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Abstract
In this paper, we give a unified generalization of the Gini means and Heronian means.
The Schur-geometric convexity of the generalized Gini-Heronian means are
investigated. Our result generalizes an earlier result given by Shi et al. (J. Inequal. Appl.
2008:879273, 2008). At the end of the paper, two new inequalities related to the
generalized Gini-Heronian means are established to illustrate the applicability of the
given result.
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1 Introduction
The Schur convexity of functions relating to specialmeans have been investigated bymany
mathematicians, a number of results can be found in themonograph ofMarshall andOlkin
[]. As a supplement to the Schur convexity of functions, the Schur-geometric convexity of
functions was recently studied by Shi and Zhang [–], Zhang and Yang [] and Chu et al.
[], some related results have been found to have an important application in discovering
and proving the inequalities for special means. The purpose of this paper is to investigate
the Schur-geometric convexity of functions related to Gini means and Heronian means.
Besides, as application, we establish two new inequalities for generalized Gini-Heronian
means. Our result generalizes an earlier result given by Shi et al. in [].
In what follows, we denote the set of real numbers by R, the set of nonnegative real

numbers by R+, the set of positive real numbers by R++, and the set of nonpositive real
numbers by R–.
Let (r, s) ∈R

, (x, y) ∈R

++; the classical Gini means are defined by (see [])

G(r, s;x, y) =

{
( x

r+yr
xs+ys )

/(r–s), r �= s,
exp( x

r lnx+yr ln y
xr+yr ), r = s.

In , Sándor [] investigated the Schur convexity of G(r, s;x, y) with respect to (r, s),
and obtained the following result.

Theorem A For fixed (x, y) ∈ R

++ and x �= y, the Gini means G(r, s;x, y) is Schur concave

with respect to (r, s) on R

+, and G(r, s;x, y) is Schur convex with respect to (r, s) on R


–.
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In the same year, Wang [] proved the Schur convexity and the Schur-geometric con-
vexity of G(r, s;x, y) with respect to (x, y) on R


++, as follows.

Theorem B The Gini means G(r, s;x, y) is Schur convex with respect to (x, y) on R

++ if and

only if (r, s) ∈ {(r, s)|r ≥ , s ≥ , r + s ≥ }, and G(r, s;x, y) is Schur concave with respect to
(x, y) on R


++ if and only if (r, s) ∈ {(r, s)|r ≤ , r + s ≤ } ∪ {(r, s)|s ≤ , r + s ≤ }.

TheoremC The Gini means G(r, s;x, y) is Schur-geometric convex with respect to (x, y) on
R


++ if and only if (r, s) ∈ {(r, s)|r + s ≥ }, and G(r, s;x, y) is Schur-geometric concave with

respect to (x, y) on R

++ if and only if (r, s) ∈ {(r, s)|r + s ≤ }.

Some different proofs concerning the Schur convexity of G(r, s;x, y) were given by Shi et
al. [], Chu and Xia [], respectively.
Xia and Chu [] presented the necessary and sufficient condition for the Schur-

harmonic-convexity of G(r, s;x, y) with respect to (x, y) on R

++.

A further discussion on the Schur-power-convexity of G(r, s;x, y) with respect to (x, y)
on R


++ was given by Yang []. Meanwhile, the necessary and sufficient condition for the

Schur-power-convexity of G(r, s;x, y) was obtained.
Let (x, y) ∈R


++; the classical Heronian means is defined by (see [])

He(x, y) =
x +√xy + y


.

In , Mao [] gave the definition of the dual Heronian means as follows:

H̃e(x, y) =
x + √xy + y


.

In , Janous [] considered a unified generalization of the Heronian means He(x, y)
and dual Heronianmeans H̃e(x, y), and presented the followingHeronian-typemeanswith
a parameter w:

Hw(x, y) =

{
x+w√xy+y

w+ , ≤ w < ∞,√xy, w =∞.

Jia and Cao [] investigated the exponential generalization of the Heronian means,

Hp(x, y) =

{
( x

p+(xy)p/+yp
 )/p, p �= ,√xy, p = ,

and established some related inequalities. Moreover, the monotonicity and Schur convex-
ity of the Heronian means Hp(x, y) were discussed by Li et al. in [].
Shi et al. [] discussed the Schur convexity and Schur-geometric convexity of a further

generalization of the Heronian means given by

Hp,w(x, y) =

{
( x

p+w(xy)p/+yp
w+ )/p, p �= ,√xy, p = ,

and obtained some significant results, asserted by Theorems D and E below.
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Theorem D For fixed (p,w) ∈R
,

() if (p,w) ∈ {(p,w)|p≥ ,  ≤ w≤ }, then Hp,w(x, y) is Schur convex for (x, y) ∈R

+;

() if (p,w) ∈ {(p,w)|p≤ ,w ≥ } ∪ {(p,w)| < p ≤ /,w≥ } ∪ {(p,w)|/ < p ≤ ,
w ≥ }, then Hp,w(x, y) is Schur concave for (x, y) ∈R


+.

Theorem E For fixed (p,w) ∈R
,

() if (p,w) ∈ {(p,w)|p > ,w≥ }, then Hp,w(x, y) is Schur-geometric convex for
(x, y) ∈R


++;

() if (p,w) ∈ {(p,w)|p < ,w≥ }, then Hp,w(x, y) is Schur-geometric concave for
(x, y) ∈R


++.

As a further investigation of Theorem D, Fu et al. [] gave the necessary and sufficient
condition for the Schur convexity of the generalized Heronian means Hp,w(x, y). Yang []
investigated the Schur-power-convexity of Hp,w(x, y) with respect to (x, y) ∈ R


++. Mortici

[] studied certain special means relating to convex functions.
In this paper, we shall generalize the Gini means G(r, s;x, y) and the Heronian means

Hp,w(x, y) in a unified form. For this purpose we define a generalized Gini-Heronianmeans
containing three parameters p, q, and w, as follows:

Hp,q,w(x, y) =

⎧⎨⎩ ( x
p+w(xy)p/+yp

xq+w(xy)q/+yq )
/(p–q), p �= q,

exp( x
p lnx+(w/)(xy)p/ ln(xy)+yp ln y

xp+w(xy)p/+yp ), p = q,

where (p,q) ∈R
, (x, y) ∈R


++.

The Schur-geometric convexity of the generalized Gini-Heronian means will be dis-
cussed in Section . As applications, several inequalities related to generalized Gini-
Heronian means are established in Section .

2 Definitions and lemmas
We introduce and establish several definitions and lemmas, which will be used in the
proofs of the main results in Sections  and .

Definition  (see []) For any x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ R
n, let x[] ≥ x[] ≥

· · · ≥ x[n] and y[] ≥ y[] ≥ · · · ≥ y[n] denote the components of x and y in decreasing order,
respectively.
The n-tuple y is said to majorize x (or x is to be majorized by y), in symbols x ≺ y, if

k∑
i=

x[i] ≤
k∑
i=

y[i] holds for k = , , . . . ,n –  and
n∑
i=

xi =
n∑
i=

yi.

Definition  (see []) For any x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ � (� ⊂ R
n
++), φ :

� → R is said to be a Schur-geometric convex function on � if (lnx, lnx, . . . , lnxn) ≺
(ln y, ln y, . . . , ln yn) on � implies φ(x) ≤ φ(y), φ is said to be a Schur-geometric concave
function on � if and only if –φ is a Schur-geometric convex function.

Definition  (see []) For any x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ � (� ⊂ R
n
++), � is

said to be a geometrically convex set if (xα
 y

β
 ,xα

y
β
 , . . . ,xα

ny
β
n ) ∈ � for all x, y ∈ �, α,β ∈ [, ]

with α + β = .
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Lemma  (see []) Let � (� ⊂ R
n
++) be symmetric and have a nonempty interior set �o,

and let φ :� → R be continuous on � and differentiable in �o. If φ is symmetric on � and

(x – x)
(
x

∂φ

∂x
– x

∂φ

∂x

)
≥  (≤ )

holds for any (x,x, . . . ,xn) ∈ �o, then φ is a Schur-geometric convex (Schur-geometric con-
cave) function.

Lemma  (see []) Let a ≤ b, u(t) = tb + ( – t)a, v(t) = ta + ( – t)b, / ≤ t ≤ t ≤  or
 ≤ t ≤ t ≤ /, then(

a + b


,
a + b


)
≺ (

u(t), v(t)
) ≺ (

u(t), v(t)
) ≺ (a,b).

Lemma  Let p,q ∈ R, p > q, λ ≥ , and let

g(λ) = pλp – qλp/+q/ + qλp/–q/ – p.

Then g(λ)≥  for p + q ≥ , and g(λ)≤  for p + q ≤ .

Proof Let f(λ) = λ–(p/–q/)g ′
(λ), f(λ) = λ–qf ′

 (λ). Straightforward computation yields

f(λ) = pλp/+q/ – q(p + q)λq + q(p – q),

f() = (p – q)(p + q),

f(λ) = λ–qf ′
 (λ) = p(p + q)λp/–q/ – q(p + q),

f() = (p – q)(p + q),

f ′
(λ) =



p(p + q)(p – q)λp/–q/–.

Case . pq �= .
() If p + q = , then

g(λ) = pλp + pλp/–p/ – pλp/+p/ – p = .

() If p + q > , then from the expressions f ′
(λ), f(), f() above we find that, for λ ≥ ,

f ′
(λ) > , f() > , f() > .

We thus conclude that the functions f(λ), f(λ), and g(λ) are increasing for λ ∈ [, +∞).
In fact, for λ ≥ , one has

f ′
(λ) >  ⇒ f(λ) >  ⇒ f ′

 (λ) >  ⇒ f(λ) > 

⇒ g ′
(λ) >  ⇒ g(λ) ≥ g() = .

() If p + q < , then

f ′
(λ) < , f() > , lim

λ→+∞
f(λ)

λp/–q/ = p(p + q) < .

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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According to the above relations and the continuity of f(λ), we deduce that there exists
λ ∈ (, +∞) such that f(λ) = , which leads us to f(λ) >  for λ ∈ [,λ), and f(λ) <  for
λ ∈ (λ, +∞).
Thus, we deduce that f(λ) is increasing on [,λ) and decreasing on (λ, +∞), and

thereby we get

f(λ)≤ f(λ) for λ ∈ (, +∞).

On the other hand, we deduce from f(λ) =  that λ
p/–q/
 = q/p, thus, we have

f(λ) = pλp/–q/
 λ

q
 – q(p + q)λq

 + q(p – q)

= p · q


p
· λq

 – q(p + q)λq
 + q(p – q)

= q(p – q)
(
 – λ

q

)
< ,

which implies f(λ) < , i.e., g ′
(λ) <  for λ ∈ [, +∞).

We conclude that g(λ) is decreasing on [, +∞). It, therefore, follows that g(λ) ≤
g() ≤ .
Case . pq = .
It is easy to verify that:
If p > q =  (it implies that p + q > ), then g(λ) = p(λp – ) ≥ .
If  = p > q (it implies that p + q < ), then g(λ) = qλ–q/( – λq) ≤ .
If  = p = q (it implies that p + q = ), then g(λ) = .

The proof of Lemma  is complete. �

Lemma  Let p,q ∈R, p > q, λ ≥ , and let

g(λ) = (p – q)λp+q + (p + q)λp – (p + q)λq – (p – q).

Then g(λ) ≥  for p + q ≥ , and g(λ)≤  for p + q ≤ .

Proof Let h(λ) = λ–qg ′
(λ). It follows from a simple computation that

h(λ) = (p – q)(p + q)λp + p(p + q)λp–q – q(p + q),

h() = (p – q)(p + q),

h′(λ) = p(p – q)(p + q)λp–( + λ–q).
Case . pq �= .
() If p + q = , then

g(λ) = (p + p)λp–p + (p – p)λp – (p – p)λ–p – (p + p) = .

() If p+ q > , then from the hypothesis p > q we find that p > (p+ q)/ > , and then we
derive from the expressions h′(λ), h() that, for λ ≥ ,

h′(λ) > , h() > ,

which shows that h(λ) is increasing on [, +∞), so, we have h(λ)≥ h() >  for λ ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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Thus, we obtain g ′
(λ) >  for λ ≥ . Now, from the fact that g(λ) is increasing on [, +∞),

we obtain g(λ)≥ g() =  (λ ≥ ).
() If p + q <  and p > , then

h′(λ) ≤ , h() < .

Note that h(λ) is decreasing on [, +∞), we get h(λ)≤ h() <  for λ ≥ , and then we get
g ′
(λ) <  for λ ≥ .
Finally, in view of the fact that g(λ) is decreasing on [, +∞), we deduce g(λ)≤ g() = 

(λ ≥ ).
() If p + q <  and p < , then

h′(λ) > , h() < , lim
λ→+∞

h(λ)
λp–q = p(p + q) > .

By the monotonicity and the continuity of h(λ), we find that there exists λ ∈ (, +∞)
such that h(λ) = , which implies that h(λ) <  for λ ∈ [,λ), and h(λ) >  for λ ∈ (λ, +∞).
We hereby deduce that g ′

(λ) <  for λ ∈ [,λ), and g ′
(λ) >  for λ ∈ (λ, +∞). Further,

we conclude that g(λ) is decreasing on [,λ) and increasing on (λ, +∞).
Therefore, we obtain

g(λ) ≤max
{
g(), lim

λ→+∞ g(λ)
}
=max

{
,–(p – q)

}
= .

Case . pq = .
It is easy to verify that:
If p > q =  (it implies that p + q > ), then g(λ) = p(λp – )≥ .
If  = p > q (it implies that p + q < ), then g(λ) = q( – λq) ≤ .
If  = p = q (it implies that p + q = ), then g(λ) = .

This completes the proof of Lemma . �

3 Main result
The main result of this paper is given by Theorem  below.

Theorem  For fixed (p,q,w) ∈R
,

() if p + q ≥  and w≥ , then the generalized Gini-Heronian means Hp,q,w(x, y) are
Schur-geometric convex for (x, y) ∈R


++;

() if p + q ≤  and w≥ , then the generalized Gini-Heronian means Hp,q,w(x, y) are
Schur-geometric concave for (x, y) ∈R


++.

Proof We consider the following two cases.
Case . If p = q, then

Hp,q,w(x, y) = exp

(
xp lnx + (w/)(xy)p/ ln(xy) + yp ln y

xp +w(xy)p/ + yp

)
.

Differentiating Hp,q,w(x, y) with respect to x and y, respectively, we obtain

∂H
∂x

=
Hp,q,w(x, y)G(x, y,p,w)
x[xp +w(xy)p/ + yp]

,
∂H
∂y

=
Hp,q,w(x, y)G(x, y,p,w)
y[xp +w(xy)p/ + yp]

,

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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where

G(x, y,p,w) =
[
pxp lnx + xp + (pw/)(xy)p/ ln(xy) + (w/)(xy)p/

][
xp +w(xy)p/ + yp

]
– p

[
xp lnx + (w/)(xy)p/ ln(xy) + yp ln y

][
xp + (w/)(xy)p/

]
,

G(x, y,p,w) =
[
pyp ln y + yp + (pw/)(xy)p/ ln(xy) + (w/)(xy)p/

][
xp +w(xy)p/ + yp

]
– p

[
xp lnx + (w/)(xy)p/ ln(xy) + yp ln y

][
yp + (w/)(xy)p/

]
.

By calculation, it follows that

� := (x – y)
(
x
∂H
∂x

– y
∂H
∂y

)
=
(x – y)Hp,q,w(x, y)F(x, y,p,w)

[xp +w(xy)p/ + yp]
,

where

F(x, y,p,w) = G(x, y,p,w) –G(x, y,p,w)

=
(
pxp lnx + xp – pyp ln y – yp

)[
xp +w(xy)p/ + yp

]
– p

[
xp lnx + (w/)(xy)p/ ln(xy) + yp ln y

](
xp – yp

)
= (xy)p/

[
xp – yp + (p/)

(
xp + yp

)
ln(x/y)

]
w + pxpyp ln(x/y) + xp – yp.

Note that the expression� is symmetric in x and y, without loss of generality we assume
that x≥ y.
Setting λ = x/y, λ ≥ , we have

F(x, y,p,w) = (xy)p/yp
[
λp –  + (p/)

(
λp + 

)
lnλ

]
w + yp

(
pλp lnλ + λp – 

)
.

In addition, it is easy to show that

[
λp –  + (p/)

(
λp + 

)
lnλ

]
w + yp

(
pλp lnλ + λp – 

) ≥  for p≥  and w ≥ ,[
λp –  + (p/)

(
λp + 

)
lnλ

]
w + yp

(
pλp lnλ + λp – 

) ≤  for p≤  and w ≥ .

This yields

� ≥  for p ≥ ,w≥  and � ≤  for p ≤ ,w≥ .

Case . If p �= q, then

Hp,q,w(x, y) =
(
xp +w(xy)p/ + yp

xq +w(xy)q/ + yq

)/(p–q)

.

Differentiating Hp,q,w(x, y) with respect to x and y, respectively, we get

∂H
∂x

=
Hp,q,w(x, y)

p – q

[
pxp– + (pw/)y(xy)(p/)–

xp +w(xy)p/ + yp
–
qxq– + (qw/)y(xy)(q/)–

xq +w(xy)q/ + yq

]
,

∂H
∂y

=
Hp,q,w(x, y)

p – q

[
pyp– + (pw/)x(xy)(p/)–

xp +w(xy)p/ + yp
–
qyq– + (qw/)x(xy)(q/)–

xq +w(xy)q/ + yq

]
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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Direct calculation gives

� := (x – y)
(
x
∂H
∂x

– y
∂H
∂y

)
=

Hp,q,w(x, y)(x – y)
p – q

[
p(xp – yp)

xp +w(xy)p/ + yp
–

q(xq – yq)
xq +w(xy)q/ + yq

]
.

It is obvious that the expression � is symmetric with respect to p and q (it is also sym-
metric with respect to x and y), and without loss of generality we assume that x ≥ y and
p > q in the following discussion.
Simplifying the expression �, we obtain

� =
Hp,q,w(x, y)(x – y)F(x, y,p,q,w)

(p – q)(xp +w(xy)p/ + yp)(xq +w(xy)q/ + yq)
,

where

F(x, y,p,q,w) = p
(
xp – yp

)(
xq +w(xy)q/ + yq

)
– q

(
xq – yq

)(
xp +w(xy)p/ + yp

)
=

(
pxp+(q/)yq/ – qxq+(p/)yp/ + qxp/yq+(p/) – pxq/yp+(q/)

)
w

+ (p – q)xp+q + (p + q)xpyq – (p + q)xqyp – (p – q)yp+q

= yp+q
[
p(x/y)p+(q/) – q(x/y)q+(p/) + q(x/y)p/ – p(x/y)q/

]
w

+ yp+q
[
(p – q)(x/y)p+q + (p + q)(x/y)p – (p + q)(x/y)q – (p – q)

]
.

Setting λ = x/y, λ ≥ , then

F(x, y,p,q,w) = yp+q
[
λq/g(λ)w + g(λ)

]
,

where

g(λ) = pλp – qλp/+q/ + qλp/–q/ – p,

g(λ) = (p – q)λp+q + (p + q)λp – (p + q)λq – (p – q).

It follows from Lemmas  and  that

F(x, y,p,q,w) ≥  for p + q ≥  and w ≥ ,

F(x, y,p,q,w) ≤  for p + q ≤  and w ≥ .

This evidently implies that

� ≥  for p + q ≥ ,w≥  and � ≤  for p + q ≤ ,w≥ .

By using the conclusions obtained in Cases  and  together with an application of
Lemma , we are led to the desired results:

Hp,q,w(x, y) is Schur-geometric convex on R

++ when p+ q ≥  and w≥ . Furthermore,

Hp,q,w(x, y) is Schur-geometric concave on R

++ when p + q ≤  and w ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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The proof of Theorem  is thus completed. �

Remark  The main result of Theorem E would follow as a special case of Theorem 
(q = ). Namely, the result stated in Theorem  is an extension of the result given in [].

4 An application
As an application of Theorem , we establish the following interesting inequalities for gen-
eralized Gini-Heronian means.

Theorem  Let  < x ≤ y, and let / ≤ t ≤ t ≤  or  ≤ t ≤ t ≤ /.
If p + q ≥  and w≥ , then

Hp,q,w(
√
xy,

√
xy) ≤ Hp,q,w

(
ytx–t ,xty–t

)
≤ Hp,q,w

(
ytx–t ,xty–t

) ≤Hp,q,w(x, y). (.)

If p + q ≤  and w≥ , then

Hp,q,w(
√
xy,

√
xy) ≥ Hp,q,w

(
ytx–t ,xty–t

)
≥ Hp,q,w

(
ytx–t ,xty–t

) ≥Hp,q,w(x, y), (.)

where Hp,q,w(x, y) is given by

Hp,q,w(x, y) =

⎧⎨⎩ ( x
p+w(xy)p/+yp

xq+w(xy)q/+yq )
/(p–q), p �= q,

exp( x
p lnx+(w/)(xy)p/ ln(xy)+yp ln y

xp+w(xy)p/+yp ), p = q.

Proof Using Lemma  with a substitution a = lnx, b = ln y gives

(
lnx + ln y


,
lnx + ln y



)
≺ (

t ln y + ( – t) lnx, t lnx + ( – t) ln y
)

≺ (
t ln y + ( – t) lnx, t lnx + ( – t) ln y

) ≺ (lnx, ln y),

which is equivalent to

(ln
√
xy, ln

√
xy) ≺ (

ln
(
ytx–t

)
, ln

(
xty–t

))
≺ (

ln
(
ytx–t

)
, ln

(
xty–t

)) ≺ (lnx, ln y).

On the other hand, we derive from Theorem  that
Hp,q,w(x, y) is Schur-geometric convex for p + q ≥  and w ≥ , Hp,q,w(x, y) is
Schur-geometric concave for p + q ≤  and w ≥ .

Thus, from Definition , it follows that

Hp,q,w(
√
xy,

√
xy) ≤ Hp,q,w

(
ytx–t ,xty–t

)
≤ Hp,q,w

(
ytx–t ,xty–t

) ≤Hp,q,w(x, y)

http://www.journalofinequalitiesandapplications.com/content/2014/1/413
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for p + q ≥  and w≥ ; and that

Hp,q,w(
√
xy,

√
xy) ≥ Hp,q,w

(
ytx–t ,xty–t

)
≥ Hp,q,w

(
ytx–t ,xty–t

) ≥Hp,q,w(x, y)

for p + q ≤  and w≥ .
The above-mentioned inequalities are the required inequalities inTheorem.This com-

pletes the proof of Theorem . �

Putting q =  in Theorem  gives the following inequalities.

Theorem  Let  < x ≤ y, w ≥ , and let / ≤ t ≤ t ≤  or  ≤ t ≤ t ≤ /. Then, for
p≥ , we have the inequality

G(x, y) ≤ Hp,w
(
ytx–t ,xty–t

)
≤ Hp,w

(
ytx–t ,xty–t

) ≤Hp,w(x, y). (.)

Furthermore, for p≤  we have the inequality

G(x, y) ≥ Hp,w
(
ytx–t ,xty–t

)
≥ Hp,w

(
ytx–t ,xty–t

) ≥Hp,w(x, y), (.)

where G(x, y) = √xy, Hp,w(x, y) is given by

Hp,w(x, y) =

{
( x

p+w(xy)p/+yp
w+ )/p, p �= ,√xy, p = .

Remark  Inequalities (.) and (.) were first presented by Shi et al. in []. It is ob-
vious that the inequalities given in Theorem  provide the generalized versions of these
inequalities.
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