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Abstract
In this paper, we obtain the demiclosed principle, fixed point theorems, and
�-convergence theorems for the class of generalized hybrid mappings on CAT(κ )
spaces with κ > 0. Our results extend the results of Lin et al. (Fixed Point Theory Appl.
2011:49, 2011) and many others.
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1 Introduction
For a real number κ , a CAT(κ) space is a geodesic metric space whose geodesic triangle is
thinner than the corresponding comparison triangle in a model space with curvature κ .
The precise definition is given below. The letters C, A, andT stand for Cartan, Alexandrov,
and Toponogov, who have made important contributions to the understanding of curva-
ture via inequalities for the distance function.
Fixed point theory in CAT(κ) spaces was first studied by Kirk [, ]. His works were

followed by a series of newworks bymany authors, mainly focusing onCAT() spaces (see
e.g., [–]). Since any CAT(κ) space is a CAT(κ ′) space for κ ′ ≥ κ , all results for CAT()
spaces immediately apply to any CAT(κ) space with κ ≤ . However, there are only a few
articles that contain fixed point results in the setting of CAT(κ) spaces with κ > .
The concept of generalized hybrid mappings was introduced in Hilbert spaces by

Kocourek et al. []. Later on, Lin et al. [] defined a generalized hybrid mapping, which
is more general than that of Kocourek et al. [], in a CAT() space setting. This class
of mappings properly contains the class of nonspreading mappings and the class of hy-
brid mappings; see [] for more details. In [], the authors also obtained the demiclosed
principle, fixed point theorems as well as �-convergence theorems for generalized hybrid
mappings in CAT() spaces. In this paper, we extend the results of Lin et al. [] to the
general setting of CAT(κ) spaces with κ > .

2 Preliminaries
Let (X,ρ) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y, and ρ(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
ρ(x, y) = l. The image c([, l]) of c is called a geodesic segment joining x and y. When it is
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unique this geodesic segment is denoted by [x, y]. This means that z ∈ [x, y] if and only if
there exists α ∈ [, ] such that

ρ(x, z) = ( – α)ρ(x, y) and ρ(y, z) = αρ(x, y).

In this case, we write z = αx⊕ ( – α)y. For D ∈ (, +∞], the space X is called a D-geodesic
space if every two points of X with their distance smaller than D are joined by a geodesic
segment. An ∞-geodesic space is simply called a geodesic space. The space X is said to be
uniquely geodesic (D-uniquely geodesic) if there is exactly one geodesic segment joining x
and y for each x, y ∈ X (for x, y ∈ X with ρ(x, y) < D). A subset C of X is said to be convex
if C includes every geodesic segment joining any two of its points. The set C is said to be
bounded if

diam(C) := sup
{
ρ(x, y) : x, y ∈ C

}
<∞.

Now we present the model spaces Mn
κ , for more details on these spaces the reader is

referred to []. Let n ∈N. We denote by En the metric space Rn endowed with the usual
Euclidean distance. We denote by (·|·) the Euclidean scalar product in R

n, that is,

(x|y) = xy + · · · + xnyn, where x = (x, . . . ,xn), y = (y, . . . , yn).

Let Sn denote the n-dimensional sphere defined by

S
n =

{
x = (x, . . . ,xn+) ∈ R

n+ : (x|x) = 
}
,

with metric dSn (x, y) = arccos(x|y), x, y ∈ S
n.

Let En, denote the vector space Rn+ endowed with the symmetric bilinear form which
associates to vectors u = (u, . . . ,un+) and v = (v, . . . , vn+) the real number 〈u|v〉 is defined
by

〈u|v〉 = –un+vn+ +
n∑
i=

uivi.

Let Hn denote the hyperbolic n-space defined by

H
n =

{
u = (u, . . . ,un+) ∈ E

n, : 〈u|u〉 = –,un+ > 
}
,

with metric dHn such that

coshdHn (x, y) = –〈x|y〉, x, y ∈H
n.

Definition . Given κ ∈R, we denote byMn
κ the following metric spaces:

(i) if κ =  thenMn
 is the Euclidean space En;

(ii) if κ >  thenMn
κ is obtained from the spherical space Sn by multiplying the distance

function by the constant /
√

κ ;
(iii) if κ <  thenMn

κ is obtained from the hyperbolic space Hn by multiplying the
distance function by the constant /

√
–κ .
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A geodesic triangle �(x, y, z) in a geodesic space (X,ρ) consists of three points x, y, z in
X (the vertices of �) and three geodesic segments between each pair of vertices (the edges
of�). A comparison triangle for a geodesic triangle�(x, y, z) in (X,ρ) is a triangle�(x̄, ȳ, z̄)
inM

κ such that

ρ(x, y) = dM
κ
(x̄, ȳ), ρ(y, z) = dM

κ
(ȳ, z̄) and ρ(z,x) = dM

κ
(z̄, x̄).

If κ ≤  then such a comparison triangle always exists inM
κ . If κ >  then such a triangle

exists whenever ρ(x, y) + ρ(y, z) + ρ(z,x) < Dκ , where Dκ = π/
√

κ . A point p̄ ∈ [x̄, ȳ] is
called a comparison point for p ∈ [x, y] if ρ(x,p) = dM

κ
(x̄, p̄).

A geodesic triangle �(x, y, z) in X is said to satisfy the CAT(κ) inequality if for any p,q ∈
�(x, y, z) and for their comparison points p̄, q̄ ∈ �(x̄, ȳ, z̄), one has

ρ(p,q)≤ dM
κ
(p̄, q̄).

Definition . If κ ≤ , then X is called a CAT(κ) space if X is a geodesic space such that
all of its geodesic triangles satisfy the CAT(κ) inequality.
If κ > , then X is called a CAT(κ) space if X is Dκ -geodesic and any geodesic triangle

�(x, y, z) in X with ρ(x, y) + ρ(y, z) + ρ(z,x) < Dκ satisfies the CAT(κ) inequality.

Now, we recall the concepts of comparison angle and upper (Alexandrov) angle (cf. []).

Definition . Let p, q, and r be three points in a geodesic space. The interior angle of
�(p̄, q̄, r̄)⊆ E

 at p̄ is called the comparison angle between q and r at p and will be denoted
by ∠p(q, r).

Definition . Let X be a geodesic space and let c : [,a] → X and c′ : [,a′] → X be
two geodesic paths with c() = c′(). Given t ∈ (,a] and t′ ∈ (,a′], we consider the com-
parison triangle �(c(), c(t), c′(t′)) and the comparison angle ∠c()(c(t), c′(t′)) in E

. The
(Alexandrov) angle or the upper angle between the geodesic paths c and c′ is the number
∠(c, c′) defined by

∠
(
c, c′

)
:= lim sup

t,t′→+
∠c()

(
c(t), c′

(
t′
))
.

The angle between the geodesic segments [p,x] and [p, y] will be denoted by ∠p(x, y). No-
tice that the Alexandrov angle coincides with the spherical angle on S

n and the hyperbolic
angle on H

n.

In a CAT() space (X,ρ), if x, y, z ∈ X then the CAT() inequality implies

(CN) ρ
(
x,



y⊕ 


z
)

≤ 

ρ(x, y) +



ρ(x, z) –




ρ(y, z).

This is the (CN) inequality of Bruhat and Tits []. This inequality is extended by Dhom-
pongsa and Panyanak [] to

(
CN∗) ρ(x, ( – α)y⊕ αz

) ≤ ( – α)ρ(x, y) + αρ(x, z) – α( – α)ρ(y, z)

http://www.journalofinequalitiesandapplications.com/content/2014/1/403


Nanjaras and Panyanak Journal of Inequalities and Applications 2014, 2014:403 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/403

for all α ∈ [, ] and x, y, z ∈ X. In fact, ifX is a geodesic space then the following statements
are equivalent:

(i) X is a CAT() space;
(ii) X satisfies (CN);
(iii) X satisfies (CN∗).
Let R ∈ (, ]. Recall that a geodesic space (X,ρ) is said to be R-convex for R (see []) if

for any three points x, y, z ∈ X, we have

ρ(x, ( – α)y⊕ αz
) ≤ ( – α)ρ(x, y) + αρ(x, z) –

R


α( – α)ρ(y, z). ()

It follows from (CN∗) that a geodesic space (X,ρ) is a CAT() space if and only if (X,ρ)
is R-convex for R = . The following lemma is a consequence of Proposition . in [].

Lemma . Let κ >  and (X,ρ) be a CAT(κ) space with diam(X) ≤ π/–ε√
κ

for some ε ∈
(,π/). Then (X,ρ) is R-convex for R = (π – ε) tan(ε).

We now collect some elementary facts aboutCAT(κ) spaces.Most of them are proved in
the setting of CAT() spaces. For completeness, we state the results in CAT(κ) with κ > .

Lemma . ([, Proposition .]) Let κ >  and (X,ρ) be a complete CAT(κ) space with
diam(X)≤ π/–ε√

κ
for some ε ∈ (,π/). Let x ∈ X and C be a nonempty closed convex subset

of X. Then
(i) the metric projection PC(x) of x onto C is a singleton;
(ii) if x /∈ C and y ∈ C with y �= PC(x), then ∠PC (x)(x, y) ≥ π/;
(iii) for each y ∈ C, ρ(PC(x),PC(y)) ≤ ρ(x, y).

Let {xn} be a bounded sequence in a CAT(κ) space (X,ρ). For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
ρ(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.

It is well known from Proposition . of [] that in a CAT(κ) space with diameter smaller
than π


√

κ
,A({xn}) consists of exactly one point.We now give the concept of�-convergence

and collect some of its basic properties.

Definition . ([, ]) A sequence {xn} in X is said to �-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we write
�-limn xn = x and call x the �-limit of {xn}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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Lemma . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Then the following statements hold:

(i) [, Corollary .] every sequence in X has a �-convergence subsequence;
(ii) [, Proposition .] if {xn} ⊆ X and �-limn xn = x, then x ∈ ⋂∞

k= conv{xk ,xk+, . . .},
where conv(A) =

⋂{B : B ⊇ A and B is closed and convex}.

By the uniqueness of asymptotic centers, we can obtain the following lemma (cf. [,
Lemma .]).

Lemma . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). If {xn} is a sequence in X with A({xn}) = {x} and {un} is a subsequence of
{xn} with A({un}) = {u} and the sequence {ρ(xn,u)} converges, then x = u.

Definition . LetC be a nonempty subset of aCAT(κ) space (X,ρ). AmappingT : C →
X is called a generalized hybrid mapping [] if there exist functions a,a,a,k,k : C →
[, ) such that
(P) ρ(T(x),T(y))≤ a(x)ρ(x, y) + a(x)ρ(T(x), y) + a(x)ρ(T(y),x) + k(x)ρ(T(x),

x) + k(x)ρ(T(y), y) for all x, y ∈ C;
(P) a(x) + a(x) + a(x)≤  for all x, y ∈ C;
(P) k(x) <  – a(x) and k(x) <  – a(x) for all x ∈ C.

A point x ∈ C is called a fixed point of T if x = T(x). We denote the set of all fixed points
of T with F(T).

3 Main results
3.1 Demiclosed principle
Theorem . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√

κ
for

some ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T : C → X be a
generalized hybrid mapping with k(x)

–a(x)
< R

 for all x ∈ C where R = (π – ε) tan(ε). Let
{xn} be a sequence in C with �-limn xn = z and limn ρ(xn,T(xn)) = . Then z ∈ C and z =
T(z).

Proof Since �-limn xn = z, by Lemma ., z ∈ C. Since T is a generalized hybrid map-
ping,

ρ(T(xn),T(z)) ≤ a(z)ρ(z,xn) + a(z)ρ(T(z),xn) + a(z)ρ(T(xn), z)
+ k(z)ρ(T(z), z) + k(z)ρ(T(xn),xn)

≤ a(z)ρ(z,xn) + a(z)
[
ρ
(
T(z),T(xn)

)
+ ρ

(
T(xn),xn

)]
+ a(z)

[
ρ
(
T(xn),xn

)
+ ρ(xn, z)

] + k(z)ρ(T(z), z)
+ k(z)ρ(T(xn),xn),

yielding

lim sup
n→∞

ρ(T(xn),T(z)) ≤ lim sup
n→∞

ρ(z,xn) +
k(z)

 – a(z)
ρ(z,T(z)).

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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This implies that

lim sup
n→∞

ρ(xn,T(z)) ≤ lim sup
n→∞

[
ρ
(
xn,T(xn)

)
+ ρ

(
T(xn),T(z)

)]

≤ lim sup
n→∞

ρ(T(xn),T(z))

≤ lim sup
n→∞

ρ(z,xn) +
k(z)

 – a(z)
ρ(z,T(z)). ()

On the other hand, by Lemma . we have

ρ
(
xn,



z⊕ 


T(z)

)
≤ 


ρ(xn, z) +



ρ(xn,T(z)) – R


ρ(z,T(z)). ()

By () and (), we get

lim sup
n→∞

ρ
(
xn,



z⊕ 


T(z)

)
≤ 


lim sup
n→∞

ρ(xn, z) +


lim sup
n→∞

ρ(xn,T(z))

–
R


ρ(z,T(z))

≤ lim sup
n→∞

ρ(xn, z) +
k(z)

( – a(z))
ρ(z,T(z))

–
R


ρ(z,T(z)).
Thus

(
R

–

k(z)
( – a(z))

)
ρ(z,T(z)) ≤ lim sup

n→∞
ρ(xn, z) – lim sup

n→∞
ρ

(
xn,



z⊕ 


T(z)

)
≤ .

Since k(z)
–a(z)

< R
 , we get

k(z)
(–a(z))

< R
 and so ρ(z,T(z)) = . Hence z = T(z). �

The following corollary shows that how we derive a result for CAT() spaces from The-
orem ..

Corollary . Let (X,ρ) be a complete CAT() space, C be a nonempty bounded closed
convex subset of X, and T : C → C be a generalized hybrid mapping. Let {xn} be a sequence
in C with �-limn xn = z and limn ρ(xn,T(xn)) = . Then z ∈ C and z = T(z).

Proof It is well known that every convex subset of a CAT() space, equipped with the
induced metric, is a CAT() space (cf. []). Then (C,ρ) is a CAT() space and hence it is
a CAT(κ) space for all κ > . Notice also that C is R-convex for R = . Since C is bounded,
we can choose ε ∈ (,π/) and κ >  so that diam(C) ≤ π/–ε√

κ
. The conclusion follows from

Theorem .. �

3.2 Fixed point theorems
Theorem . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√

κ
for

some ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T : C → C be a
generalized hybrid mapping with k(x) = k(x) =  for all x ∈ C. Then T has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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Proof Fix x ∈ C and define xn := Tn(x) for n ∈ N. Suppose that A({xn}) = {z}. Then by
Lemma ., z ∈ C. Since T is generalized hybrid and k(z) = k(z) = ,

ρ(xn,T(z)) ≤ a(z)ρ(z,xn–) + a(z)ρ(T(z),xn–) + a(z)ρ(xn, z).

Taking the limit superior on both sides, we get

lim sup
n→∞

ρ(xn,T(z)) ≤ a(z) lim sup
n→∞

ρ(z,xn–) + a(z) lim sup
n→∞

ρ(T(z),xn–)

+ a(z) lim sup
n→∞

ρ(xn, z)

≤ (
a(z) + a(z)

)
lim sup
n→∞

ρ(xn, z) + a(z) lim sup
n→∞

ρ(xn,T(z)).

This implies by (P) that lim supn ρ(xn,T(z)) ≤ lim supn ρ(xn, z). But, since A({xn}) = {z},
it must be the case that z = T(z) and the proof is complete. �

As a consequence of Theorem ., we obtain:

Corollary . Let (X,ρ) be a complete CAT() space, C be a nonempty bounded closed
convex subset of X, and T : C → C be a generalized hybrid mapping with k(x) = k(x) = 
for all x ∈ C. Then T has a fixed point.

3.3 �-Convergence theorems
We begin this section by proving a crucial lemma.

Lemma. Let κ >  and (X,ρ) be a completeCAT(κ) spacewith diam(X) ≤ π/–ε√
κ

for some
ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T : C → X be a generalized
hybrid mapping with k(x)

–a(x)
< R

 for all x ∈ C where R = (π – ε) tan(ε). Suppose {xn} is a
sequence in C such that limn ρ(xn,Txn) =  and {ρ(xn, v)} converges for all v ∈ F(T), then
ωw(xn) ⊆ F(T). Here ωw(xn) :=

⋃
A({un}) where the union is taken over all subsequences

{un} of {xn}.Moreover, ωw(xn) consists of exactly one point.

Proof Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}.
By Lemma ., there exists a subsequence {vn} of {un} such that �-limn vn = v ∈ C. By
Theorem ., v ∈ F(T). By Lemma ., u = v. This shows that ωw(xn) ⊆ F(T). Next, we
show that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with
A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊆ F(T), {ρ(xn,u)} converges. Again,
by Lemma ., x = u. This completes the proof. �

Theorem . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T : C → X be a
generalized hybrid mapping with F(T) �= ∅. Let {αn} be a sequence in [, ] and define a
sequence {xn} in C by

⎧⎨
⎩
x ∈ C chosen arbitrary,

xn+ := PC(( – αn)xn ⊕ αnT(xn)), n ∈N.

Let R = (π – ε) tan(ε) and suppose that

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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(i) k(x)
–a(x)

< R
 for all x ∈ C,

(ii) lim infn αn[ (–αn)R
 – k(z)

–a(z)
] >  for all z ∈ F(T).

Then {xn} �-converges to an element of F(T).

Proof Let z ∈ F(T). Since T is generalized hybrid,

ρ(T(x), z) ≤ ρ(z,x) +
k(z)

 – a(z)
ρ(T(x),x) for all x ∈ C.

By Lemmas . and ., we have

ρ(xn+, z) = ρ(PC
(
( – αn)xn ⊕ αnT(xn)

)
, z

)
≤ ρ(( – αn)xn ⊕ αnT(xn), z

)

≤ ( – αn)ρ(xn, z) + αnρ
(T(xn), z) – R


αn( – αn)ρ(xn,T(xn))

≤ ρ(xn, z) + αn

[
k(z)

 – a(z)
–
R( – αn)



]
ρ(xn,T(xn)). ()

By (ii), there exist δ >  and N ∈N such that

αn

[
( – αn)R


–

k(z)
 – a(z)

]
≥ δ >  for all n≥N .

Without loss of generality, we may assume that

αn

[
( – αn)R


–

k(z)
 – a(z)

]
>  for all n ∈N. ()

It follows from () and () that {ρ(xn, z)} is a nonincreasing sequence and hence limn ρ(xn,
z) exists. Again, by (), we have

lim
n→∞αn

[
( – αn)R


–

k(z)
 – a(z)

]
ρ(xn,T(xn)) = .

This implies by (ii) that limn ρ(xn,T(xn)) = . By Lemma ., ωw(xn) consists of exactly one
point and is contained in F(T). This shows that {xn} �-converges to an element of F(T).

�

Theorem . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T : C → X be a
generalized hybrid mapping with F(T) �= ∅. Let {αn} and {βn} be sequences in [, ] and
define a sequence {xn} in C by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

xn+ := PC(( – αn)T(xn)⊕ αnT(yn)),

yn := PC(( – βn)xn ⊕ βnT(xn)).

Assume that

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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(i) k(z) =  for all z ∈ F(T),
(ii) lim infn αn >  and lim infn βn( – βn) > .

Then {xn} �-converges to an element of F(T).

Proof Fix z ∈ F(T). By (i), we have ρ(T(x), z)≤ ρ(x, z) for all x ∈ C. Let R = (π – ε) tan(ε).
By Lemmas . and ., we have

ρ(yn, z) = ρ(PC
(
( – βn)xn ⊕ βnT(xn)

)
, z

)
≤ ρ(( – βn)xn ⊕ βnT(xn), z

)

≤ ( – βn)ρ(xn, z) + βnρ
(T(xn), z) – R


βn( – βn)ρ(xn,T(xn))

≤ ρ(xn, z) –
R


βn( – βn)ρ(xn,T(xn))

≤ ρ(xn, z). ()

This implies that

ρ(xn+, z) = ρ(PC
(
( – αn)T(xn)⊕ αnT(yn)

)
, z

)
≤ ρ(( – αn)T(xn)⊕ αnT(yn), z

)

≤ ( – αn)ρ(T(xn), z) + αnρ
(T(yn), z) – R


αn( – αn)ρ(T(xn),T(yn))

≤ ( – αn)ρ(xn, z) + αnρ
(yn, z) –

R


αn( – αn)ρ(T(xn),T(yn))

≤ ρ(xn, z) –
R


αn( – αn)ρ(T(xn),T(yn))

≤ ρ(xn, z).

Hence limn ρ(xn, z) exists and

 ≤ R


αn( – αn)ρ(T(xn),T(yn)) ≤ ρ(xn, z) – ρ(xn+, z) + αn
[
ρ(yn, z) – ρ(xn, z)

]
.

So,

αn
[
ρ(xn, z) – ρ(yn, z)

] ≤ ρ(xn, z) – ρ(xn+, z).

Since lim infn αn > , lim supn[ρ(xn, z) – ρ(yn, z)] = . By (), we have

R


βn( – βn)ρ(xn,T(xn)) ≤ ρ(xn, z) – ρ(yn, z).

This implies by (ii) that limn ρ(xn,T(xn)) = . By Lemma ., ωw(xn) consists of exactly one
point and is contained in F(T). This shows that {xn} �-converges to an element of F(T).

�

The following lemma is also needed (cf. [, Lemma .]).

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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Lemma. Let κ >  and (X,ρ) be a completeCAT(κ) spacewith diam(X) ≤ π/–ε√
κ

for some
ε ∈ (,π/). Let {xn} and {yn} be sequences in X with limn ρ(xn, yn) = . If�-limn xn = x and
�-limn yn = y, then x = y.

Theorem . Let κ >  and (X,ρ) be a complete CAT(κ) space with diam(X) ≤ π/–ε√
κ

for
some ε ∈ (,π/). Let C be a nonempty closed convex subset of X, and T ,S : C → X be a
two generalized hybrid mappings with F(T)∩ F(S) �= ∅. Let {αn} and {βn} be a sequence in
[, ] and define a sequence {xn} in C by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C chosen arbitrary,

xn+ := PC(( – αn)xn ⊕ αnT(yn)),

yn := PC(( – βn)xn ⊕ βnS(xn)).

Let R = (π – ε) tan(ε) and suppose that
(i) lim infn αn( – αn) > ,
(ii) kT (z) =  and lim infn βn[ (–βn)R

 – kS (z)
–aS(z)

] >  for all z ∈ F(T)∩ F(S).
Then {xn} �-converges to a common fixed point of S and T .

Proof Let z ∈ F(T)∩F(S). Since kT (z) = , ρ(T(x), z)≤ ρ(x, z) for all x ∈ C. By Lemmas .
and ., we have

ρ(yn, z) = ρ(PC
(
( – βn)xn ⊕ βnS(xn)

)
, z

)
≤ ρ(( – βn)xn ⊕ βnS(xn), z

)

≤ ( – βn)ρ(xn, z) + βnρ
(S(xn), z) – R


βn( – βn)ρ(xn,S(xn))

≤ ( – βn)ρ(xn, z) + βn

[
ρ(xn, z) +

kS(z)
 – aS(z)

ρ(S(xn),xn)
]

–
R


βn( – βn)ρ(xn,S(xn))

≤ ρ(xn, z) – βn

[
( – βn)R


–

kS(z)
 – aS(z)

]
ρ(S(xn),xn). ()

By (ii), there exist δ >  and N ∈N such that

βn

[
( – βn)R


–

kS(z)
 – aS(z)

]
≥ δ >  for all n≥N .

Without loss of generality, we may assume that

βn

[
( – βn)R


–

kS(z)
 – aS(z)

]
>  for all n ∈N.

By (), ρ(yn, z) ≤ ρ(xn, z). Thus

ρ(xn+, z) = ρ(PC
(
( – αn)xn ⊕ αnT(yn)

)
, z

)
≤ ρ(( – αn)xn ⊕ αnT(yn), z

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/403
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≤ ( – αn)ρ(xn, z) + αnρ
(T(yn), z) – R


αn( – αn)ρ(xn,T(yn))

≤ ( – αn)ρ(xn, z) + αnρ
(yn, z) –

R


αn( – αn)ρ(xn,T(yn))

≤ ρ(xn, z) –
R


αn( – αn)ρ(xn,T(yn))

≤ ρ(xn, z). ()

Hence limn ρ(xn, z) exists and

lim
n→∞αn( – αn)ρ(xn,T(yn)) = .

By (i), limn ρ(xn,T(yn)) = . It follows from () that

 ≤ R


αn( – αn)ρ(xn,T(yn)) ≤ ρ(xn, z) – ρ(xn+, z) + αn
[
ρ(yn, z) – ρ(xn, z)

]
.

Thus

αn( – αn)
[
ρ(xn, z) – ρ(yn, z)

] ≤ ρ(xn, z) – ρ(xn+, z).

Again, by (i), lim supn[ρ(xn, z) – ρ(yn, z)] = . By (), we have

βn

[
( – βn)R


–

kS(z)
 – aS(z)

]
ρ(xn,S(xn)) ≤ ρ(xn, z) – ρ(yn, z).

This implies by (ii) that limn ρ(xn,S(xn)) = . Hence,

lim sup
n→∞

ρ(yn,xn) = lim sup
n→∞

ρ
(
PC

(
( – βn)xn ⊕ βnS(xn)

)
,PC(xn)

)

≤ lim sup
n→∞

ρ
(
( – βn)xn ⊕ βnS(xn),xn

)

= lim sup
n→∞

βnρ
(
S(xn),xn

)

= .

So, limn ρ(yn,T(yn)) = . By Lemma ., there exist u, v ∈ C such that ωw(xn) = {u} ⊆ F(S)
andωw(yn) = {v} ⊆ F(T). Thismeans that�-limn xn = u and�-limn yn = v. Hence, by Lem-
ma ., u = v and the proof is complete. �
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