € N, we have

d(T"%,2) = ({79,079, 02),
where {z} = Fr N Z, = Fr.

Proof Suppose that & € X is a fixed point of T. Applying (2) with x = y = £, we obtain

F(0,0(8),0(®)) < kE(0,0(8), 0(&)),
which implies (since k € (0,1)) that

F(0,0(8), 0(£)) = 0. 3)
On the other hand, from (F1), we have

9(§) < F(0,9(8),¢(&)). (4)

Using (3) and (4), we obtain ¢(&) = 0, which proves (i).
Let x € X be an arbitrary point. Using (2), we have

F(d(T""%, T"x), o (T"'x), o (T"x))

<KF(d(T"x, T"'x),¢(T"x),(T" 'x)), neN.
By induction, we obtain easily
F(d(T"'%, T"x), o(T"'x),¢(T"x)) < k"F(d(Tx,x), o(Tx),¢(x)), neNU{0},
which implies by property (F1) that
max{d(T"x, T"x), p(T""'x)} < K"F(d(Tx,%), ¢(Tx),0(x)), neNU{0}. (5)
From (5), we have
d(T"'x, T"x) < K"F(d(Tx, %), 0(Tx), (%)), ne€NU{0},

which implies (since k € (0,1)) that {7"«} is a Cauchy sequence. Since (X, d) is complete,
there is some z € X such that

lim d(T"x,z) = 0. (6)

n—00

Now, we shall prove that z is a ¢-fixed point of T. Observe that from (5), we have

lim (p(T”*lx) =0. (7)

n—00
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Since ¢ is lower semi-continuous, from (6) and (7), we obtain

¢(2) = 0. (8)
Using (2), we have

F(d(T""%, Tz), o (T"'x), ¢(T2)) < kF(d(T"%,2),¢(T"x),¢(2)), neNU{0}.

Letting n — oo in the above inequality, using (6), (7), (8), (F2), and the continuity of F, we
get

F(d(z, Tz),0,¢(Tz)) < kF(0,0,0) =0,
which implies from condition (F1) that
d(z, Tz) = 0. 9)

It follows from (8) and (9) that z is a ¢-fixed point of 7.
Suppose now that z’ € X is another ¢-fixed point of 7. Applying (2) withx =zand y = 2/,
we obtain

F(d(z,7),0,0) < kF(d(z,2),0,0),

which implies that d(z,2') = 0, that is, z = z’. So we get (ii).
Finally, using (5) and the triangle inequality, we get

- k*(1- k"‘)F

d(T”x, T”””x) <%

(d(Tx,x),go(Tx),go(x)), n,m e NU {0}.

Letting m — o0 in the above inequality, from (6), we obtain

n

d(T"x,z) < lli

kF(d(Tx,x),(p(Tx),w(x)), ne NU{0},
which proves (iii). O

2.2 Graphic (F, ¢)-contraction mappings

Definition 2.5 Let (X, d) be a metric space, ¢ : X — [0, 00) be a given function, and F € F.
We say that the operator 7' : X — X is a graphic (F, ¢)-contraction with respect to the
metric d if and only if

F(d(sz, Tx), go(TZx), <p(Tx)) < kF(d(Tx,x), o(Tx), (p(x)), xeX, (10)
for some constant k € (0,1).

Theorem 2.2 Let (X,d) be a complete metric space, ¢ : X — [0,00) be a given function,
and F € F. Suppose that the following conditions hold:
(H1) ¢ is lower semi-continuous;
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(H2) T:X — X is a graphic (F, ¢)-contraction with respect to the metric d;
(H3) T is continuous.
Then
(i) Fr € Z,;
(i) T is a weakly ¢-Picard operator;
(iii) forallxe X, if T"x — z as n — oo, then

d(T"x,z) < f—nkF(d(Tx,x),w(Tx),go(x)), neN.

Proof Suppose that & € X is a fixed point of T. Applying (10) with x = &, we obtain
F(0,9(8),0(§)) < kF(0,0(8), 0(€)),
which implies (since k € (0,1)) that
F(0,9(5),9(£)) = 0. (11)
On the other hand, from (F1), we have
9(§) < F(0,9(),¢(£)). 12)

Using (11) and (12), we obtain ¢(§) = 0, which proves (i).
Let x € X be an arbitrary point. Using (10), we have

F(d(T"'%, T"x), o(T"'x),¢(T"x))

<kF(d(T"x,T"'x),0(T"x),0(T" %)), neN.
By induction, we obtain easily
F(d(T""%, T"x), o(T"' %), (T"x)) < K"F(d(Tx, %), p(Tx), ¢(x)), ne€NU{0},
which implies by property (F1) that
max{d(T"'x, T"x), p(T""'x)} < K"F(d(Tx,%), (Tx),0(x)), neNU{0}. (13)
From (13), we have
d(T"'%, T"x) < K"F(d(Tx, %), p(Tx), p(x)), neNU{0},

which implies that {7”x} is a Cauchy sequence. Since (X,d) is complete, there is some
z € X such that

lim d(T"x,z) = 0. (14)

n—00

Now, we shall prove that z is a ¢-fixed point of T'. Observe that from (13), we have

lim (p(T”*lx) =0. (15)

n—00
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Since ¢ is lower semi-continuous, from (14) and (15), we obtain ¢(z) = 0. On the other
hand, using the continuity of T and (14), we get z = Tz. Then z is a ¢-fixed point of T'. So
T is a weakly ¢-Picard operator.

Finally, the proof of (iii) follows by using similar arguments as in the proof of (iii), The-
orem 2.1. g

2.3 (F, @)-Weak contraction mappings
Definition 2.6 Let (X, d)be a metric space, ¢ : X — [0, 00) be a given function, and F € F.
We say that the operator T : X — X is an (F, ¢)-weak contraction with respect to the

metric d if and only if

F(d(Tx, Ty), o(Tx), (1)) < kF(d(x,7), p(x), 0 (»))
+ L(F(d(y, Tx), 0(9), (Tx)) = F(0,0(), 9(Tx))),  (16)

for all (x,y) € X2, for some constants k € (0,1) and L > 0.
For this class of operators, we have the following result.

Theorem 2.3 Let (X,d) be a complete metric space, ¢ : X — [0,00) be a given function,
and F € F. Suppose that the following conditions hold:

(H1) ¢ is lower semi-continuous;

(H2) T:X — X is an (F,p)-weak contraction with respect to the metric d.
Then

() Fr € Z,;
(i) T is a weakly @-Picard operator;
(iti) forallx e X, if T"x — z as n — oo, then

/Vl
d(T”x,z) < ;—kF(d(x, Tx), go(x),go(Tx)), neN.
Proof Let & € X be a fixed point of T. Applying (16) with x = y = &, we get

F(0,0(8),0(&)) < kF(0,9(&), 9(£))
+L(F(0,0(£),0(8)) - F(0,0(8),9(£)))
= kF(0,9(£),9(£)),
which implies that F(0, ¢(§), ¢(§)) = 0. Using property (F1), we obtain ¢(§) = 0, that is,
& € Z,. Then (i) is proved.
Let x € X be an arbitrary point. Applying (16), we obtain
F(d(T"x, T"'x), 0 (T"x),0(T""'x))
<KF(d(T" "%, T"x),(T" %), (T"x))
+ L(F(O,9(T"5), (")) - F(0,9(T"5). ("))

=kF(d(T" "%, T"x),¢(T" '), 0(T"x)), neN.
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By induction, we get
F(d(T"x, T"'x), 0(T"%),0(T""'x)) < k"F(d(x, Tx), p(x), 9(Tx)), n>0.
The rest of the proof follows using similar arguments to the proof of Theorem 2.2. O

3 Links with partial metric spaces
From the previous obtained results in metric spaces, we deduce in this section some fixed
point theorems in partial metric spaces; see also [21].

We start by the Matthews fixed point theorem [1].

Corollary 3.1 Let (X, p) be a complete partial metric spaceandlet T : X — X be a mapping
such that

p(Tx, Ty) < kp(x,y),  (x,y) € X?,

for some constant k € (0,1). Then T has a unique fixed point z € X. Moreover, we have
p(z,2) =0.

Proof Consider the metric d, on X defined by (1) and the function ¢ : X — [0, 00) defined
by ¢(x) = p(x,x). Applying Theorem 2.1 with F(a, b,c) = a + b + ¢, and using Lemma 1.1, we
obtain the desired result. a

Similarly, from Theorem 2.2, we obtain the following result.

Corollary 3.2 Let (X, p) be a complete partial metric space and let T : X — X be a map-
ping such that

p(T%x, Tx) < kp(Tx,x), x€X,
for some constant k € (0,1). Then T has a fixed point z € X. Moreover, we have p(z,z) = 0.

Finally, from Theorem 2.3, we obtain the following result.

Corollary 3.3 Let (X, p) be a complete partial metric space and let T : X — X be a map-
ping such that

, (%) e X2,

(T, Ty) < kpl,) + L(p(y, T3) - ’M)

for some constants k € (0,1) and L > 0. Then T has a fixed point z € X. Moreover, we have
p(z,2z) = 0.

Observe that if p is a metric on X, we obtain from Corollary 3.3 the Berinde fixed point
theorem for (k, L)-weak contractions [24].

Competing interests
The authors declare that they have no competing interests.


http://www.journalofinequalitiesandapplications.com/content/2014/1/426

Jleli et al. Journal of Inequalities and Applications 2014, 2014:426
http://www.journalofinequalitiesandapplications.com/content/2014/1/426

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
'Department of Mathematics, College of Science, King Saud University, PO. Box 2455, Riyadh, 11451, Saudi Arabia.
2Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, via Archirafi 34, Palermo, 90123, Italy.

Acknowledgements
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University
for its funding of this research through the International Research Group Project No. IRG14-04.

Received: 29 May 2014 Accepted: 14 October 2014 Published: 30 Oct 2014

References

1.

20.

21

22.

23.
24.

Matthews, SG: Partial metric topology. In: Proceedings of the 8th Summer Conference on General Topology and
Applications. Annals of the New York Academy of Sciences, vol. 728, pp. 183-197 (1994)
Oltra, S, Valero, O: Banach's fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36, 17-26 (2004)

. Abdeljawad, T, Karapinar, E, Tas, K: A generalized contraction principle with control functions on partial metric spaces.

Comput. Math. Appl. 63(3), 716-719 (2012)
Altun, |, Acar, O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol.
Appl. 159, 2642-2648 (2012)

. Altun, |, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl.

2011, Article ID 508730 (2011)

. Altun, I, Sola, F, Simsek, H: Generalized contractions on partial metric spaces. Topol. Appl. 157(18), 2778-2785 (2010)
. Argarwal, RP, Alghamdi, MA, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric

spaces. Fixed Point Theory Appl. 2012, 40 (2012)

. Aydi, H, Abbas, M, Vetro, C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol.

Appl. 159,3234-3242 (2012)

. Ciri¢, L, Samet, B, Aydi, H, Vetro, C: Common fixed points of generalized contractions on partial metric spaces and an

application. Appl. Math. Comput. 218, 2398-2406 (2011)
Haghi, RH, Rezapour, S, Shahzad, N: Be careful on partial metric fixed point results. Topol. Appl. 160(3), 450-454 (2013)

. Jleli, M, Karapinar, E, Samet, B: Further remarks on fixed point theorems in the context of partial metric spaces. Abstr.

Appl. Anal. 2013, Article ID 715456 (2013). doi:10.1155/2013/715456

Karapinar, E: Weak ¢-contraction on partial metric spaces and existence of fixed points in partially ordered sets.
Math. Aterna 1, 237-244 (2011)

Karapinar, E, Erhan, IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894-1899
(2011)

. Kumam, P, Vetro, C, Vetro, F: Fixed points for weak a-1-contractions in partial metric spaces. Abstr. Appl. Anal. 2013,

Article ID 986028 (2013). doi:10.1155/2013/986028

Paesano, D, Vetro, P: Suzuki's type characterizations of completeness for partial metric spaces and fixed points for
partially ordered metric spaces. Topol. Appl. 159(3), 911-920 (2012)

Romaguera, S: Matkowski's type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen.
Topol. 12,213-220 (2011)

Romaguera, S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 159(1),
194-199 (2012)

Samet, B: Existence and uniqueness of solutions to a system of functional equations and applications to partial
metric spaces. Fixed Point Theory 14(2), 473-481 (2013)

Samet, B, Vetro, C, Vetro, F: From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013, 5 (2013).
doi:10.1186/1687-1812-2013-5

Shahzad, N, Valero, O: On 0-complete partial metric spaces and quantitative fixed point techniques in denotational
semantics. Abstr. Appl. Anal. 2013, Article ID 985095 (2013)

Vetro, C, Vetro, F: Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point
results. Topol. Appl. 164, 125-137 (2014)

Vetro, F, Radenovi¢, S: Nonlinear y-quasi-contractions of Ciri¢-type in partial metric spaces. Appl. Math. Comput. 219,
1594-1600 (2012)

Rus, IA: Fixed point theory in partial metric spaces. An. Univ. Vest. Timis.,, Ser. Mat.-Inform. 46(2), 141-160 (2008)
Berinde, V: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9(1),
43-53 (2004)

10.1186/1029-242X-2014-426
Cite this article as: Jleli et al.: Fixed point theory in partial metric spaces via ¢-fixed point’s concept in metric spaces.
Journal of Inequalities and Applications 2014, 2014:426

Page 9 of 9


http://www.journalofinequalitiesandapplications.com/content/2014/1/426
http://dx.doi.org/10.1155/2013/715456
http://dx.doi.org/10.1155/2013/986028
http://dx.doi.org/10.1186/1687-1812-2013-5

	Fixed point theory in partial metric spaces via phi-ﬁxed point's concept in metric spaces
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	phi-Fixed point results
	(F,phi)-Contraction mappings
	Graphic (F,phi)-contraction mappings
	(F,phi)-Weak contraction mappings

	Links with partial metric spaces
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


