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Abstract
In this paper, we will define Hardy spacesHp(Cn) associated with twisted convolution
operators and give the atomic decomposition ofHp(Cn), where 2n

2n+1 < p ≤ 1. Then
we consider the boundedness of the Weyl multiplier onHp(Cn).
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1 Introduction
The ‘twisted translation’ τw on C

n is defined on measurable functions by

(τwf )(z) = exp

(



n∑
j=

(wjzj + w̄jz̄j)

)
f (z)

= f (z +w) exp
(
i

Im(z · w̄)

)

and the ‘twisted convolution’ of two functions f and g on C
n can be defined as

(f × g)(z) =
∫
Cn

f (w)τ–wg(z)dw

=
∫
Cn

f (z –w)g(w)ω(z,w)dw,

where ω(z,w) = exp( i Im(z · w̄)).
In order to define the spaceHp(Cn) associated with ‘twisted convolution’, we first define

the following version maximal operator in terms of twisted convolutions.
Let B = {ϕ ∈ C∞(Cn) : suppϕ ⊂ B(, ),‖ϕ‖∞ ≤ ,‖∇ϕ‖∞ ≤ }, and for t > , ϕt(z) =

t–nϕ( zt ). Given σ ∈ (, +∞] and a tempered distribution f , define the grandmaximal func-
tion

Mσ f (z) = sup
ϕ∈B,<t<σ

∣∣ϕt × f (z)
∣∣, ()

where B(, ) = {z ∈C
n : |z| < }.

Definition  Let f be a tempered distribution onCn and n
n+ < p ≤ , we say that f belongs

to the Hardy spaceHp(Cn) if and only if the grand maximal function

Mσ f (z) = sup
ϕ∈B,<t<σ

∣∣ϕt × f (z)
∣∣
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lies in Lp(Cn), that is,Hp(Cn) = {f ∈ S ′(Cn) :Mσ f ∈ Lp}, whereS(Cn) denotes the Schwartz
space. We set ‖f ‖Hp = ‖Mσ f ‖Lp .

Remark  From Theorem A in [], we know that for some σ ,  < σ < ∞,Mσ f ∈ Lp if and
only ifM∞f ∈ Lp, when n

n+ < p≤ , so theHp also can be defined as {f ∈ S ′(Cn) :M∞f ∈
Lp}, where n

n+ < p≤ . The case of p =  has been considered in [].

Let n
n+ < p ≤ , an atom forHp(Cn) centered at z ∈C

n is a function a(z) which satisfies:

() suppa ⊂ B(z, r),

() ‖a‖∞ ≤ (r)–
n
p ,

()
∫

a(w)ω(z,w)dw = .

The atomic norm of f can be defined as

‖f ‖atom = inf

{( ∞∑
j=

|λj|p
) 

p

: f =
∑

λjaj

}
,

where the infimum is taken over all decompositions of f =
∑

λjaj in the sense of S ′(Cn)
and aj are atoms.
In this paper, we will first give the atomic decomposition of Hp(Cn) as follows.

Theorem  Let f ∈ S ′(Cn) and n
n+ < p ≤ , then f ∈ Hp(Cn) if and only if f =

∑
λjaj,

where aj are atoms.Moreover, ‖f ‖Hp ∼ ‖f ‖atom.

Remark  The case p =  has been proved in [], so we will consider the case n
n+ < p < 

in this paper.

The boundedness of the Weyl multiplier has been considered by many authors (cf. []
and []). In this paper, wewill consider the boundedness of theWeylmultiplier onHp(Cn).
We first give some notations forWeylmultipliers. OnCn consider the n linear differential
operators

Zj =
∂

∂zj
+


z̄j, Z̄j =

∂

∂z̄j
–


zj, j = , , . . . ,n. ()

Together with the identity they generate a Lie algebra hn which is isomorphic to the n+
dimensional Heisenberg algebra. The only nontrivial commutation relations are

[Zj, Z̄j] = –


I, j = , , . . . ,n. ()

The operator L defined by

L = –



n∑
j=

(ZjZ̄j + Z̄jZj)
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is nonnegative, self-adjoint, and elliptic. Therefore it generates a diffusion semigroup
{TL

t }t> = {e–tL}t>. There exists an irreducible projective representation W of Cn into a
separable Hilbert space HW such that

W (z + v) = ω(z, v)W (z)W (v).

Given a function f in L(Cn) itsWeyl transform τ (f ) is a bounded operator onHW defined
by

τ (f ) =
∫
Cn

f (z)W (z)dz. ()

Let H = –� + |x| be the Hermite operator, then we have τ (Lf ) = τ (f )H or more generally

τ
(
φ(L)f

)
= τ (f )φ(H). ()

We say that a bounded operatorM on L(Rn) is aWeyl multiplier on Lp(Rn) if the operator
TM initially defined on L ∪ Lp by

τ (TMf ) = τ (f )M

extends to a bounded operator on Lp(Cn). In [], the author considered multipliers of the
form φ(H) and proved the Lp-boundedness of φ(H).
In this paper, we will prove the following.

Theorem  Let

�+φ(N) = φ(N + ) – φ(N) and �–φ(N) = φ(N) – φ(N + ).

Suppose that the function φ satisfies

∣∣�k
–�

m
+ φ(N)

∣∣ ≤ CN–(k+m) ()

with k, m positive integers such that k +m = , , . . . ,ν , where ν = n +  when n is odd and
ν = n +  when n is even. Then φ(H) is a Weyl multiplier onHp(Cn), where n

n+ < p≤ .

Remark  The case p =  has been proved in [].

Throughout the article, we will use A and C to denote the positive constants, which are
independent of main parameters and may be different at each occurrence. By B ∼ B, we
mean that there exists a constant C >  such that 

C ≤ B
B

≤ C.
The paper is organized as follows. In Section , we will give the proof of Theorem .

Theorem  will be proved in Section .

2 Atomic decomposition forHp(Cn)
The local Hardy space hp(Cn) has been defined in []; let f ∈ S ′(Cn) and write

f ∗
σ (z) = sup

ϕ∈B,<t<σ

∣∣ϕt ∗ f (z)
∣∣.
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Proposition  When n
n+ < p < , the following conditions are equivalent:

(I) f ∈ hp(Cn);
(I) f ∗

σ (z) ∈ Lp(Cn);
(I) f =

∑
λjaj, where

∑n
j= |λj|p < ∞, suppaj ⊂ B(zj, rj), ‖aj‖∞ ≤ (rj)–

n
p , and

∫
aj(z)dz =

, whenever rj < σ .

Consider a partition of Cn into a mesh of balls Bj = B(zj, σ
 ), j = , , . . . , and construct a

C
∞ partition of unity ϕj such that suppϕj ⊂ B(zj,σ ). The proof of the following lemma is

quite similar to Theorem . in [], so we omit it.

Lemma  Let n
n+ < p < , assume Mσ f (z) ∈ Lp, then gj(z) = f (z)ϕj(z)ω(zj, z) ∈ hp, j =

, , . . . ,moreover, there exists C >  such that

∞∑
j=

‖gj‖hp ≤ C
∥∥Mσ f (z)

∥∥
p.

By Proposition  and Lemma , we know that every element in Hp(Cn) can be written
as f =

∑
λjaj, where

(I) (
∑∞

j= |λj|p)

p ≤ C‖f ‖Hp ;

(II) aj is supported in B(zj, rj), and ‖aj‖∞ ≤ (rj)–
n
p ;

(III) whenever rj < σ , there exists ξj such that |ξj – zj| ≤ σ and
∫
aj(z)ω(ξj, z)dz = .

This is not yet the atomic decomposition for Hp. In order to obtain it we must first
replace condition (III) with a centered cancellation property.

Lemma  Let n
n+ < p <  and a(z) be a function supported on B = B(z, r), r < σ such that

(I) ‖a‖∞ ≤ (r)–
n
p ;

(I)
∫
aj(z)ω(ξ , z)dz =  for some ξ , |ξ – z| ≤ σ . If σ is sufficiently small, a(z) can be

decomposed as a(z) =
∑

λjαj(z), where
(a)

∑∞
j= |λj|p ≤ C;

(b) suppαj ⊂ B(zj, rj), ‖αj‖∞ ≤ (rj)–
n
p ;

(c)
∫

αj(z)ω(zj, z)dz = , whenever rj < σ .

Proof Write a(z) = g()(z) + b()(z), where

b()(z) =
(


|B|

∫
B
a(w)ω(z,w)dw

)
χB(z)ω(z, z).

Then the function 
g

() satisfies (b) and (c); on the other hand

∣∣b()(z)∣∣ = 
|B|

∣∣∣∣
∫
B
a(w)

(
ω(z,w – z) –ω(ξ ,w – z)

)
dw

∣∣∣∣
≤ 

|B|
∫
B

∣∣a(w)∣∣∣∣(ω(z,w – z) –ω(ξ ,w – z)
)∣∣dw

≤ ‖a‖∞
|B|

∫
B

∣∣(ω(z,w – z) –ω(ξ ,w – z)
)∣∣dw

≤ C · r– n
p · σ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/422
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Let q = np
n–p , since

n
n+ < p < , we have q > , hence

∥∥b()(z)∥∥q ≤ C
(∫

B

∣∣r– n
p · σ ∣∣q dz) 

q
≤ Cσ .

Since suppb()(z) ⊂ B(z,σ ) and ω(z, z)b()(z) ∈ hp, we have

∥∥ω(z, z)b()(z)
∥∥
hp ≤ C(σ )

∥∥(
ω(z, z)b()(z)

)∗


∥∥
p

= C(σ )
(∫

B

∣∣(ω(z, z)b()(z))∗


∣∣p dz) 
p
.

Let l = q
p and I = {∫B |(ω(z, z)b()(z))∗ |p dz}


p , then

Ip ≤
{∫

B

∣∣(ω(z, z)b()(z))∗


∣∣q dz} 
l · (r) nl′

=
∥∥(

ω(z, z)b()(z)
)∗


∥∥ q
l
q · (r) nl′ ,

thus

I ≤ ∥∥(
ω(z, z)b()(z)

)∗


∥∥
q · (r) n(q–p)pq ≤ C · σ · ( + σ )

n+p
p .

Then we have ‖ω(z, z)b()(z)‖hp ≤ C · σ · ( + σ )
n+p
p . Let σ be small enough such that

C · σ · ( + σ )
n+p
p < 

 . By Proposition , we have

b()(z) =
∞∑
j=

η
()
j a()j (z), where

∞∑
j=

∣∣η()
j

∣∣p ≤ 

.

The functions a()j (z) are as in (b) and (c). We can now decompose the function a()j (z)
whose support is contained in a ball B(zj, rj), with rj < σ , as we did for a(z), thus

b()(z) = g()(z) + b()(z),

where g()(z) =
∑

λ
()
j α

()
j (z), α()

j (z) satisfy (b) and (c), and
∑∞

j= |λ()
j |p ≤ 

 . Moreover,

b()(z) =
∑

η
()
j a()j (z),

where the a()j (z) are as in (b) and (c) and

∞∑
j=

∣∣η()
j

∣∣p ≤ 

.

So we can construct sequences b(k) and g(k) such that

b(k) = g(k+) + b(k+),

http://www.journalofinequalitiesandapplications.com/content/2014/1/422
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g(k+) =
∑

λ
(k+)
j α

(k+)
j (z), where the α

(k+)
j (z) satisfy (b) and (c), and also

∞∑
j=

∣∣λ(k+)
j

∣∣p ≤ 
k–

,

b(k+) =
∑

η
(k+)
j a(k+)j (z), where the a(k+)j (z) satisfy (b) and (c), and also

∞∑
j=

∣∣η(k+)
j

∣∣p ≤ 
k+

.

This shows that a(z) =
∑

k g(k)(z) and gives the proof of Lemma . �

Lemma  There exists C >  such that for any Hp-atom, we have ‖M∞a(z)‖p < C, where
n

n+ < p < .

Proof Without loss of generality, we can assume that a(z) is an atom supported on B(, r).
Let ϕ ∈ B, t > , then

ϕt × a(z) =
∫ [

ϕt(z –w) – ϕt(z)
]
a(w)ω(z,w)dw + ϕt(z)â(–iz).

If |z| > r and ϕt × a(z) �= , we have t > |z| – r > 
z, so that

∣∣ϕt × a(z)
∣∣ ≤ Cr

r
n(p–)

p

|z|n+ +C
|â(–iz)|
|z|n .

Let I = r r
n(p–)

p

|z|n+ , and I = |â(–iz)|
|z|n , then |ϕt × a(z)| ≤ C(I + I). Therefore

∫
|z|>r

∣∣M∞a(z)
∣∣p dz ≤

∫
|z|>r

|I + I|p dz ≤ C
(∫

|z|>r
|I|p dz +

∫
|z|>r

|I|p dz
)
.

First we have

∫
|z|>r

|I|p dz ≤ C

∫
|z|>r

rn(p–)+p

|z|(n+)p dz ≤ C′
.

By Hardy’s inequality (cf. [, Theorem ., p.]), we get

∫
|z|>r

|I|p dz ≤ C

∫
|z|>r

|â(–iz)|p
|z|np dz ≤ C′

.

We also have

∫
|z|≤r

∣∣M∞a(z)
∣∣p dz ≤

(∫
|z|≤r

∣∣M∞a(z)
∣∣dz) 

p
· (r)n(–p)

≤ C‖a‖p∞(r)np(r)n(–p) ≤ C.

This completes the proof of Lemma . �
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Proof of Theorem  By Lemma  and Lemma , we can obtain the proof of Theorem .
�

3 The boundedness of theWeyl multiplier onHp(Cn)
In order to proveTheorem, we need to give some characterizations forHp(Cn). LetKL

t (z)
be the heat kernel of {TL

t }t>, then we can get (cf. [])

Kt(z) = (π )–n(sinh t)–ne–

 |z|(coth t). ()

It is easy to prove that the heat kernel Kt(z) has the following estimates (cf. []).

Lemma  There exists a positive constant C >  such that

(i) |Kt(z)| ≤ Ct–ne–C
|z|
t ;

(ii) |∇Kt(z)| ≤ Ct–n– 
 e–C

|z|
t .

Let Qk
t (z) be the twisted convolution kernel of Qk

t = tk∂k
s TL

s |s=t , then

Qk
t (z) = tk∂k

s Ks(z)|s=t .

Lemma  There exist constants C,Ck >  such that
(i) |Qk

t (z)| ≤ Ckt–ne–Ct
–|z| ;

(ii) |∇Qk
t (z) –Qk

t (w)| ≤ Ckt–n–e–Ct
–|z| |z –w|.

In the following, we define the Lusin area integral operator by

(
SkLf

)
(z) =

(∫ +∞



∫
|z–w|<t

∣∣Qk
t f (w)

∣∣ dwdt
tn+

)/

and the Littlewood-Paley g-function

Gk
L(f )(z) =

(∫ ∞



∣∣Qk
t f (z)

∣∣ dt
t

)/

.

We also consider the g∗
λ-function associated with L defined by

g∗
λ,kf (x) =

(∫ ∞



∫
Cn

(
t

t + |z –w|
)λn∣∣Qk

t f (w)
∣∣ dwdt

tn+

)/

.

We have the following lemma, whose proof is standard (cf. []).

Lemma 
(i) The operators SkL and Gk

L are isometries on L(Cn).
(ii) When λ > , there exists a constant C > , such that

C–‖f ‖L ≤ ∥∥g∗
λ,kf

∥∥
L ≤ C‖f ‖L .

Now we can prove the following lemma.

Lemma  Let n
n+ < p <  and f ∈ S ′(Cn), then we have:

http://www.journalofinequalitiesandapplications.com/content/2014/1/422
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() f ∈Hp(Cn) if and only if its Lusin area integral SkLf ∈ Lp(Cn).Moreover, we have

‖f ‖Hp ∼ ∥∥SkLf ∥∥Lp .

() f ∈Hp(Cn) if and only if its Littlewood-Paley g-function Gk
Lf ∈ Lp(Cn).Moreover, we

have

‖f ‖Hp ∼ ∥∥Gk
Lf

∥∥
Lp .

() f ∈Hp(Cn) if and only if its G∗
λ-function G∗

λ,kf ∈ Lp(Cn), where λ > .Moreover, we
have

‖f ‖Hp ∼ ∥∥G∗
λ,kf

∥∥
Lp .

Proof () By Lemma , we know there exists a constant C >  such that, for any atom a(x)
ofHp(Cn), we have

∥∥SkLa∥∥Lp ≤ C.

For the reverse, by Theorem , we can prove similarly to Proposition . in [].
() Firstly, we can prove Gk

L is uniformly bounded on atoms of Hp(Cn). For the reverse,
we can prove the following inequality (cf. Theorem .  in []):

∥∥Sk+L f
∥∥
Lp ≤ C

∥∥Gk
Lf

∥∥
Lp . ()

Then () follows from part () and ().
() By SkLf (z) ≤ (  )

λng∗
λ,kf (z), we know f ∈ Hp(Cn) when g∗

λ,kf ∈ Lp(Cn). In the following,
we show there exists a constant C >  such that for any atom a(z) ofHp(Cn), we have

∥∥g∗
λ,ka

∥∥
Lp ≤ C.

We assume a(z) is supported in B(z, r), then

g∗
λ,ka(z)

 ≤ CSkLa(z)
 +

∞∑
k=

–kλnS
k

L a(z).

Then

∥∥g∗
λ,ka

∥∥
Lp ≤ C

∥∥SkLa∥∥Lp +C

∞∑
k=

–kλn
∥∥SkL a

∥∥
Lp .

By part (), we have ‖SkLa‖Lp ≤ C. We can prove (cf. [])

∥∥SkL a
∥∥
Lp ≤ Ckn. ()

Therefore, when λ > , we have ‖g∗
λ,ka‖Lp ≤ C. Then Lemma  is proved. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/422
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In the following, we give the proof of Theorem .

Proof of Theorem  Firstly, by Lemma . in [], we get

Gk+
L (F)(z) ≤ CG∗

k
n ,
(f )(z),

where F(z) = Tφ f (z), then, by Lemma , when k > n,

∥∥φ(L)f
∥∥
Hp ≤ C

∥∥Gk+
L (F)(z)

∥∥
Lp ≤ C

∥∥G∗
k
n ,
(f )(z)

∥∥
Lp ≤ C‖f ‖Hp .

This completes the proof of Theorem . �
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