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1 Introduction
Let C be a closed convex subset of a real Hilbert space H with the inner product 〈·, ·〉 and
the norm ‖ · ‖. We denote weak convergence and strong convergence by the notations ⇀

and →, respectively. Let A : C → H be a nonlinear mapping and let F be a bifunction of
C ×C intoR, whereR is the set of real numbers.
Consider the generalized mixed equilibrium problem which is to find x ∈ C such that

F(x, y) + 〈Ax, y – x〉 + ϕ(y) – ϕ(x)≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by GMEP(F ,ϕ,A). See [–].
If ϕ ≡ , the problem (.) is reduced to the generalized equilibrium problemwhich is to

find x ∈ C such that

F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by GEP(F ,A).
If A≡  and ϕ ≡ , the problem (.) is reduced to the equilibrium problem [] which is

to find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by EP(F).
If F ≡  and ϕ ≡ , the problem (.) is reduced to the Hartmann-Stampacchia varia-

tional inequality [] which is to find x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by VI(C,A).

©2014 Kumam et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
mailto:t.jitpeera@hotmail.com
http://creativecommons.org/licenses/by/2.0


Kumam et al. Journal of Inequalities and Applications 2014, 2014:405 Page 2 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/405

A mapping T : C → C is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. If C
is bounded closed convex and T is a nonexpansive mapping of C into itself, then F(T) is
nonempty []. A point x ∈H is a fixed point of T provided Tx = x. Denote by F(T) the set
of fixed points of T ; that is, F(T) = {x ∈H : Tx = x}.
We discuss the following variational inequality problem over the generalized mixed

equilibrium problem, which is called the hierarchical problem over the generalized mixed
equilibrium problem, which is to find a point x ∈GMEP(F ,ϕ,B) such that

〈Ax, y – x〉 ≥ , ∀y ∈GMEP(F ,ϕ,B),

where A, B are two monotone operators. See [, ].
AmappingA : C → C is called α-stronglymonotone if there exists a positive real number

α such that 〈Ax –Ay,x – y〉 ≥ α‖x – y‖ for all x, y ∈ C. A mapping A : C → C is called L-
Lipschitz continuous if there exists a positive real number L such that ‖Ax–Ay‖ ≤ L‖x–y‖
for all x, y ∈ C. A linear bounded operator A is called strongly positive on H if there exists
a constant γ̄ >  with the property 〈Ax,x〉 ≥ γ̄ ‖x‖ for all x ∈ H . A mapping f : C → H is
called a ρ-contraction if there exists a constant ρ ∈ [, ) such that ‖f (x) – f (y)‖ ≤ ρ‖x– y‖
for all x, y ∈ C.
In , Yao et al. [] considered the hierarchical problem over the generalized equi-

librium problem, xs,t being defined by implicit algorithms:

xs,t = s
[
tf (xs,t) + ( – t)(xs,t – λAxs,t)

]
+ ( – s)Tr(xs,t – rBxs,t), s, t ∈ (, ), (.)

for each (s, t) ∈ (, ). The net xs,t hierarchically converges to the unique solution x∗ of the
problem of the variational inequality which is to find a point x∗ ∈GEP(F ,B) such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈GEP(F ,B), (.)

where A, B are two monotone operators. The solution set of (.) is denoted by �. Fur-
thermore, x∗ also solves the following variational inequality:

x∗ ∈ �,
〈
(I – f )x∗,x – x∗〉 ≥ , ∀x ∈ �.

In , Yao et al. [] studied the hierarchical problem over the fixed point set. Let the
sequence {xn} be generated by two algorithms as follows.

Implicit Algorithm: xt = TPC[I – t(A – γ f )]xt , ∀t ∈ (, ) and
Explicit Algorithm: xn+ = βnxn + ( – βn)TPC[I – αn(A – γ f )]xn, ∀n≥ .

They showed that these two algorithms converge strongly to the unique solution of the
problem of the variational inequality which is to find x∗ ∈ F(T) such that

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈ F(T),

where A : C → H is a strongly positive linear bounded operator, f : C → H is a ρ-
contraction, and T : C → C is a nonexpansive mapping.
In this paper, we construct an algorithm and introduce the hierarchical problem over the

generalized mixed equilibrium problem. The sequence {xn} is generated by the algorithm
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for x ∈ C,

xn+ = αn
(
βnxn + ( – βn)PC

[
I – λn(A – γ f )

]
xn

)
+ ( – αn)Trn (I – rnB)xn, (.)

where {αn}, {βn}, {λn} ⊂ [, ], and rn ∈ (, β) satisfy some conditions. Then {xn} con-
verges strongly to x∗ ∈ GMEP(F ,ϕ,B), which is the unique solution of the variational in-
equality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈GMEP(F ,ϕ,B). (.)

Our results improve the results of Yao et al. [], Yao et al. [] and some other authors.

2 Preliminaries
Let C be a nonempty closed convex subset of H . We have the following inequality in an
inner product space: ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ H . For every point x ∈ H , there
exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖,

for every x, y ∈ H . Moreover, PCx is characterized by the following properties: PCx ∈ C
and

〈x – PCx, y – PCx〉 ≤ , (.)

‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖,

for all x ∈ H , y ∈ C. Let B be a monotone mapping of C into H . In the context of the vari-
ational inequality problem the characterization of projection (.) implies the following:

u ∈ VI(C,B) ⇔ u = PC(u – λBu), λ > .

It is alsowell known thatH satisfies theOpial condition [], i.e., for any sequence {xn} ⊂H
with xn ⇀ x, the inequality lim infn→∞ ‖xn–x‖ < lim infn→∞ ‖xn–y‖, holds for every y ∈ H
with x �= y.
For solving the generalizedmixed equilibriumproblem and themixed equilibriumprob-

lem, let us give the following assumptions for the bifunction F , ϕ, and the set C:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;
(A) for each x ∈ C, y �→ F(x, y) is convex;
(A) for each x ∈ C, y �→ F(x, y) is lower semicontinuous;

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
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(B) for each x ∈ H and r > , there exist a bounded subset Dx ⊆ C and yx ∈ C such that
for any z ∈ C \Dx,

F(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 < ; (.)

(B) C is a bounded set.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction from C ×C toR satisfying (A)-(A) and let ϕ : C →R be a proper lower
semicontinuous and convex function. For r >  and x ∈H , define a mapping Tr :H → C as
follows.

Tr(x) =
{
z ∈ C : F(z, y) + ϕ(y) – ϕ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all x ∈ H . Assume that either (B) or (B) holds. Then the following results hold:
() for each x ∈ H , Tr(x) �= ∅;
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H , ‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;
() F(Tr) =MEP(F ,ϕ);
() MEP(F ,ϕ) is closed and convex.

Lemma. [] Let C be a closed convex subset of a real Hilbert space H and let T : C → C
be a nonexpansive mapping. Then I –T is demiclosed at zero, that is, xn ⇀ x, xn –Txn → 
implies x = Tx.

Lemma . [] Assume A is a self adjoint and strongly positive linear bounded operator
on a Hilbert space H with coefficient γ̄ >  and  < ρ ≤ ‖A‖–, then ‖I – ρA‖ ≤  – ργ̄ .

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, ∀n≥ ,

where {γn} ⊂ (, ) and {δn} are sequences inR such that
(i)

∑∞
n= γn =∞,

(ii) lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Strong convergence theorems
In this section, we introduce an explicit algorithm for solving some hierarchical problem
over the set of fixed points of a nonexpansive and the generalizedmixed equilibrium prob-
lem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , A :
H →H be a strongly positive linear bounded operator, f : C →H be ρ-contraction, γ be a
positive real number such that γ̄–

ρ
< γ < γ̄

ρ
. Let B : C →H be β-inverse-strongly monotone

and F be a bifunction from C × C → R satisfying (A)-(A) and let ϕ : C → R be convex

http://www.journalofinequalitiesandapplications.com/content/2014/1/405


Kumam et al. Journal of Inequalities and Applications 2014, 2014:405 Page 5 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/405

and lower semicontinuous with either (B) or (B). Let {xn} be a sequence generated by the
following algorithm for arbitrary x ∈ C:

xn+ = αn
(
βnxn + ( – βn)PC

[
I – λn(A – γ f )

]
xn

)
+ ( – αn)Trn (I – rnB)xn, (.)

where {αn}, {βn}, {λn} ⊂ [, ], αn ≤ λn, and rn ∈ (, β) satisfy the following conditions:
(C)

∑∞
n= |αn – αn–| <∞;

(C)
∑∞

n= |βn – βn–| < ∞;
(C)

∑∞
n= |λn – λn–| < ∞,

∑∞
n= λn =∞, limn→∞ λn = ;

(C)
∑∞

n= |rn – rn–| <∞, lim infn→∞ rn > .
Then {xn} converges strongly to x∗ ∈ GMEP(F ,ϕ,B), which is the unique solution of the
variational inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈GMEP(F ,ϕ,B). (.)

Proof We will divide the proof into five steps.
Step . We will show {xn} is bounded. For any q ∈GMEP(F ,ϕ,B) and taking yn = PC[I –

λn(A – γ f )]xn, we note that

‖yn – q‖ =
∥∥PC

[
I – λn(A – γ f )

]
xn – PCq

∥∥
≤ ∥∥[

I – λn(A – γ f )
]
xn – q

∥∥
≤ λn

∥∥γ f (xn) – γ f (q)
∥∥ + λn

∥∥γ f (q) –Aq
∥∥ + |I – λnA|‖xn – q‖

≤ λnγρ‖xn – q‖ + λn
∥∥γ f (q) –Aq

∥∥ + ( – λnγ̄ )‖xn – q‖
=

[
 – (γ̄ – γρ)λn

]‖xn – q‖ + λn
∥∥γ f (q) –Aq

∥∥. (.)

From (.), we have

‖xn+ – q‖ =
∥∥αn

{
βnxn + ( – βn)yn

}
+ ( – αn)Trn (I – rnB)xn – q

∥∥
≤ αn

∥∥βnxn + ( – βn)yn – q
∥∥ + ( – αn)

∥∥Trn (I – rnB)xn – q
∥∥

≤ αnβn‖xn – q‖ + αn( – βn)‖yn – q‖
+ ( – αn)

∥∥Trn (I – rnB)xn – Trn (I – rnB)q
∥∥

≤ αnβn‖xn – q‖ + αn( – βn)
{[
 – (γ̄ – γρ)λn

]‖xn – q‖ + λn
∥∥γ f (q) –Aq

∥∥}
+ ( – αn)‖xn – q‖

= αnβn‖xn – q‖ + αn( – βn)
[
 – (γ̄ – γρ)λn

]‖xn – q‖
+ αn( – βn)λn

∥∥γ f (q) –Aq
∥∥ + ( – αn)‖xn – q‖

=
[
 – αn( – βn)

]‖xn – q‖ + αn( – βn)
[
 – (γ̄ – γρ)λn

]‖xn – q‖
+ αn( – βn)λn

∥∥γ f (q) –Aq
∥∥

=
{
 – αn( – βn)

(
 –

[
 – (γ̄ – γρ)λn

])}‖xn – q‖
+ αn( – βn)λn

∥∥γ f (q) –Aq
∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
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=
[
 – αn( – βn)λn(γ̄ – γρ)

]‖xn – q‖ + αn( – βn)λn
∥∥γ f (q) –Aq

∥∥
=

[
 – αn( – βn)λn(γ̄ – γρ)

]‖xn – q‖

+ αn( – βn)λn(γ̄ – γρ)
‖γ f (q) –Aq‖

γ̄ – γρ
.

It follows by induction that

‖xn – q‖ ≤ max

{
‖x – q‖, ‖γ f (q) –Aq‖

γ̄ – γρ

}
, ∀n≥ .

Therefore {xn} is bounded and so are {yn}, {Axn}, and {f (xn)}.
Step . We show that limn→∞ ‖xn+ – xn‖ = . Setting vn = [I – λn(A – γ f )]xn and we

observe that

‖yn+ – yn‖ = ‖PCvn+ – PCvn‖
≤ ∥∥[

I – λn+(A – γ f )
]
xn+ –

[
I – λn(A – γ f )

]
xn

∥∥
=

∥∥λn+γ
[
f (xn+) – f (xn)

]
+ (λn+ – λn)γ f (xn) + (I – λn+A)(xn+ – xn)

+(λn+ – λn)Axn
∥∥

≤ λn+γ
∥∥f (xn+) – f (xn)

∥∥ + ( – λn+γ̄ )‖xn+ – xn‖
+ |λn+ – λn|

(∥∥γ f (xn)
∥∥ + ‖Axn‖

)
≤ λn+γρ‖xn+ – xn‖ + ( – λn+γ̄ )‖xn+ – xn‖

+ |λn+ – λn|
(∥∥γ f (xn)

∥∥ + ‖Axn‖
)

=
[
 – (γ̄ – γρ)λn+

]‖xn+ – xn‖ + |λn+ – λn|M, (.)

whereM = sup{‖γ f (xn)‖ + ‖Axn‖ : n ∈N}. Setting zn = βnxn + ( – βn)yn for all n≥ . We
observes that

‖zn+ – zn‖ =
∥∥βn+xn+ + ( – βn+)yn+ –

(
βnxn + ( – βn)yn

)∥∥
≤ βn+‖xn+ – xn‖ + |βn+ – βn|‖xn – yn‖ + | – βn+|‖yn+ – yn‖. (.)

Substituting (.) into (.) it follows that

‖zn+ – zn‖ ≤ βn+‖xn+ – xn‖ + |βn+ – βn|‖xn – yn‖
+ | – βn+|

{[
 – (γ̄ – γρ)λn+

]‖xn+ – xn‖ + |λn+ – λn|M
}

≤ βn+‖xn+ – xn‖ + |βn+ – βn|‖xn – yn‖
+

[
 – βn+ – ( – βn+)(γ̄ – γρ)λn+

]‖xn+ – xn‖ + |λn+ – λn|M

=
[
 – ( – βn+)(γ̄ – γρ)λn+

]‖xn+ – xn‖ + |βn+ – βn|M

+|λn+ – λn|M, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
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where M = sup{‖xn – yn‖ : n ∈ N}. On the other hand, from un– = Trn– (xn– – rn–Bxn–)
and un = Trn (xn – rnBxn) it follows that

F(un–, y) + 〈Bxn–, y – un–〉 + ϕ(y) – ϕ(un–) +


rn–
〈y – un–,un– – xn–〉 ≥ ,

∀y ∈ C, (.)

and

F(un, y) + 〈Bxn, y – un〉 + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C. (.)

Substituting y = un into (.) and y = un– into (.), we have

F(un–,un) + 〈Bxn–,un – un–〉 + ϕ(un) – ϕ(un–) +


rn–
〈un – un–,un– – xn–〉 ≥ 

and

F(un,un–) + 〈Bxn,un– – un〉 + ϕ(un–) – ϕ(un) +

rn

〈un– – un,un – xn〉 ≥ .

From (A), we have

〈
un – un–,Bxn– – Bxn +

un– – xn–
rn–

–
un – xn

rn

〉
≥ ,

and then
〈
un – un–, rn–(Bxn– – Bxn) + un– – xn– –

rn–
rn

(un – xn)
〉
≥ ,

so
〈
un – un–, rn–Bxn– – rn–Bxn + un– – un + un – xn– –

rn–
rn

(un – xn)
〉
≥ .

It follows that

〈
un – un–, (I – rn–B)xn – (I – rn–B)xn– + un– – un + un – xn –

rn–
rn

(un – xn)
〉
≥ ,

〈un – un–,un– – un〉 +
〈
un – un–,xn – xn– +

(
 –

rn–
rn

)
(un – xn)

〉
≥ .

Without loss of generality, let us assume that there exists a real number c such that rn– >
c > , for all n ∈N. Then we have

‖un – un–‖ ≤
〈
un – un–,xn – xn– +

(
 –

rn–
rn

)
(un – xn)

〉

≤ ‖un – un–‖
{
‖xn – xn–‖ +

∣∣∣∣ – rn–
rn

∣∣∣∣‖un – xn‖
}

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
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and hence

‖un – un–‖ ≤ ‖xn – xn–‖ + 
rn

|rn – rn–|‖un – xn‖

≤ ‖xn – xn–‖ + M

c
|rn – rn–|, (.)

whereM = sup{‖un – xn‖ : n ∈ N}. From (.), we have

‖xn+ – xn‖ =
∥∥αnzn + ( – αn)un – αn–zn– – ( – αn–)un–

∥∥
≤ αn‖zn – zn–‖ + |αn – αn–|‖zn– – un–‖ + | – αn|‖un – un–‖
= αn‖zn – zn–‖ + |αn – αn–|M + | – αn|‖un – un–‖, (.)

whereM = sup{‖zn – un‖ : n ∈N}. Substituting (.) and (.) into (.)

‖xn+ – xn‖ ≤ αn
{[
 – ( – βn)(γ̄ – γρ)λn

]‖xn – xn–‖
+ |βn – βn–|M + |λn – λn–|M

}

+ |αn – αn–|M + | – αn|
{
‖xn – xn–‖ + M

c
|rn – rn–|

}

≤ [
 – ( – βn)(γ̄ – γρ)αnλn

]‖xn – xn–‖ + αn|βn – βn–|M

+ αn|λn – λn–|M + |αn – αn–|M +
M

c
|rn – rn–|, (.)

from (C)-(C) and the boundedness of {xn}, {yn}, {zn}, {f (xn)}, and {Axn}. Applying
Lemma ., we obtain

lim
n→∞‖xn+ – xn‖ = . (.)

Step . We show that limn→∞ ‖xn – un‖ = . For each q ∈ GMEP(F ,ϕ,B), note that Trn

is firmly nonexpansive, then we have

‖un – q‖ =
∥∥Trn (xn – rnBxn) – Trn (q – rnBq)

∥∥

≤ 〈
Trn (xn – rnBxn) – Trn (q – rnBq),un – q

〉
=

〈
(xn – rnBxn) – (q – rnBq),un – q

〉

=


{∥∥(xn – rnBxn) – (q – rnBq)

∥∥ + ‖un – q‖

–
∥∥(xn – rnBxn) – (q – rnBq) – (un – q)

∥∥}

≤ 

{‖xn – q‖ + ‖un – q‖ – ∥∥xn – un – rn(Bxn – Bq)

∥∥}

≤ 

{‖xn – q‖ + ‖un – q‖ – ‖xn – un‖

+ rn〈xn – un,Bxn – Bq〉 – rn‖Bxn – Bq‖}, (.)

which implies that

‖un – q‖ ≤ ‖xn – q‖ – ‖xn – un‖ + rn‖xn – un‖‖Bxn – Bq‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/405
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From (.), we get

‖yn – xn‖ =
∥∥PC

(
I – λn(A – γ f )

)
xn – PCxn

∥∥
≤ ∥∥(

I – λn(A – γ f )
)
xn – xn

∥∥
≤ λn

∥∥(A – γ f )xn
∥∥.

By (C), we have

lim
n→∞‖yn – xn‖ = . (.)

Setting wn = [I – λn(A – γ f )]xn. It follows that

‖wn – xn‖ =
∥∥[
I – λn(A – γ f )

]
xn – xn

∥∥
≤ ∥∥[

I – λn(A – γ f )
]
xn – xn

∥∥
≤ λn

∥∥(A – γ f )xn
∥∥.

By using (C) again, we get

lim
n→∞‖wn – xn‖ = . (.)

From yn = PC[I – λn(A – γ f )]xn, we compute

‖yn – q‖ =
∥∥PC

[
I – λn(A – γ f )

]
xn – PCq

∥∥
≤ ∥∥[

I – λn(A – γ f )
]
xn – q

∥∥
= ‖wn – q‖. (.)

It follows from (.) that

‖xn – q‖ ≤ ‖wn – q‖. (.)

Then we get

‖wn – q‖ ≤ 〈[
I – λn(A – γ f )

]
xn – q,wn – q

〉
= λn〈γ fxn –Aq,wn – q〉 + 〈

(I – λnA)(xn – q),wn – q
〉

≤ λn〈γ fxn –Aq,wn – q〉 + ( – λnγ̄ )‖xn – q‖‖wn – q‖
≤ ( – λnγ̄ )‖wn – q‖ + λn〈γ fxn –Aq,wn – q〉.

It follows that

‖wn – q‖ ≤ 
γ̄

〈γ fxn –Aq,wn – q〉

=

γ̄

[
γ 〈fxn – fq,wn – q〉 + 〈γ fq –Aq,wn – q〉]

≤ 
γ̄

[
γρ‖wn – q‖ + 〈

(A – γ f )q,q –wn
〉]
,
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that is,

‖wn – q‖ ≤ 
γ̄ – γρ

〈
(A – γ f )q,q –wn

〉
. (.)

On the other hand, we note that

‖un – q‖ =
∥∥Trn (xn – rnBxn) – Trn (q – rnBq)

∥∥

≤ ∥∥(xn – rnBxn) – (q – rnBq)
∥∥

=
∥∥(xn – q) – rn(Bxn – Bq)

∥∥

≤ ‖xn – q‖ – rn〈xn – q,Bxn – Bq〉 + rn‖Bxn – Bq‖

≤ ‖xn – q‖ – rnβ‖Bxn – Bq‖ + rn‖Bxn – Bq‖. (.)

Using (.), (.), (.), and (.), we note that

‖xn+ – q‖ ≤ αnβn‖xn – q‖ + αn( – βn)‖yn – q‖ + ( – αn)‖un – q‖

≤ αnβn‖wn – q‖ + αn( – βn)‖wn – q‖ + ( – αn)‖un – q‖

= αn‖wn – q‖ + ( – αn)‖un – q‖

≤ αn

γ̄ – γρ

〈
(A – γ f )q,q –wn

〉

+ ( – αn)
{‖xn – q‖ – rnβ‖Bxn – Bq‖ + rn‖Bxn – Bq‖}

=
αn

γ̄ – γρ

〈
(A – γ f )q,q –wn

〉

+ ( – αn)
{‖xn – q‖ + rn(rn – β)‖Bxn – Bq‖}

≤ αn

γ̄ – γρ

〈
(A – γ f )q,q –wn

〉
+ ‖xn – q‖

+ ( – αn)rn(rn – β)‖Bxn – Bq‖. (.)

Then we have

( – αn)c(β – d)‖Bxn – Bq‖

≤ αn

γ̄ – γρ

〈
(A – γ f )q,q –wn

〉
+ ‖xn – q‖ – ‖xn+ – q‖

≤ αn

γ̄ – γρ

〈
(A – γ f )q,q –wn

〉
+ ‖xn – xn+‖

(‖xn – q‖ + ‖xn+ – q‖).

From (C), {rn} ⊂ [c,d] ⊂ (, β), and (.), we obtain

lim
n→∞‖Bxn – Bq‖ = . (.)

Substituting (.) into (.), we have

‖xn+ – q‖ ≤ αn‖wn – q‖ + ( – αn)‖un – q‖

≤ αn‖wn – q‖ + ( – αn)
{‖xn – q‖ – ‖xn – un‖
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+ rn‖xn – un‖‖Bxn – Bq‖}
≤ αn‖wn – q‖ + ‖xn – q‖ – ( – αn)‖xn – un‖

+ rn( – αn)‖xn – un‖‖Bxn – Bq‖,

and it follows that

( – αn)‖xn – un‖ ≤ αn‖wn – q‖ + ‖xn – q‖ – ‖xn+ – q‖

+ rn( – αn)‖xn – un‖‖Bxn – Bq‖
≤ αn‖wn – q‖ + ‖xn – xn+‖

(‖xn – q‖ + ‖xn+ – q‖)
+ rn( – αn)‖xn – un‖‖Bxn – Bq‖.

Since we have (C), (.), and (.),

lim
n→∞‖xn – un‖ = . (.)

By (C), we obtain

lim
n→∞

∥∥∥∥xn – un
rn

∥∥∥∥ = lim
n→∞


rn

‖xn – un‖ = . (.)

Step . Next, we will show that

lim sup
n→∞

〈
(γ f –A)x∗,xn – x∗〉 ≤ .

Indeed, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
(γ f –A)x∗,xn – x∗〉 = lim

i→∞
〈
(γ f –A)x∗,xni – x∗〉.

Since {xni} is bounded, there exists a subsequence {xnij } of {xni}which converges weakly to
z ∈ C. We notice that ‖wn – xn‖ ≤ λn‖(A – γ f )xn‖ → . Hence, we get lim supn→∞〈(γ f –
A)x∗,xn – x∗〉 ≤ . Next, we will show that z ∈ GMEP(F ,ϕ,B). Since un = Trn (xn – rnBxn),
we have

F(un, y) + 〈Bxn, y – un〉 + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C.

From (A), we also have

〈Bxn, y – un〉 + ϕ(y) – ϕ(un) +

rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈ C,

and hence

〈Bxni , y – uni〉 + ϕ(y) – ϕ(uni ) +
〈
y – uni ,

uni – xni
rni

〉
≥ F(y,uni ), ∀y ∈ C. (.)
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For t with  < t ≤  and y ∈ C, let yt = ty + ( – t)z. Since y ∈ C and z ∈ C, we have yt ∈ C.
So, from (.), we have

〈yt – uni ,Byt〉 ≥ 〈yt – uni ,Byt〉 – ϕ(yt) + ϕ(uni ) – 〈yt – uni ,Bxni〉

–
〈
yt – uni ,

uni – xni
rni

〉
+ F(yt ,uni )

= 〈yt – uni ,Byt – Buni〉 + 〈yt – uni ,Buni – Bxni〉 – ϕ(yt) + ϕ(uni )

–
〈
yt – uni ,

uni – xni
rni

〉
+ F(yt ,uni ).

Since ‖uni –xni‖ → ,wehave ‖Buni –Bxni‖ → . Further, from the inverse stronglymono-
tonicity of B, we have 〈yt – uni ,Byt – Buni〉 ≥ . So, from (A), (A), and the weak lower
semicontinuity of ϕ, uni–xni

rni
→  and uni ⇀ w, we have in the limit

〈yt –w,Byt〉 ≥ –ϕ(yt) + ϕ(w) + F(yt ,w) (.)

as i→ ∞. From (A), (A) and (.), we also get

 = F(yt , yt) + ϕ(yt) – ϕ(yt)

≤ tF(yt , y) + ( – t)F(yt , z) + tϕ(y) – ( – t)ϕ(z) – ϕ(yt)

= t
[
F(yt , y) + ϕ(y) – ϕ(yt)

]
+ ( – t)

[
F(yt , z) + ϕ(z) – ϕ(yt)

]
≤ t

[
F(yt , y) + ϕ(y) – ϕ(yt)

]
+ ( – t)〈yt – z,Byt〉

= t
[
F(yt , y) + ϕ(y) – ϕ(yt)

]
+ ( – t)t〈y – z,Byt〉,

 ≤ F(yt , y) + ϕ(y) – ϕ(yt) + ( – t)〈y – z,Byt〉.

Letting t → , we have, for each y ∈ C,

F(z, y) + ϕ(y) – ϕ(z) + 〈y – z,Bz〉 ≥ .

This implies that z ∈ GMEP(F ,ϕ,B). It is easy to see that PGMEP(F ,ϕ,B)(I – A + γ f )(x∗) is a
contraction ofH into itself. HenceH is complete, there exists a unique fixed point x∗ ∈H ,
such that x∗ = PGMEP(F ,ϕ,B)(I –A + γ f )(x∗).
Step . Next, we will prove xn → x∗ ∈ GMEP(F ,ϕ,B), which solves the variational in-

equality (.). It follows from (.) that

∥∥xn+ – x∗∥∥ = αnβn
〈
xn – x∗,xn+ – x∗〉

+ αn( – βn)
〈
PC

[
I – λn(A – γ f )

]
xn – PC

[
I – λn(A – γ f )

]
x∗,xn+ – x∗〉

+ αn( – βn)
〈
PC

[
I – λn(A – γ f )

]
x∗ – x∗,xn+ – x∗〉

+ ( – αn)
〈
Trn (I – rnB)xn – Trn (I – rnB)x∗,xn+ – x∗〉

≤ αnβn
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥

+ αn( – βn)
〈[
I – λn(A – γ f )

]
xn –

[
I – λn(A – γ f )

]
x∗,xn+ – x∗〉
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+ αn( – βn)
〈[
I – λn(A – γ f )

]
x∗ – x∗,xn+ – x∗〉

+ ( – αn)
∥∥Trn (I – rnB)xn – Trn (I – rnB)x∗∥∥∥∥xn+ – x∗∥∥

≤ αnβn
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥

+ αn( – βn)
{[
 – (γ̄ – γρ)λn

]∥∥xn – x∗∥∥
+ λn

∥∥γ f
(
x∗) –Ax∗∥∥}∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉 + ( – αn)

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
= αnβn

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + ( – αn)
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥

+ αn( – βn)
[
 – (γ̄ – γρ)λn

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ αn( – βn)λn

∥∥γ f
(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉

=
[
 – αn( – βn)

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ αn( – βn)

[
 – (γ̄ – γρ)λn

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ αn( – βn)λn

∥∥γ f
(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉

=
[
 – αn( – βn)

[
 –  + (γ̄ – γρ)λn

]]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ αn( – βn)λn

∥∥γ f
(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉

=
[
 – αn( – βn)(γ̄ – γρ)λn

]∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥
+ αn( – βn)λn

∥∥γ f
(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉

≤  – αn( – βn)(γ̄ – γρ)λn


(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)

+ αn( – βn)λn
∥∥γ f

(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– αn( – βn)λn
〈
(A – γ f )x∗,xn+ – x∗〉

≤  – ( – βn)(γ̄ – γρ)αnλn


∥∥xn – x∗∥∥ +



∥∥xn+ – x∗∥∥

+ ( – βn)αnλn
∥∥γ f

(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– ( – βn)αnλn
〈
(A – γ f )x∗,xn+ – x∗〉,

which implies that

∥∥xn+ – x∗∥∥ ≤ [
 – ( – βn)(γ̄ – γρ)αnλn

]∥∥xn – x∗∥∥

+ ( – βn)αnλn
∥∥γ f

(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥

– ( – βn)αnλn
〈
(A – γ f )x∗,xn+ – x∗〉.
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Since {xn}, {f (xn)}, and {Axn} are all bounded, we can choose a constantM >  such that

sup


γ̄ – γρ

{

∥∥γ f

(
x∗) –Ax∗∥∥∥∥xn+ – x∗∥∥ + 

〈
(A – γ f )x∗,xn+ – x∗〉} ≤M.

It follows that

∥∥xn+ – x∗∥∥ ≤ [
 – ( – βn)(γ̄ – γρ)αnλn

]∥∥xn – x∗∥∥ + ( – βn)αnλnM.

By (C), we conclude that xn → x∗, as n→ ∞. This completes the proof. �

4 An example
Next, the following example shows that all conditions of Theorem . are satisfied.

Example . For instance, let αn = n+
n+ , βn = 

n+ , λn = 
(n+) , and rn = n

n+ . Then clearly
the sequences {αn}, {λn} satisfy the following condition:

n + 
n + 

≤ 
(n + )

.

We will show that the condition (C) is fulfilled. Indeed, we have

∞∑
n=

|αn – αn–| =
∞∑
n=

∣∣∣∣ n + 
n + 

–
n

(n – ) + 

∣∣∣∣

=
∞∑
n=

∣∣∣∣ (n + )(n – n + ) – n(n + )
(n + )(n – n + )

∣∣∣∣

=
∞∑
n=

∣∣∣∣  + n – n

n – n + n – n + 

∣∣∣∣.

The sequence {αn} satisfies the condition (C) by a p-series.
Next, we will show that the condition (C) is fulfilled. We compute

∞∑
n=

|βn – βn–| =
∞∑
n=

∣∣∣∣ 
n + 

–

n

∣∣∣∣

=
(


–



)
+

(


–



)
+

(


–



)
+ · · ·

= .

The sequence {βn} satisfies the condition (C).
Next, we will show that the condition (C) is fulfilled. We compute

∞∑
n=

|λn – λn–| =
∞∑
n=

∣∣∣∣ 
(n + )

–

n

∣∣∣∣

=
(


 ·  –


 · 

)
+

(


 ·  –


 · 
)
+

(


 ·  –


 · 
)
+ · · ·

=


,
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lim
n→∞λn = lim

n→∞


(n + )
= ,

and

∞∑
n=

λn =
∞∑
n=


(n + )

=∞.

The sequence {λn} satisfies the condition (C).
Finally, we will show that the condition (C) is fulfilled. We compute

∞∑
n=

|rn – rn–| =
∞∑
n=

∣∣∣∣ n
n + 

–
n – 

(n – ) + 

∣∣∣∣

=
∞∑
n=

∣∣∣∣n(n) – (n – )(n + )
(n + )n

∣∣∣∣

=
∞∑
n=

∣∣∣∣n
 – n + 
(n + )n

∣∣∣∣

=
∞∑
n=

∣∣∣∣ 
n(n + )

∣∣∣∣

and

lim inf
n→∞ rn = lim inf

n→∞
n

n + 
= .

The sequence {rn} satisfies the condition (C).

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : H → H be a strongly positive linear bounded operator, f : C → H be ρ-contraction, γ
be a positive real number such that γ̄–

ρ
< γ < γ̄

ρ
and T : C → C be a nonexpansive mapping

with F(T) �= ∅. Let {xn} be a sequence generated by the following algorithm for arbitrary
x ∈ C:

xn+ = βnxn + ( – βn)TPC
[
I – λn(A – γ f )

]
xn, (.)

where {βn}, {λn} ⊂ [, ] satisfy the following conditions:
(C)

∑∞
n= |βn+ – βn| < ∞,  < lim infn→∞ βn < lim supn→∞ βn < ;

(C)
∑∞

n= |λn+ – λn| <∞,
∑∞

n= λn =∞, limn→∞ λn = .
Then {xn} converges strongly to x∗ ∈ F(T), which is the unique solution of the variational
inequality:

〈
(A – γ f )x∗,x – x∗〉 ≥ , ∀x ∈ F(T). (.)

Proof Setting {αn} ≡  and T to be a nonexpansive mapping in Theorem ., we obtain
the desired conclusion immediately. �

Remark . Corollary . generalizes and improves the results of Yao et al. [].
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Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A :
H → H be a strongly positive linear bounded operator, B : C → H be a β-inverse-strongly
monotone and F be a bifunction from C ×C → R satisfying (A)-(A) and let ϕ : C → R
be convex and lower semicontinuous with either (B) or (B). Suppose GMEP(F ,ϕ,B) �= ∅.
Let {xn} be a sequence by the following algorithm for arbitrary x ∈ C:

xn+ = αn
(
βnxn + ( – βn)[I – λnA]xn

)
+ ( – αn)Trn (I – rnB)xn, (.)

where {αn}, {βn}, {λn} ⊂ [, ], αn ≤ λn, and rn ∈ (, β) satisfy the following conditions:
(C)

∑∞
n= |αn – αn–| <∞;

(C)
∑∞

n= |βn – βn–| < ∞;
(C)

∑∞
n= |λn – λn–| < ∞,

∑∞
n= λn =∞, limn→∞ λn = ;

(C)
∑∞

n= |rn – rn–| <∞, lim infn→∞ rn > .
Then {xn} converges strongly to x∗ ∈ GMEP(F ,ϕ,B), which is the unique solution of the
variational inequality:

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈GMEP(F ,ϕ,B). (.)

Proof Setting T , PC to be the identity and f ≡  in Theorem ., we obtain the desired
conclusion immediately. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A :H → H be a strongly positive linear bounded operator, f : C → H be ρ-contraction, B :
C →H be β-inverse-strongly monotone and F be a bifunction from C ×C →R satisfying
(A)-(A) and let ϕ : C →R be convex and lower semicontinuous with either (B) or (B).
Let {xn} be a sequence generated by the following algorithm for arbitrary x ∈ C:

xn+ = αn
(
λn( – βn)f (xn) +

[
I – λn( – βn)A

]
xn

)
+ ( – αn)Trn (I – rnB)xn, (.)

where {αn}, {βn}, {λn} ⊂ [, ], λn ≤ βn, and rn ∈ (, β) satisfy the following conditions:
(C)

∑∞
n= |αn+ – αn| < ∞;

(C)
∑∞

n= |βn+ – βn| < ∞;
(C)

∑∞
n= |λn+ – λn| < ∞,

∑∞
n= λn =∞, limn→∞ λn = ;

(C)
∑∞

n= |rn+ – rn| < ∞, lim infn→∞ rn > .
Then {xn} converges strongly to x∗ ∈ GMEP(F ,ϕ,B), which is the unique solution of the
variational inequality

〈
(A – f )x∗,x – x∗〉 ≥ , ∀x ∈GMEP(F ,ϕ,B). (.)

Proof Setting T , PC to be the identity and γ ≡  in Theorem ., we obtain the desired
conclusion immediately. �
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