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Abstract
The long time behavior of the solutions for the strongly damped wave equation is
considered with nonlinear damping, a nonlinear forcing term, and with a periodic
boundary condition. We prove that the global attractor which captures all trajectories
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1 Introduction
For u(x, t) : � × R+ → R, we consider the strongly damped wave equation on a bounded
domain � in R

 with smooth boundary:

utt – α�ut –�u + h(ut) + f (u) = g(x), (.)

supplemented with the periodic boundary conditions and initial conditions

u(,x) = u(x), ut(,x) = u(x), x ∈ �, (.)

where the strongly damped coefficient α is a positive constant, the damped function h :
R →R is continuous, and the forcing term f :R →R is a nonlinear term satisfying some
growth conditions, g :� →R is the external force.
When α = , (.) reduces to a usual wave equationwith nonlinear damping, which arises

as an evolutionarymathematical model in various systems (cf. [, ]), for example: (i) mod-
eling a continuous Josephson junction with specific h, g and f ; (ii) modeling a hybrid sys-
tem of nonlinear waves and nerve conduct; and (iii) modeling a phenomenon in quantum
mechanics and which has been studied widely by using of the concept of global attractors;
see, for example, [–] for the linear damping case, and [–] for the nonlinear damp-
ing case. There are some results on the regularity in these papers; for example, in [] the
authors gave the dimensionality and related properties of the global attractor, and in [],
the authors presented a direct method to establish the optimal regularity of the attractor
for the semilinear damped wave equation (when α =  and h(ut) = ut) with nonlinearity
for the critical growth. But for α �= , the case can be complex.
There is a large literature on the asymptotic behavior of solutions to (.), (.) (cf. [,

–]). For the strongly damped wave equations, [] had proved the uniform bounded-
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ness of the global attractor for very strong damping in H × L and obtained an estimate
of the upper bound of the Hausdorff dimension of an attractor for the strongly damped
nonlinear wave equation (.). Furthermore, when h(ut) = , Pata and Zelik in [] had
proved the existence of compact global attractors of optimal regularity, i.e., the compact
global attractor on H(�)× L(�) is a bounded subset of H ×H. The aim of this paper
is to prove that the dynamical system associated with (.) possesses a compact global at-
tractor in H(�)×H(�), i.e., we will prove that the global attractorA in H(�)× L(�)
is a compact set A in H(�)×H(�). This implies that A =A.
The paper is organized as follows. In Section , we present the existence, uniqueness,

and continuous dependence of solutions for problem (.), and we establish the existence
of an absorbing set in H(�) × L(�). In Section , we prove the existence of the global
attractor in H(�) × L(�). In Section , we establish the regularity of the attractor, i.e.,
that the global attractor is a compact subset in H(�)×H(�).

2 Preliminaries
We assume that g ∈ L(�) =H , and Ḣ– = (Ḣ)∗, with

Ḣ =H ∩
{
u ∈ L(�);

∫
�

u(x)dx = 
}
,

and the functions h, f satisfy the following conditions:
(i) Let f (u) ∈ C(R;R) satisfy:

() The asymptotic sign condition

lim sup
|s|→+∞

f (s)
s

≤ . (.)

() Let F(s) =
∫ s
 f (ρ)dρ , there exist constants c, c, δ,Cδ >  such that

(
f (u),u

)
– c

∫
�

F(u)dx – δ|u| ≥ –Cδ|�|, (.)

where | · | denotes the absolute value of the number in R. We have

∣∣f ′(s)
∣∣ ≤ c

(
 + |s|p) with

{
 ≤ p < ∞, when n = , ,
 ≤ p < , when n = .

(.)

(ii) There exist two constants β ′
,β ′

 ≥  such that

h() = ,  < β ′
 ≤ h′(s)≤ β ′

 < +∞, ∀s ∈R. (.)

Let Au = –�u, then the system (.)-(.) is equivalent to the following initial value prob-
lem in Ḣ(�)× L(�):

{
Ẏ = PY +Q(Y ), x ∈ �, t > ,
Y () = Y = (u,u)T ∈ Ḣ × L,

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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where Y = (u,ut)T , Q(Y ) = (,–h(ut) – f (u) + g)T ,

P =

(
 I
–A –kA

)
.

By the assumption (.)-(.), it is easy to check that the function Q(Y ) : Ḣ × L → Ḣ ×
L is continuously differentiable and globally Lipschitz continuous with respect to Y . By
the classical theory concerning the existence and uniqueness of the solutions of evolution
differential equations (cf. []), we have the following lemma (see [] for details).

Lemma . Consider the initial value problem (.) in Ḣ ×L. If (.)-(.) hold, then, for
any Y ∈ Ḣ×L, there exists a unique continuous function Y (·) = Y (·,Y) ∈ C(R+; Ḣ×L)
such that Y (,Y) = Y and Y (t) satisfies the integral equation

Y (t,Y) = ePtY +
∫ t


eP(t–τ )Q

(
Y (τ )

)
dτ .

Y (t,Y) is called the mild solution of (.), and Y (t,Y) is jointly continuous in t and Y,
and

(u,ut) ∈ C
(
R+; Ḣ(�)

) × [
C

(
R+;L(�)

) ∩ L
((
,T∗); Ḣ(�)

)]
, ∀T∗ > .

For any t ≥ , we can introduce a map

S(t) : Y = (u,u) → (u,ut) = Y (t,Y), S(t) : Ḣ × L → Ḣ × L,

where Y (t,Y) is the solution of (.), and then {S(t)|t ≥ } is a continuous semigroup on
Ḣ × L.
Consider the map G : Ḣ × L → Ḣ × L defined as

G
(
u(t),ut(t)

)
= ePt(u,u) +

∫ t


eP(t–τ )(, g – h

(
ut(τ )

)
– f

(
u(τ )

))
dτ . (.)

For some λ > , let

A = A + λI. (.)

Let

(u, v) =
∫

�

uvdx, |u| = (u,u)

 , ∀u, v ∈ L,

(
(u, v)

)
=

∫
�

Au · vdx, ‖u‖ = (
(u,u)

) 
 , ∀u, v ∈H(�).

Obviously, A is symmetric and positive definite, so we have the following Poincaré type
inequality:

‖y‖ ≥ √
λ|y|, y ∈ L. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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Let h(ut) = h(ut) – αλut , then (.) can be written in the equivalent form

utt + αAut +Au + h(ut) – λu + f (u) = g, (.)

and by (.), h(ut) satisfies

h() = , –αλ < β ≤ h′
(θ ) ≤ β < +∞, ∀θ ∈R, (.)

where β = β ′
 – αλ, β = β ′

 – αλ are two constants.
To construct an attractor for (.), we make the following assumptions. Let ϕ = (u, v)T ,

v = ut + ku, where k is chosen as

k =
αλ + β

 + (αλ + β)α + β
 /λ

. (.)

Equation (.) can be written as

ϕt +H(ϕ) = F(ϕ), ϕ() = (u, v = u + ku)T , t ≥ , (.)

where

F(ϕ) =

(


λu – f (u) + g

)
,

H(ϕ) =

(
ku – v

Au – k(αA – k)u + (αA – k)v

)
+

(


h(v – ku)

)
.

We define a new weighted inner product and norm in E = Ḣ × L as

(ϕ,ψ)E = μ
(
(u,u)

)
+ (v, v), ‖ϕ‖E = (ϕ,ϕ)/E , (.)

for any ϕ = (u, v)T ,ψ = (u, v)T ∈ E, where μ is chosen as

μ =
 + (αλ + β)α + β

 /λ
 + (αλ + β)α + β

 /λ
∈

(


, 

)
. (.)

Obviously, the norm ‖ · ‖E in (.) is equivalent to the usual norm | · |Ḣ×L in E.

Lemma . (see [], Lemma ) For any ϕ = (u, v)T ∈ E, if

–αλ < β ≤ β < +∞, β ≥ |β| +min
{
/α, (αλ + β)/

}
, (.)

hold, then

(
H(ϕ),ϕ

)
E ≥ σ‖ϕ‖E +

α


‖v‖ + β


|v| ≥ σ‖ϕ‖E +

αλ + β


|v|, (.)

where

σ =
αλ + β

γ +
√

γγ
, γ =  + (αλ + β)α +

β

λ
, γ = (αλ + β)α +

β

λ
. (.)
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Proposition . The semigroup {S(t)|t ≥ } possesses an absorbing set B ⊂ Ḣ × L.

Proof Let ϕ = (u, v)T ∈ E be the solution of (.). Taking the inner product (·, ·)E of (.)
with ϕ, we have

(ϕt ,ϕ) +
(
H(ϕ),ϕ

)
=

(
F(ϕ),ϕ

)

and



d
dt

‖ϕ‖E +
(
H(ϕ),ϕ

)
E +

(
f (u), v

)
– λ(u, v) = (g, v). (.)

By v = ut + ku, we have

(
f (u), v

)
=

(
f (u),ut + ku

)
=

d
dt

∫
�

F(u)dx + k
(
f (u),u

)
, (.)

by (.) and (.), we have



d
dt

[
‖ϕ‖E + 

∫
�

F(u)dx
]
+

(
H(ϕ),ϕ

)
E + k

(
f (u),u

)
– λ(u, v) = (g, v). (.)

Let y(t) = ‖ϕ‖E + 
∫
�
F(u)dx + Cδ|�| ≥ 

‖ϕ‖E ≥ . By (.) and (.), there exists δ > 
such that

(
H(ϕ),ϕ

)
E + k

(
f (u),u

)
– λ(u, v)

≥ σ‖ϕ‖E +
αλ + β


|v| + kc

∫
�

F(u)dx + kδ|u| – kCδ|�| – λ|u||v|

≥ σ‖ϕ‖E +
αλ + β


|v| + kc

∫
�

F(u)dx

+
kδ
λμ

μ|u| – kCδ|�| –
√

λ

√μ
‖ϕ‖E

≥
(

σ +
kδ
λμ

–
√

λ

√μ

)
‖ϕ‖E + kc

∫
�

F(u)dx – kCδ|�| + αλ + β


|v|

≥ 

ρy – k

(
Cδ|�| + cCδ|�|) + αλ + β


|v|, (.)

where ρ =min{kc, (σ + kδ
λμ

–
√

λ
√μ

)}. By (.) and (.),

d
dt

y + ρy ≤ kCδ|�|( + c) + (g, v) – (αλ + β)|v|

≤ kCδ|�|( + c) +


αλ + β
|g|. (.)

Using the Gronwall lemma, we have

∥∥ϕ(t)
∥∥
E ≤ y()e–ρt + 

( |g|
(αλ + β)ρ

+
kCδ|�|( + c)

ρ

)
.
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Following [] and [], it follows from (.) that, for each κ > , there is a constant Cκ > 
such that, for each u ∈ L(�),

(
f (u),u

)
=

∫
�

f (u)udx ≤ κ|u| +Cκ . (.)

Note that (.) and (.) imply

c
∫

�

F(u)dx ≤ (
f (u),u

)
– δ|u| +Cδ|�|

≤ κ|u| +Cκ – δ|u| +Cδ|�| ≤ c
(
 + |u|). (.)

For any bounded set B of E, where supϕ∈B ‖ϕ‖E < r, if ϕ() ∈ B, there exists c = c(r) > 
such that y() = ‖ϕ()‖E + 

∫
�
F(u)dx + Cδ|�| ≤ c. Therefore, for the solution ϕ(t) =

(u(t), v(t))T of (.) with ϕ() ∈ B,

∥∥ϕ(t)
∥∥
E ≤ c(r)e–ρt + 

( |g|
(αλ + β)ρ

+
kCδ|�|( + c)

ρ

)
.

Taking

M = 
( |g|
(αλ + β)ρ

+
kCδ|�|( + c)

ρ

)

completes the proof. �

3 Existence of the global attractor in Ḣ1 × L2

Theorem . (see [, I..]) Let {S(t)|t ≥ } be a continuous semigroup on Ḣ × L that
possesses an absorbing ball in Ḣ × L. Let us assume that, for any t ≥ ,

S(t) = S(t) + S(t),

where:
• For every bounded set B, there exists t that depends on B, such that

⋃
t≥t S(t)B is

relatively compact in Ḣ × L.
• For every bounded set B,

lim sup
t→∞

(
sup
θ∈B

∥∥S(t)θ∥∥
Ḣ×L

)
= .

Then S(t)t≥ possesses a global attractor A that is compact in Ḣ × L.

Remark . (see []) We characterize such an attractor A as

A =
{
(u,u) ∈ Ḣ × L,

(
un,u

n

)
n ⊂ B,∃(tn) → ∞,

such that
∥∥S(tn)(un,un ) – (u,u)

∥∥
Ḣ×L → 

}
.

Theorem . The semigroup {S(t)|t ≥ } possesses a global attractor A in Ḣ × L.

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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Proof We consider gε ∈ C∞
 and

∫ 
 gε(x)dx =  such that

|g – gε |L < ε, (.)

and we introduce the splitting (u, v) = (u, v) + (u, v) + (u, v) where (u, v) satisfies

⎧⎪⎨
⎪⎩
u,t + ku – v = ,
v,t +Au – k(αA – k)u + (αA – k)v + h(v – ku) + f (u) – λu = gε ,
u() = , v() = ,

(.)

(u, v) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u,t + ku – v = ,
v,t +Au – k(αA – k)u + (αA – k)v

+ h(v – ku + v – ku) – h(v – ku) + f (u + u) – f (u) – λu = g – gε ,
u() = , v() = ,

(.)

and (u, v) is the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u,t + ku – v = ,
v,t +Au – k(αA – k)u + (αA – k)v

+ h(v – ku) – h(v – ku + v – ku) + f (u) – f (u + u) – λu = ,
u() = u, v() = v.

(.)

We now define the families of maps {Sk(t)|t ≥ } and {Sk (t)|t ≥ } in Ḣ × L, where

Sk(t)(u, v) =
(
u(t), v(t)

)
+

(
u(t), v(t)

)
, Sk (t)(u, v) =

(
u(t), v(t)

)
.

First step: We prove that (u, v) is bounded in H ×H. The system (.) can be written
as

ϕ
t +H

(
ϕ) = F

(
ϕ), ϕ() = (, )T , t ≥ , (.)

where

F
(
ϕ) =

(


–f (u) + λu + gε

)
,

H
(
ϕ) =

(
ku – v

Au – k(αA – k)u + (αA – k)v + h(v – ku)

)
.

(.)

Similar to Proposition ., we obtain

∥∥ϕ∥∥
E ≤ 

ρ
C

(|gε |H– ,λ,α, δ,κ ,k,β,β
)
=M. (.)

Now we multiply (.) by (Au,Av) and integrate on � to obtain



d
dt

∥∥A 

 ϕ∥∥

E + σ
∥∥A 


 ϕ∥∥

E +
αλ + β


∣∣A 


 v

∣∣ ≤ (
–f (u) + λu,Av

)
+ (gε ,Av), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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with

(
–f (u),Av

)
=

(
–A



 f (u),A



 (u,t + ku)

)
= –

d
dt

(
A



 f (u),A



 u

)
+

(
A



 f

′(u)u,t ,A


 u

)
– k

(
A



 f (u),A



 u

)
.

Then (.) can be rewritten as



d
dt

[∥∥A 

 ϕ∥∥

E + 
(
A



 f (u),A



 u

)]
+ σ

∥∥A 

 ϕ∥∥

E + k
(
A



 f (u),A



 u

)
≤ –

αλ + β


∣∣A 


 v

∣∣ + (
A



 f

′(u)u,t ,A


 u

)
+ λ

(
A



 u,A



 v

)
+

(
A



 gε ,A



 v

)
,

i.e.,



d
dt

[∥∥A 

 ϕ∥∥

E + 
(
A



 f (u),A



 u

)]
+

(
σ –

√
λ

√μ

)∥∥A 

 ϕ∥∥

E + k
(
A



 f (u),A



 u

)

≤ (
A



 f

′(u)u,t ,A


 u

)
+

A


 gε

(αλ + β)
; (.)

for the first term on the right-hand side of (.), we have

(
A



 f

′(u)u,t ,A


 u

) ≤ c
∣∣A 


 u,t

∣∣|u|p∣∣A 

 u

∣∣ 
–p

≤ c
∣∣A 


 u,t

∣∣|u|pH

∣∣A 

 u

∣∣ –p


∣∣A 

 u

∣∣ p


≤ cλ
p–


∣∣A 

 u,t

∣∣|u|pH |Au|

≤ c|Au| + cλ
p–


∣∣A 

 u,t

∣∣|u|pH

≤ c|Au| + cλ
p–


(
 + |u|H + |v|H

)
≤ c

∥∥A 

 ϕ∥∥

E + cλ
p–


(
 + |u|H + |v|

)
. (.)

By (.)-(.), we have

d
dt

[∥∥A 

 ϕ∥∥

E + 
(
A



 f (u),A



 u

)]

+ 
(

σ –
√

λ

√μ
– c

)∥∥A 

 ϕ∥∥

E + k
(
A



 f (u),A



 u

)

≤ cλ
p–


(|u|H + |v|
)
+

A


 gε

αλ + β
. (.)

Let � =min{σ –
√

λ
√μ

– c,k} ≥ , using the Gronwall lemma, we have

∥∥A 

 ϕ∥∥

E + 
(
A



 f (u),A



 u

)
≤ (∥∥A 


 ϕ()

∥∥
E + 

(
A



 f

(
u()

)
,A



 u()

))
e–�t

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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+ cλ
p–


∫ t


e–�t

(∣∣u(s)∣∣H +
∣∣v(s)∣∣)ds + |A 


 gε |

(αλ + β)�

≤ cλ
p–


∫ t


e–�t

(∣∣u(s)∣∣H +
∣∣v(s)∣∣)ds + |A 


 gε |

(αλ + β)�
.

By (.), we have

∥∥A 

 ϕ∥∥

E + 
(
A



 f (u),A



 u

) ≤ 
ρ�

C(∣∣A 

 gε

∣∣,λ,α, δ,κ ,k,β,β
)
.

Note that (.) implies that

(
A



 f (u),A



 u

) ≤ c
∣∣A 


 u

∣∣ + c
∣∣A 


 u

∣∣ ≤ c
∥∥A 


 ϕ∥∥

E .

Then we obtain

∥∥A 
 ϕ∥∥

E ≤ 
ρ�

C(∣∣A 

 gε

∣∣,λ,α, δ,κ ,k,β,β
)
. (.)

Proposition ., (.), and (.) imply that (u, v) is bounded in H ×H.
Second step: Let ϕ = (u, v); we will prove that there exists a K >  independence on ε

such that

∥∥ϕ∥∥
E ≤ Kε.

Multiplying (.) by (u, v), we thus obtain



d
dt

∥∥ϕ∥∥
E +

(
σ –


√

λ√
μ

)∥∥ϕ∥∥
E +

αλ + β


|v| +

(
f (u + u) – f (u), v

)
≤ |g – gε ||v|. (.)

For the last term on the left-hand side of (.), by (.), Proposition ., and (.), there
exists ξ such that

(
f (u + u) – f (u), v

)
=

(
f ′(u + ξu)u, v

)
≥ –c

(
 + |u|p + |u|p

)|u||v|
≥ –c(M,M)|u||v|. (.)

By the Gronwall and Poincaré inequalities,

∥∥ϕ∥∥
E ≤ |g – gε |

( 
√

λ√
μ
+ c(M,M) – σ )(αλ + β)

≤ ε

( 
√

λ√
μ
+ c(M,M) – σ )(αλ + β)

. (.)

By (.), (.), and the following lemma we see that {Sk(t)|t ≥ } is compact in Ḣ × L.

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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Lemma . (see []) Let X be a complete metric space and A be a subset in X, such that

∀ε, A⊂ Kε + B
(
,C(ε)

)
with limε→C(ε) =  and Kε is compact in X, then A is compact in X .

Third step: Let ϕ = (u, v), by (.) and Lemma ., we have



d
dt

∥∥ϕ∥∥
E + σ

∥∥ϕ∥∥
E +

αλ + β


|v| ≤ –

(
f (u) – f (u + u), v

)
+ λ(u, v). (.)

For the right-hand side of (.), by (.), we have

–
(
f (u) – f (u + u), v

)
+ λ(u, v) ≤ c|u||v| + λ|u||v|

≤ c‖u‖|v|

≤ σ


∥∥ϕ∥∥

E +
(

c
σμ

–
σ



)
|v|. (.)

Let c <
√

σμ(αλ + β) + σ μ. Equations (.) and (.) lead to

∥∥ϕ∥∥
E ≤ (

μ‖u‖ + |v|
)
exp{–σ t}. (.)

In other words we have

S(t)(u, v) →  in Ḣ × L, (.)

uniformly in bounded sets. Then fromTheorem ., (.), and the compactness of {Sk(t)|
t ≥ }, for the system (.) there exists a global attractor A in Ḣ × L. �

Remark . It is easy to see that the semigroup

Sk(t) = Sk(t) + Sk (t) : (u, v = u + ku)T → (
u(t),ut(t) + ku(t)

)T , E → E,

defined by (.) has the following relation with S(t):

Sk(t) = RkS(t)R–k , (.)

where Rk is an isomorphism of E:

Rk : {u,ut} → {u,ut + ku}.

Since the semigroup {Sk(t)|t ≥ } defined by (.) possesses a global attractor A ⊂ E, by
(.), {S(t)|t ≥ } also possesses a global attractor A = RkA.

4 Regularity of the attractor
In this section, we suppose that g ∈ L̇ and prove that the attractor is compact inH ×H.
Let (u, v) ∈ Ḣ × L. We set

Sk(t)(u, v) =
(
p(t),q(t)

)
+

(
w(t),ρ(t)

)
, ∀t ≥ , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/396


Li Journal of Inequalities and Applications 2014, 2014:396 Page 11 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/396

where (p,q) is the solution of

⎧⎪⎨
⎪⎩
pt + kp – q = ,
qt +Ap – k(αA – k)p + (αA – k)q + h(q – kp) + f (u) – λu = g,
p() = , q() = ,

(.)

(w,ρ) satisfies

⎧⎪⎨
⎪⎩
wt + kw – ρ = ,
ρt +Aw – k(αA – k)w + (αA – k)ρ + h(v – ku) – h(q – kp) = ,
w() = u, ρ() = v.

(.)

We use Remark . to prove that A ⊂ H × H. Let (u, v) ∈ A. Let (un, vn) ∈ B and a
sequence of a real numbers tn → ∞ as n→ ∞, such that

Sk(tn)
(
un, v

n

) → (u, v) in Ḣ × L as n→ ∞. (.)

We also have

Sk(tn)
(
un, v

n

)
=

(
pn(tn),qn(tn)

)
+

(
wn(tn),ρn(tn)

)
, ∀n ∈N. (.)

We deduce from (.) and (.) that

∥∥(
pn(tn),qn(tn)

)∥∥
H×H ≤ 

ρ�
C(∣∣A 


 gε

∣∣,λ,α, δ,κ ,k,β,β
)

(.)

and

∥∥(
wn(tn),ρn(tn)

)∥∥
Ḣ×L ≤ ∥∥(u, v)∥∥

H×L exp(–σ tn). (.)

From (.), we infer that there exist subsequences tn′ and (un′
 , vn

′
 ), and (p,q) ∈H ×H

such that

(
pn

′ (tn′ ),qn′ (tn′ )
)
⇀

(
p,q

)
weakly in H ×H. (.)

From (.), (.), and (.), we have

(
pn

′
(tn′ ),qn

′
(tn′ )

) → (u, v) in H × L. (.)

We conclude that (u, v) = (p,q) and then

A⊂H ×H. (.)

In the following, we use the famous argument of [] to show that the attractorA is actually
a compact set in H ×H.

Theorem . The semigroup {S(t)|t ≥ } in Ḣ × L possesses a global attractor A which
is compact subset of H ×H.
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Proof Multiplying (.) by (Au,Av), we have



d
dt

[
μ

∥∥A 

 u

∥∥ +
∣∣A 


 v

∣∣] + σ
(
μ

∥∥A 

 u

∥∥ +
∣∣A 


 v

∣∣) + αλ + β


∣∣A 


 v

∣∣
= (g,Av) –

(
f (u) – λu,Av

)
. (.)

We put G(u, v) = μ‖A 

 u‖ + |A 


 v|, K (u, v) =

∫
�
[A



 g · A 


 v – (f (u) – λu)Av]dx –

αλ+β
 |A 


 v|, then we have



d
dt

G(u, v) + σG(u, v) = K (u, v), (.)

this shows that

G(u, v) = e–σ tG(u, v) + 
∫ t


eσ (s–t)K (u, v)ds. (.)

We consider a sequence (an,bn)n∈N ∈A, and we may assume that, up to a subsequence,

(an,bn) ⇀ (a,b) weakly in H ×H,

(an,bn) → (a,b) strongly in H × L.

We want to prove the strong convergence of (an,bn) in H × H; this will give the com-
pactness ofA in H ×H.
For a givenT ≥  andup to subsequence extraction,wemay assume that a.e. in t ∈ [,T],

S(t – T)(an,bn) ⇀ S(t – T)(a,b) weakly in H ×H,

S(t – T)(an,bn) → S(t – T)(a,b) strongly in H × L.

Using (.) for (u, v) = S(–T)(an,bn), we have

G
(
S(t – T)(an,bn)

)
= e–σ tG

(
S(–T)(an,bn)

)
+ 

∫ t


eσ (s–t)K

(
S(s – T)(an,bn)

)
ds. (.)

By the Lebesgue dominated convergence theorem, similar to (.)-(.), we have

∫ t


eσ (s–t)K

(
S(s – T)(an,bn)

)
ds→

∫ t


eσ (s–t)K

(
S(s – T)(a,b)

)
ds, (.)

passing to the limit sup in (.) and taking t = T we have

lim
n→∞G(an,bn) ≤ lim

n→∞ e–σTG
(
S(–T)(an,bn)

)

+ 
∫ T


eσ (s–T)K

(
S(s – T)(a,b)

)
ds. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/396
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The last term of (.) follows from (.) for (u, v) = S(–T)(a,b) and t = T , and we have

I = 
∫ T


eσ (s–T)K

(
S(s – T)(a,b)

)
ds =G(a,b) – e–σTG

(
S(–T)(a,b)

)
. (.)

We replace I in (.), we obtain

lim
n→∞G(an,bn) ≤G(a,b) – e–σT

(
G

(
S(–T)(a,b)

)
– lim

n→∞G
(
S(–T)(an,bn)

))
. (.)

It is a standard matter to prove

e–σT
(
G

(
S(–T)(a,b)

)
– lim

n→∞G
(
S(–T)(an,bn)

)) →  when T → ∞. (.)

It follows from (.) that

lim
n→∞G(an,bn) ≤G(a,b)≤ lim

n→∞
G(an,bn). (.)

This completes the proof of lemma. �
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