RESEARCH

Open Access

Generalized hybrid mappings on $CAT(\kappa)$ spaces

Bancha Nanjaras and Bancha Panyanak^{*}

Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

*Correspondence: bancha.p@cmu.ac.th Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

Abstract

In this paper, we obtain the demiclosed principle, fixed point theorems, and Δ -convergence theorems for the class of generalized hybrid mappings on CAT(κ) spaces with $\kappa > 0$. Our results extend the results of Lin *et al.* (Fixed Point Theory Appl. 2011:49, 2011) and many others.

Keywords: fixed point; generalized hybrid mapping; Δ -convergence; CAT(κ) space

1 Introduction

For a real number κ , a CAT(κ) space is a geodesic metric space whose geodesic triangle is thinner than the corresponding comparison triangle in a model space with curvature κ . The precise definition is given below. The letters C, A, and T stand for Cartan, Alexandrov, and Toponogov, who have made important contributions to the understanding of curvature via inequalities for the distance function.

Fixed point theory in CAT(κ) spaces was first studied by Kirk [1, 2]. His works were followed by a series of new works by many authors, mainly focusing on CAT(0) spaces (see *e.g.*, [3–18]). Since any CAT(κ) space is a CAT(κ') space for $\kappa' \ge \kappa$, all results for CAT(0) spaces immediately apply to any CAT(κ) space with $\kappa \le 0$. However, there are only a few articles that contain fixed point results in the setting of CAT(κ) spaces with $\kappa > 0$.

The concept of generalized hybrid mappings was introduced in Hilbert spaces by Kocourek *et al.* [19]. Later on, Lin *et al.* [10] defined a generalized hybrid mapping, which is more general than that of Kocourek *et al.* [19], in a CAT(0) space setting. This class of mappings properly contains the class of nonspreading mappings and the class of hybrid mappings; see [10] for more details. In [10], the authors also obtained the demiclosed principle, fixed point theorems as well as Δ -convergence theorems for generalized hybrid mappings in CAT(0) spaces. In this paper, we extend the results of Lin *et al.* [10] to the general setting of CAT(κ) spaces with $\kappa > 0$.

2 Preliminaries

Let (X, ρ) be a metric space. A *geodesic path* joining $x \in X$ to $y \in X$ (or, more briefly, a *geodesic* from x to y) is a map c from a closed interval $[0, l] \subset \mathbb{R}$ to X such that c(0) = x, c(l) = y, and $\rho(c(t), c(t')) = |t - t'|$ for all $t, t' \in [0, l]$. In particular, c is an isometry and $\rho(x, y) = l$. The image c([0, l]) of c is called a *geodesic segment* joining x and y. When it is

©2014 Nanjaras and Panyanak; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. unique this geodesic segment is denoted by [x, y]. This means that $z \in [x, y]$ if and only if there exists $\alpha \in [0, 1]$ such that

$$\rho(x,z) = (1-\alpha)\rho(x,y)$$
 and $\rho(y,z) = \alpha\rho(x,y)$.

In this case, we write $z = \alpha x \oplus (1 - \alpha)y$. For $D \in (0, +\infty]$, the space X is called a *D*-geodesic space if every two points of X with their distance smaller than D are joined by a geodesic segment. An ∞ -geodesic space is simply called a *geodesic space*. The space X is said to be *uniquely geodesic* (*D*-*uniquely geodesic*) if there is exactly one geodesic segment joining x and y for each $x, y \in X$ (for $x, y \in X$ with $\rho(x, y) < D$). A subset C of X is said to be *convex* if C includes every geodesic segment joining any two of its points. The set C is said to be *bounded* if

$$\operatorname{diam}(C) := \sup \{ \rho(x, y) : x, y \in C \} < \infty.$$

Now we present the model spaces M_{κ}^n , for more details on these spaces the reader is referred to [20]. Let $n \in \mathbb{N}$. We denote by \mathbb{E}^n the metric space \mathbb{R}^n endowed with the usual Euclidean distance. We denote by $(\cdot|\cdot)$ the Euclidean scalar product in \mathbb{R}^n , that is,

$$(x|y) = x_1y_1 + \dots + x_ny_n$$
, where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$.

Let \mathbb{S}^n denote the *n*-dimensional sphere defined by

$$\mathbb{S}^{n} = \{x = (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : (x|x) = 1\},\$$

with metric $d_{\mathbb{S}^n}(x, y) = \arccos(x|y), x, y \in \mathbb{S}^n$.

Let $\mathbb{E}^{n,1}$ denote the vector space \mathbb{R}^{n+1} endowed with the symmetric bilinear form which associates to vectors $u = (u_1, \dots, u_{n+1})$ and $v = (v_1, \dots, v_{n+1})$ the real number $\langle u | v \rangle$ is defined by

$$\langle u|v\rangle = -u_{n+1}v_{n+1} + \sum_{i=1}^n u_i v_i$$

Let \mathbb{H}^n denote the *hyperbolic n-space* defined by

$$\mathbb{H}^{n} = \left\{ u = (u_{1}, \ldots, u_{n+1}) \in \mathbb{E}^{n,1} : \langle u | u \rangle = -1, u_{n+1} > 0 \right\},\$$

with metric $d_{\mathbb{H}^n}$ such that

 $\cosh d_{\mathbb{H}^n}(x,y) = -\langle x|y\rangle, \quad x,y \in \mathbb{H}^n.$

Definition 2.1 Given $\kappa \in \mathbb{R}$, we denote by M_{κ}^{n} the following metric spaces:

- (i) if $\kappa = 0$ then M_0^n is the Euclidean space \mathbb{E}^n ;
- (ii) if $\kappa > 0$ then M_{κ}^{n} is obtained from the spherical space \mathbb{S}^{n} by multiplying the distance function by the constant $1/\sqrt{\kappa}$;
- (iii) if $\kappa < 0$ then M_{κ}^{n} is obtained from the hyperbolic space \mathbb{H}^{n} by multiplying the distance function by the constant $1/\sqrt{-\kappa}$.

A geodesic triangle $\triangle(x, y, z)$ in a geodesic space (X, ρ) consists of three points x, y, z in X (the *vertices* of \triangle) and three geodesic segments between each pair of vertices (the *edges* of \triangle). A *comparison triangle* for a geodesic triangle $\triangle(x, y, z)$ in (X, ρ) is a triangle $\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})$ in M_{ν}^2 such that

$$\rho(x, y) = d_{M_{\pi}^2}(\bar{x}, \bar{y}), \qquad \rho(y, z) = d_{M_{\pi}^2}(\bar{y}, \bar{z}) \text{ and } \rho(z, x) = d_{M_{\pi}^2}(\bar{z}, \bar{x}).$$

If $\kappa \leq 0$ then such a comparison triangle always exists in M_{κ}^2 . If $\kappa > 0$ then such a triangle exists whenever $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}$, where $D_{\kappa} = \pi/\sqrt{\kappa}$. A point $\bar{p} \in [\bar{x}, \bar{y}]$ is called a *comparison point* for $p \in [x, y]$ if $\rho(x, p) = d_{M_{\kappa}^2}(\bar{x}, \bar{p})$.

A geodesic triangle $\triangle(x, y, z)$ in X is said to satisfy the CAT(κ) *inequality* if for any $p, q \in \triangle(x, y, z)$ and for their comparison points $\bar{p}, \bar{q} \in \overline{\triangle}(\bar{x}, \bar{y}, \bar{z})$, one has

 $\rho(p,q) \le d_{M_{\kappa}^2}(\bar{p},\bar{q}).$

Definition 2.2 If $\kappa \leq 0$, then *X* is called a CAT(κ) *space* if *X* is a geodesic space such that all of its geodesic triangles satisfy the CAT(κ) inequality.

If $\kappa > 0$, then *X* is called a CAT(κ) *space* if *X* is D_{κ} -geodesic and any geodesic triangle $\triangle(x, y, z)$ in *X* with $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}$ satisfies the CAT(κ) inequality.

Now, we recall the concepts of comparison angle and upper (Alexandrov) angle (cf. [8]).

Definition 2.3 Let *p*, *q*, and *r* be three points in a geodesic space. The interior angle of $\overline{\Delta}(\bar{p}, \bar{q}, \bar{r}) \subseteq \mathbb{E}^2$ at \bar{p} is called the *comparison angle* between *q* and *r* at *p* and will be denoted by $\overline{\angle_p(q, r)}$.

Definition 2.4 Let *X* be a geodesic space and let $c : [0, a] \to X$ and $c' : [0, a'] \to X$ be two geodesic paths with c(0) = c'(0). Given $t \in (0, a]$ and $t' \in (0, a']$, we consider the comparison triangle $\overline{\Delta}(\overline{c(0)}, \overline{c(t)}, \overline{c'(t')})$ and the comparison angle $\overline{\angle}_{c(0)}(c(t), c'(t'))$ in \mathbb{E}^2 . The (*Alexandrov*) *angle* or the *upper angle* between the geodesic paths *c* and *c'* is the number $\angle(c, c')$ defined by

$$\angle (c,c') := \limsup_{t,t'\to 0^+} \overline{\angle}_{c(0)} (c(t),c'(t')).$$

The angle between the geodesic segments [p, x] and [p, y] will be denoted by $\angle_p(x, y)$. Notice that the Alexandrov angle coincides with the spherical angle on \mathbb{S}^n and the hyperbolic angle on \mathbb{H}^n .

In a CAT(0) space (X, ρ) , if $x, y, z \in X$ then the CAT(0) inequality implies

(CN)
$$\rho^2\left(x, \frac{1}{2}y \oplus \frac{1}{2}z\right) \le \frac{1}{2}\rho^2(x, y) + \frac{1}{2}\rho^2(x, z) - \frac{1}{4}\rho^2(y, z).$$

This is the (CN) *inequality* of Bruhat and Tits [21]. This inequality is extended by Dhompongsa and Panyanak [22] to

$$(\mathrm{CN}^*) \quad \rho^2(x,(1-\alpha)y \oplus \alpha z) \le (1-\alpha)\rho^2(x,y) + \alpha\rho^2(x,z) - \alpha(1-\alpha)\rho^2(y,z)$$

for all $\alpha \in [0, 1]$ and $x, y, z \in X$. In fact, if X is a geodesic space then the following statements are equivalent:

- (i) X is a CAT(0) space;
- (ii) X satisfies (CN);
- (iii) X satisfies (CN*).

Let $R \in (0, 2]$. Recall that a geodesic space (X, ρ) is said to be *R*-convex for *R* (see [23]) if for any three points $x, y, z \in X$, we have

$$\rho^2(x,(1-\alpha)y\oplus\alpha z) \le (1-\alpha)\rho^2(x,y) + \alpha\rho^2(x,z) - \frac{R}{2}\alpha(1-\alpha)\rho^2(y,z).$$
(1)

It follows from (CN^{*}) that a geodesic space (X, ρ) is a CAT(0) space if and only if (X, ρ) is *R*-convex for *R* = 2. The following lemma is a consequence of Proposition 3.1 in [23].

Lemma 2.5 Let $\kappa > 0$ and (X, ρ) be a CAT (κ) space with diam $(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then (X, ρ) is *R*-convex for $R = (\pi - 2\varepsilon) \tan(\varepsilon)$.

We now collect some elementary facts about $CAT(\kappa)$ spaces. Most of them are proved in the setting of CAT(1) spaces. For completeness, we state the results in $CAT(\kappa)$ with $\kappa > 0$.

Lemma 2.6 ([8, Proposition 3.5]) Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space with diam $(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let $x \in X$ and C be a nonempty closed convex subset of X. Then

- (i) the metric projection $P_C(x)$ of x onto C is a singleton;
- (ii) if $x \notin C$ and $y \in C$ with $y \neq P_C(x)$, then $\angle_{P_C(x)}(x, y) \ge \pi/2$;
- (iii) for each $y \in C$, $\rho(P_C(x), P_C(y)) \le \rho(x, y)$.

Let $\{x_n\}$ be a bounded sequence in a CAT (κ) space (X, ρ) . For $x \in X$, we set

$$r(x,\{x_n\}) = \limsup_{n\to\infty} \rho(x,x_n).$$

The *asymptotic radius* $r({x_n})$ of ${x_n}$ is given by

$$r\bigl(\{x_n\}\bigr) = \inf\bigl\{r\bigl(x,\{x_n\}\bigr): x \in X\bigr\},\$$

and the *asymptotic center* $A(\{x_n\})$ of $\{x_n\}$ is the set

$$A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.$$

It is well known from Proposition 4.1 of [8] that in a CAT(κ) space with diameter smaller than $\frac{\pi}{2\sqrt{\kappa}}$, $A(\{x_n\})$ consists of exactly one point. We now give the concept of Δ -convergence and collect some of its basic properties.

Definition 2.7 ([6, 24]) A sequence $\{x_n\}$ in *X* is said to Δ -*converge* to $x \in X$ if *x* is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case we write Δ -lim_n $x_n = x$ and call *x* the Δ -limit of $\{x_n\}$.

Lemma 2.8 Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space with diam $(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then the following statements hold:

- (i) [8, Corollary 4.4] every sequence in X has a Δ -convergence subsequence;
- (ii) [8, Proposition 4.5] if $\{x_n\} \subseteq X$ and Δ -lim_n $x_n = x$, then $x \in \bigcap_{k=1}^{\infty} \overline{\operatorname{conv}}\{x_k, x_{k+1}, \ldots\}$, where $\overline{\operatorname{conv}}(A) = \bigcap \{B : B \supseteq A \text{ and } B \text{ is closed and convex} \}$.

By the uniqueness of asymptotic centers, we can obtain the following lemma (*cf.* [22, Lemma 2.8]).

Lemma 2.9 Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space with diam $(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. If $\{x_n\}$ is a sequence in X with $A(\{x_n\}) = \{x\}$ and $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and the sequence $\{\rho(x_n, u)\}$ converges, then x = u.

Definition 2.10 Let *C* be a nonempty subset of a CAT(κ) space (*X*, ρ). A mapping *T* : *C* \rightarrow *X* is called a *generalized hybrid mapping* [10] if there exist functions $a_1, a_2, a_3, k_1, k_2 : C \rightarrow$ [0,1) such that

- (P1) $\rho^2(T(x), T(y)) \le a_1(x)\rho^2(x, y) + a_2(x)\rho^2(T(x), y) + a_3(x)\rho^2(T(y), x) + k_1(x)\rho^2(T(x), x) + k_2(x)\rho^2(T(y), y)$ for all $x, y \in C$;
- (P2) $a_1(x) + a_2(x) + a_3(x) \le 1$ for all $x, y \in C$;
- (P3) $2k_1(x) < 1 a_2(x)$ and $k_2(x) < 1 a_3(x)$ for all $x \in C$.

A point $x \in C$ is called a *fixed point* of T if x = T(x). We denote the set of all fixed points of T with F(T).

3 Main results

3.1 Demiclosed principle

Theorem 3.1 Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let *C* be a nonempty closed convex subset of *X*, and $T : C \to X$ be a generalized hybrid mapping with $\frac{2k_1(x)}{1-a_2(x)} < \frac{R}{2}$ for all $x \in C$ where $R = (\pi - 2\varepsilon) \tan(\varepsilon)$. Let $\{x_n\}$ be a sequence in *C* with Δ -lim_n $x_n = z$ and $\lim_n \rho(x_n, T(x_n)) = 0$. Then $z \in C$ and z = T(z).

Proof Since Δ -lim_n $x_n = z$, by Lemma 2.8, $z \in C$. Since T is a generalized hybrid mapping,

$$\begin{split} \rho^2 \big(T(x_n), T(z) \big) &\leq a_1(z) \rho^2(z, x_n) + a_2(z) \rho^2 \big(T(z), x_n \big) + a_3(z) \rho^2 \big(T(x_n), z \big) \\ &+ k_1(z) \rho^2 \big(T(z), z \big) + k_2(z) \rho^2 \big(T(x_n), x_n \big) \\ &\leq a_1(z) \rho^2(z, x_n) + a_2(z) \big[\rho \big(T(z), T(x_n) \big) + \rho \big(T(x_n), x_n \big) \big]^2 \\ &+ a_3(z) \big[\rho \big(T(x_n), x_n \big) + \rho(x_n, z) \big]^2 + k_1(z) \rho^2 \big(T(z), z \big) \\ &+ k_2(z) \rho^2 \big(T(x_n), x_n \big), \end{split}$$

yielding

$$\limsup_{n\to\infty}\rho^2\big(T(x_n),T(z)\big)\leq\limsup_{n\to\infty}\rho^2(z,x_n)+\frac{k_1(z)}{1-a_2(z)}\rho^2\big(z,T(z)\big).$$

$$\limsup_{n \to \infty} \rho^2 (x_n, T(z)) \leq \limsup_{n \to \infty} \left[\rho (x_n, T(x_n)) + \rho (T(x_n), T(z)) \right]^2$$
$$\leq \limsup_{n \to \infty} \rho^2 (T(x_n), T(z))$$
$$\leq \limsup_{n \to \infty} \rho^2 (z, x_n) + \frac{k_1(z)}{1 - a_2(z)} \rho^2 (z, T(z)).$$
(2)

On the other hand, by Lemma 2.5 we have

$$\rho^{2}\left(x_{n}, \frac{1}{2}z \oplus \frac{1}{2}T(z)\right) \leq \frac{1}{2}\rho^{2}(x_{n}, z) + \frac{1}{2}\rho^{2}\left(x_{n}, T(z)\right) - \frac{R}{8}\rho^{2}\left(z, T(z)\right).$$
(3)

By (2) and (3), we get

$$\limsup_{n \to \infty} \rho^2 \left(x_n, \frac{1}{2} z \oplus \frac{1}{2} T(z) \right) \leq \frac{1}{2} \limsup_{n \to \infty} \rho^2 (x_n, z) + \frac{1}{2} \limsup_{n \to \infty} \rho^2 (x_n, T(z))$$
$$- \frac{R}{8} \rho^2 (z, T(z))$$
$$\leq \limsup_{n \to \infty} \rho^2 (x_n, z) + \frac{k_1(z)}{2(1 - a_2(z))} \rho^2 (z, T(z))$$
$$- \frac{R}{8} \rho^2 (z, T(z)).$$

Thus

$$\left(\frac{R}{8}-\frac{k_1(z)}{2(1-a_2(z))}\right)\rho^2(z,T(z))\leq \limsup_{n\to\infty}\rho^2(x_n,z)-\limsup_{n\to\infty}\rho^2\left(x_n,\frac{1}{2}z\oplus\frac{1}{2}T(z)\right)\leq 0.$$

Since $\frac{2k_1(z)}{1-a_2(z)} < \frac{R}{2}$, we get $\frac{k_1(z)}{2(1-a_2(z))} < \frac{R}{8}$ and so $\rho^2(z, T(z)) = 0$. Hence z = T(z).

The following corollary shows that how we derive a result for CAT(0) spaces from Theorem 3.1.

Corollary 3.2 Let (X, ρ) be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X, and $T : C \to C$ be a generalized hybrid mapping. Let $\{x_n\}$ be a sequence in C with Δ -lim_n $x_n = z$ and lim_n $\rho(x_n, T(x_n)) = 0$. Then $z \in C$ and z = T(z).

Proof It is well known that every convex subset of a CAT(0) space, equipped with the induced metric, is a CAT(0) space (*cf.* [20]). Then (*C*, ρ) is a CAT(0) space and hence it is a CAT(κ) space for all $\kappa > 0$. Notice also that *C* is *R*-convex for *R* = 2. Since *C* is bounded, we can choose $\varepsilon \in (0, \pi/2)$ and $\kappa > 0$ so that diam(*C*) $\leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$. The conclusion follows from Theorem 3.1.

3.2 Fixed point theorems

Theorem 3.3 Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to C$ be a generalized hybrid mapping with $k_1(x) = k_2(x) = 0$ for all $x \in C$. Then T has a fixed point.

Proof Fix $x \in C$ and define $x_n := T^n(x)$ for $n \in \mathbb{N}$. Suppose that $A(\{x_n\}) = \{z\}$. Then by Lemma 2.8, $z \in C$. Since *T* is generalized hybrid and $k_1(z) = k_2(z) = 0$,

$$\rho^2(x_n, T(z)) \le a_1(z)\rho^2(z, x_{n-1}) + a_2(z)\rho^2(T(z), x_{n-1}) + a_3(z)\rho^2(x_n, z).$$

Taking the limit superior on both sides, we get

$$\begin{split} \limsup_{n \to \infty} \rho^2 \big(x_n, T(z) \big) &\leq a_1(z) \limsup_{n \to \infty} \rho^2(z, x_{n-1}) + a_2(z) \limsup_{n \to \infty} \rho^2 \big(T(z), x_{n-1} \big) \\ &+ a_3(z) \limsup_{n \to \infty} \rho^2(x_n, z) \\ &\leq \big(a_1(z) + a_3(z) \big) \limsup_{n \to \infty} \rho^2(x_n, z) + a_2(z) \limsup_{n \to \infty} \rho^2 \big(x_n, T(z) \big) \end{split}$$

This implies by (P2) that $\limsup_n \rho^2(x_n, T(z)) \le \limsup_n \rho^2(x_n, z)$. But, since $A(\{x_n\}) = \{z\}$, it must be the case that z = T(z) and the proof is complete.

As a consequence of Theorem 3.3, we obtain:

Corollary 3.4 Let (X, ρ) be a complete CAT(0) space, C be a nonempty bounded closed convex subset of X, and $T: C \to C$ be a generalized hybrid mapping with $k_1(x) = k_2(x) = 0$ for all $x \in C$. Then T has a fixed point.

3.3 Δ -Convergence theorems

We begin this section by proving a crucial lemma.

Lemma 3.5 Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space with diam $(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T : C \to X$ be a generalized hybrid mapping with $\frac{2k_1(x)}{1-a_2(x)} < \frac{R}{2}$ for all $x \in C$ where $R = (\pi - 2\varepsilon) \tan(\varepsilon)$. Suppose $\{x_n\}$ is a sequence in C such that $\lim_{n \to \infty} \rho(x_n, Tx_n) = 0$ and $\{\rho(x_n, \nu)\}$ converges for all $\nu \in F(T)$, then $\omega_w(x_n) \subseteq F(T)$. Here $\omega_w(x_n) := \bigcup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. Moreover, $\omega_w(x_n)$ consists of exactly one point.

Proof Let $u \in \omega_w(x_n)$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.8, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim_n $v_n = v \in C$. By Theorem 3.1, $v \in F(T)$. By Lemma 2.9, u = v. This shows that $\omega_w(x_n) \subseteq F(T)$. Next, we show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$ and let $A(\{x_n\}) = \{x\}$. Since $u \in \omega_w(x_n) \subseteq F(T)$, $\{\rho(x_n, u)\}$ converges. Again, by Lemma 2.9, x = u. This completes the proof.

Theorem 3.6 Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let *C* be a nonempty closed convex subset of *X*, and $T : C \to X$ be a generalized hybrid mapping with $F(T) \ne \emptyset$. Let $\{\alpha_n\}$ be a sequence in [0,1] and define a sequence $\{x_n\}$ in *C* by

$$\begin{cases} x_1 \in C \quad chosen \ arbitrary, \\ x_{n+1} := P_C((1 - \alpha_n)x_n \oplus \alpha_n T(x_n)), \quad n \in \mathbb{N}. \end{cases}$$

Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$ and suppose that

Proof Let $z \in F(T)$. Since *T* is generalized hybrid,

$$\rho^2(T(x), z) \le \rho^2(z, x) + \frac{k_2(z)}{1 - a_3(z)}\rho^2(T(x), x)$$
 for all $x \in C$.

By Lemmas 2.5 and 2.6, we have

$$\rho^{2}(x_{n+1},z) = \rho^{2} \left(P_{C} \left((1-\alpha_{n})x_{n} \oplus \alpha_{n}T(x_{n}) \right), z \right) \\
\leq \rho^{2} \left((1-\alpha_{n})x_{n} \oplus \alpha_{n}T(x_{n}), z \right) \\
\leq (1-\alpha_{n})\rho^{2}(x_{n},z) + \alpha_{n}\rho^{2} \left(T(x_{n}),z \right) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2} \left(x_{n},T(x_{n}) \right) \\
\leq \rho^{2}(x_{n},z) + \alpha_{n} \left[\frac{k_{2}(z)}{1-a_{3}(z)} - \frac{R(1-\alpha_{n})}{2} \right] \rho^{2} \left(x_{n},T(x_{n}) \right).$$
(4)

By (ii), there exist $\delta > 0$ and $N \in \mathbb{N}$ such that

$$\alpha_n \left[\frac{(1-\alpha_n)R}{2} - \frac{k_2(z)}{1-a_3(z)} \right] \ge \delta > 0 \quad \text{for all } n \ge N.$$

Without loss of generality, we may assume that

$$\alpha_n \left[\frac{(1-\alpha_n)R}{2} - \frac{k_2(z)}{1-a_3(z)} \right] > 0 \quad \text{for all } n \in \mathbb{N}.$$
(5)

It follows from (4) and (5) that { $\rho(x_n, z)$ } is a nonincreasing sequence and hence $\lim_n \rho(x_n, z)$ exists. Again, by (4), we have

$$\lim_{n\to\infty}\alpha_n\left[\frac{(1-\alpha_n)R}{2}-\frac{k_2(z)}{1-\alpha_3(z)}\right]\rho^2(x_n,T(x_n))=0.$$

This implies by (ii) that $\lim_{n} \rho(x_n, T(x_n)) = 0$. By Lemma 3.5, $\omega_w(x_n)$ consists of exactly one point and is contained in F(T). This shows that $\{x_n\}$ Δ -converges to an element of F(T).

Theorem 3.7 Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let *C* be a nonempty closed convex subset of *X*, and $T : C \to X$ be a generalized hybrid mapping with $F(T) \ne \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0,1] and define a sequence $\{x_n\}$ in *C* by

$$\begin{cases} x_1 \in C \quad chosen \ arbitrary, \\ x_{n+1} := P_C((1 - \alpha_n)T(x_n) \oplus \alpha_n T(y_n)), \\ y_n := P_C((1 - \beta_n)x_n \oplus \beta_n T(x_n)). \end{cases}$$

Assume that

(i) k₂(z) = 0 for all z ∈ F(T),
(ii) lim inf_n α_n > 0 and lim inf_n β_n(1 − β_n) > 0. *Then* {x_n} Δ-converges to an element of F(T).

Proof Fix $z \in F(T)$. By (i), we have $\rho(T(x), z) \le \rho(x, z)$ for all $x \in C$. Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$. By Lemmas 2.5 and 2.6, we have

$$\rho^{2}(y_{n},z) = \rho^{2} \left(P_{C} \left((1-\beta_{n})x_{n} \oplus \beta_{n}T(x_{n}) \right), z \right) \\
\leq \rho^{2} \left((1-\beta_{n})x_{n} \oplus \beta_{n}T(x_{n}), z \right) \\
\leq (1-\beta_{n})\rho^{2}(x_{n},z) + \beta_{n}\rho^{2} \left(T(x_{n}), z \right) - \frac{R}{2}\beta_{n}(1-\beta_{n})\rho^{2} \left(x_{n}, T(x_{n}) \right) \\
\leq \rho^{2}(x_{n},z) - \frac{R}{2}\beta_{n}(1-\beta_{n})\rho^{2} \left(x_{n}, T(x_{n}) \right) \\
\leq \rho^{2}(x_{n},z).$$
(6)

This implies that

$$\begin{split} \rho^{2}(x_{n+1},z) &= \rho^{2} \big(P_{C} \big((1-\alpha_{n})T(x_{n}) \oplus \alpha_{n}T(y_{n}) \big), z \big) \\ &\leq \rho^{2} \big((1-\alpha_{n})T(x_{n}) \oplus \alpha_{n}T(y_{n}), z \big) \\ &\leq (1-\alpha_{n})\rho^{2} \big(T(x_{n}), z \big) + \alpha_{n}\rho^{2} \big(T(y_{n}), z \big) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2} \big(T(x_{n}), T(y_{n}) \big) \\ &\leq (1-\alpha_{n})\rho^{2}(x_{n}, z) + \alpha_{n}\rho^{2}(y_{n}, z) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2} \big(T(x_{n}), T(y_{n}) \big) \\ &\leq \rho^{2}(x_{n}, z) - \frac{R}{2}\alpha_{n}(1-\alpha_{n})\rho^{2} \big(T(x_{n}), T(y_{n}) \big) \\ &\leq \rho^{2}(x_{n}, z). \end{split}$$

Hence $\lim_{n \to \infty} \rho(x_n, z)$ exists and

$$0 \leq \frac{R}{2} \alpha_n (1 - \alpha_n) \rho^2 \big(T(x_n), T(y_n) \big) \leq \rho^2 (x_n, z) - \rho^2 (x_{n+1}, z) + \alpha_n \big[\rho^2 (y_n, z) - \rho^2 (x_n, z) \big].$$

So,

$$\alpha_n \Big[\rho^2(x_n, z) - \rho^2(y_n, z) \Big] \le \rho^2(x_n, z) - \rho^2(x_{n+1}, z).$$

Since $\liminf_n \alpha_n > 0$, $\limsup_n [\rho^2(x_n, z) - \rho^2(y_n, z)] = 0$. By (6), we have

$$\frac{R}{2}\beta_n(1-\beta_n)\rho^2(x_n,T(x_n)) \leq \rho^2(x_n,z)-\rho^2(y_n,z).$$

This implies by (ii) that $\lim_{n} \rho(x_n, T(x_n)) = 0$. By Lemma 3.5, $\omega_w(x_n)$ consists of exactly one point and is contained in F(T). This shows that $\{x_n\}$ Δ -converges to an element of F(T).

The following lemma is also needed (cf. [10, Lemma 4.2]).

Lemma 3.8 Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space with diam $(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X with $\lim_n \rho(x_n, y_n) = 0$. If $\Delta - \lim_n x_n = x$ and Δ -lim_{*n*} $y_n = y$, then x = y.

Theorem 3.9 Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2-\varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Let C be a nonempty closed convex subset of X, and $T, S : C \to X$ be a two generalized hybrid mappings with $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be a sequence in [0,1] and define a sequence $\{x_n\}$ in C by

 $\begin{cases} x_1 \in C \quad chosen \ arbitrary, \\ x_{n+1} := P_C((1 - \alpha_n)x_n \oplus \alpha_n T(y_n)), \\ y_n := P_C((1 - \beta_n)x_n \oplus \beta_n S(x_n)). \end{cases}$

Let $R = (\pi - 2\varepsilon) \tan(\varepsilon)$ and suppose that

(i) $\liminf_{n} \alpha_n (1 - \alpha_n) > 0$, (ii) $k_2^T(z) = 0$ and $\liminf_{n} \beta_n [\frac{(1 - \beta_n)R}{2} - \frac{k_2^S(z)}{1 - a_3^S(z)}] > 0$ for all $z \in F(T) \cap F(S)$. Then $\{x_n\}$ Δ -converges to a common fixed point of S and T.

Proof Let $z \in F(T) \cap F(S)$. Since $k_2^T(z) = 0$, $\rho(T(x), z) \le \rho(x, z)$ for all $x \in C$. By Lemmas 2.5 and 2.6, we have

$$\rho^{2}(y_{n},z) = \rho^{2} \left(P_{C} \left((1-\beta_{n})x_{n} \oplus \beta_{n}S(x_{n}) \right), z \right) \\ \leq \rho^{2} \left((1-\beta_{n})x_{n} \oplus \beta_{n}S(x_{n}), z \right) \\ \leq (1-\beta_{n})\rho^{2}(x_{n},z) + \beta_{n}\rho^{2} \left(S(x_{n}),z \right) - \frac{R}{2}\beta_{n}(1-\beta_{n})\rho^{2} \left(x_{n},S(x_{n}) \right) \\ \leq (1-\beta_{n})\rho^{2}(x_{n},z) + \beta_{n} \left[\rho^{2}(x_{n},z) + \frac{k_{2}^{S}(z)}{1-a_{3}^{S}(z)}\rho^{2} \left(S(x_{n}),x_{n} \right) \right] \\ - \frac{R}{2}\beta_{n}(1-\beta_{n})\rho^{2} \left(x_{n},S(x_{n}) \right) \\ \leq \rho^{2}(x_{n},z) - \beta_{n} \left[\frac{(1-\beta_{n})R}{2} - \frac{k_{2}^{S}(z)}{1-a_{3}^{S}(z)} \right] \rho^{2} \left(S(x_{n}),x_{n} \right).$$
(7)

By (ii), there exist $\delta > 0$ and $N \in \mathbb{N}$ such that

$$\beta_n \left[\frac{(1-\beta_n)R}{2} - \frac{k_2^S(z)}{1-a_3^S(z)} \right] \ge \delta > 0 \quad \text{for all } n \ge N.$$

Without loss of generality, we may assume that

$$\beta_n \left[\frac{(1-\beta_n)R}{2} - \frac{k_2^S(z)}{1-a_3^S(z)} \right] > 0 \quad \text{for all } n \in \mathbb{N}.$$

By (7), $\rho(y_n, z) \leq \rho(x_n, z)$. Thus

$$\rho^{2}(x_{n+1},z) = \rho^{2} \big(P_{C} \big((1-\alpha_{n}) x_{n} \oplus \alpha_{n} T(y_{n}) \big), z \big)$$
$$\leq \rho^{2} \big((1-\alpha_{n}) x_{n} \oplus \alpha_{n} T(y_{n}), z \big)$$

$$\leq (1 - \alpha_n)\rho^2(x_n, z) + \alpha_n \rho^2 (T(y_n), z) - \frac{R}{2} \alpha_n (1 - \alpha_n)\rho^2 (x_n, T(y_n))$$

$$\leq (1 - \alpha_n)\rho^2(x_n, z) + \alpha_n \rho^2 (y_n, z) - \frac{R}{2} \alpha_n (1 - \alpha_n)\rho^2 (x_n, T(y_n))$$

$$\leq \rho^2(x_n, z) - \frac{R}{2} \alpha_n (1 - \alpha_n)\rho^2 (x_n, T(y_n))$$

$$\leq \rho^2(x_n, z).$$
(8)

Hence $\lim_{n} \rho(x_n, z)$ exists and

$$\lim_{n\to\infty}\alpha_n(1-\alpha_n)\rho^2(x_n,T(y_n))=0.$$

By (i), $\lim_{n} \rho^{2}(x_{n}, T(y_{n})) = 0$. It follows from (8) that

$$0 \leq \frac{R}{2} \alpha_n (1 - \alpha_n) \rho^2 (x_n, T(y_n)) \leq \rho^2 (x_n, z) - \rho^2 (x_{n+1}, z) + \alpha_n [\rho^2 (y_n, z) - \rho^2 (x_n, z)].$$

Thus

$$\alpha_n(1-\alpha_n)[\rho^2(x_n,z)-\rho^2(y_n,z)] \le \rho^2(x_n,z)-\rho^2(x_{n+1},z).$$

Again, by (i), $\limsup_{n} [\rho^{2}(x_{n}, z) - \rho^{2}(y_{n}, z)] = 0$. By (7), we have

$$\beta_n \left[\frac{(1-\beta_n)R}{2} - \frac{k_2^S(z)}{1-a_3^S(z)} \right] \rho^2 (x_n, S(x_n)) \le \rho^2(x_n, z) - \rho^2(y_n, z).$$

This implies by (ii) that $\lim_{n \to \infty} \rho(x_n, S(x_n)) = 0$. Hence,

$$\limsup_{n \to \infty} \rho(y_n, x_n) = \limsup_{n \to \infty} \rho(P_C((1 - \beta_n)x_n \oplus \beta_n S(x_n)), P_C(x_n))$$
$$\leq \limsup_{n \to \infty} \rho((1 - \beta_n)x_n \oplus \beta_n S(x_n), x_n)$$
$$= \limsup_{n \to \infty} \beta_n \rho(S(x_n), x_n)$$
$$= 0.$$

So, $\lim_{n} \rho(y_n, T(y_n)) = 0$. By Lemma 3.5, there exist $u, v \in C$ such that $\omega_w(x_n) = \{u\} \subseteq F(S)$ and $\omega_w(y_n) = \{v\} \subseteq F(T)$. This means that Δ -lim_n $x_n = u$ and Δ -lim_n $y_n = v$. Hence, by Lemma 3.8, u = v and the proof is complete.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors' contributions

The authors read and approved the final manuscript.

Acknowledgements

The authors thank Chiang Mai University for financial support.

Received: 19 June 2014 Accepted: 18 September 2014 Published: 16 Oct 2014

References

- 1. Kirk, WA: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003). Colecc. Abierta, vol. 64, pp. 195-225. Univ. Sevilla Secr. Publ., Seville (2003)
- 2. Kirk, WA: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp. 113-142. Yokohama Publ., Yokohama (2004)
- 3. Dhompongsa, S, Kaewkhao, A, Panyanak, B: Lim's theorems for multivalued mappings in CAT(0) spaces. J. Math. Anal. Appl. **312**, 478-487 (2005)
- 4. Chaoha, P, Phon-on, A: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320, 983-987 (2006)
- 5. Leustean, L: A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 325, 386-399 (2007)
- 6. Kirk, WA, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689-3696 (2008)
- Shahzad, N, Markin, J: Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces. J. Math. Anal. Appl. 337, 1457-1464 (2008)
- Espinola, R, Fernandez-Leon, A: CAT(κ)-Spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410-427 (2009)
- 9. Saejung, S: Halpern's iteration in CAT(0) spaces. Fixed Point Theory Appl. 2010, Article ID 471781 (2010)
- Lin, LJ, Chuang, CS, Yu, ZT: Fixed point theorems and Δ-convergence theorems for generalized hybrid mappings on CAT(0) spaces. Fixed Point Theory Appl. 2011, 49 (2011)
- 11. Khan, AR, Khamsi, MA, Fukhar-ud-din, H: Strong convergence of a general iteration scheme in CAT(0) spaces. Nonlinear Anal. **74**, 783-791 (2011)
- 12. Abkar, A, Eslamian, M: Common fixed point results in CAT(0) spaces. Nonlinear Anal. 74, 1835-1840 (2011)
- He, JS, Fang, DH, Lopez, G, Li, C: Mann's algorithm for nonexpansive mappings in CAT(κ) spaces. Nonlinear Anal. 75, 445-452 (2012)
- 14. Kimura, Y, Sato, K: Convergence of subsets of a complete geodesic space with curvature bounded above. Nonlinear Anal. **75**, 5079-5085 (2012)
- 15. Piatek, B: Viscosity iteration in CAT(κ) spaces. Numer. Funct. Anal. Optim. 34, 1245-1264 (2013)
- 16. Wangkeeree, R, Preechasilp, P: Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces. J. Inequal. Appl. 2013, 93 (2013)
- 17. Karapinar, E, Salahifard, H, Vaezpour, SM: Demiclosedness principle for total asymptotically nonexpansive mappings in CAT(0) spaces. J. Appl. Math. **2014**, Article ID 738150 (2014)
- Uddin, I, Dalal, S, Imdad, M: Approximating fixed points for generalized nonexpansive mapping in CAT(0) spaces. J. Inequal. Appl. 2014, 155 (2014)
- 19. Kocourek, P, Takahashi, W, Yao, JC: Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiwan. J. Math. 14, 2497-2511 (2010)
- 20. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)
- Bruhat, F, Tits, J: Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. Inst. Hautes Études Sci. 41, 5-251 (1972)
- Dhompongsa, D, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572-2579 (2008)
- 23. Ohta, S: Convexities of metric spaces. Geom. Dedic. 125, 225-250 (2007)
- 24. Lim, TC: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179-182 (1976)

10.1186/1029-242X-2014-403

Cite this article as: Nanjaras and Panyanak: Generalized hybrid mappings on CAT(κ) spaces. Journal of Inequalities and Applications 2014, 2014:403

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com