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Abstract
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1 Introduction
Stochastic analysis including Brownian motion processes has played an important role in
many areas of science and engineering for a long time. Since the white noise is mathemat-
ically represented by a formal derivative of a Brownian motion process, such stochastic
analysis is based on various types of stochastic differential equations(SDEs) of Itô type as
a stochastic model. After Itô introduced his stochastic calculus, the theory of SDEs has
been developed very quickly. SDEs is the most fundamental concept in modern stochastic
models.
Consequently, there is an increasing interest in SDEs. The main interest in the field has

often referred to the existence and uniqueness of solutions as well as to study of their qual-
itative and quantitative properties, with a special emphasis on the analysis of various types
of Lp-estimate, almost sure estimate, stability and approximation. We refer the reader to
monographs [] by Henderson and Plaschko, [] by Kolmanovskii andMyshkis, and [] by
Mao, among others, and the literature cited therein.
It is well known that the problems of the solutions to SDEs have received considerable

attention from the theoretical point of view. One of the classical results and a subject for
inquiry in the study of SDEs is an existence and uniqueness theorem of the solution to
SDEs under some special conditions. For the work on the existence and uniqueness the-
orem of the SDEs, we refer the reader to [] by Cho et al., [] by Ren and Xia, [] by Wei
andWang, and [] by Mao. Now there is an extensive literature discussing SDEs with pth
moment estimate and stability of the solution (see [] by Govindan, [] by Kim, [] by Li
and Fu, and [] by Mao et al.).
Further, in the study of the solution for the SDEs, one question arises naturally: Does the

pth moment of the solution assure the solution for such SDEs? To the best of our knowl-
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edge, there are few results on this problem. It is also worth noting that the pth moment of
the solution for such SDEs has not been fully investigated, which remains an interesting
research topic.
Our study is essentially based on [] by Mao referring to the Lp-estimate and almost

surely asymptotic estimates of SDEs. In fact, we generalize Mao’s results by finding suf-
ficient conditions, which are easy to verify, guaranteeing Lp-estimate and almost surely
asymptotic estimates of the solutions of these equations.

2 Preliminary
Let | · | denote an Euclidean norm in Rn. If A is a vector or a matrix, its transpose is de-
noted by AT ; if A is a matrix, its trace norm is represented by |A| = √

trace(ATA). Let
t be a positive constant and (�,F ,P) throughout this paper, unless otherwise speci-
fied, be a complete probability space with a filtration {Ft}t≥t satisfying the usual con-
ditions (i.e., it is right continuous and Ft contains all P-null sets). Assume that B(t)
is an m-dimensional Brownian motion defined on a complete probability space, that
is, B(t) = (B(t),B(t), . . . ,Bm(t))T . Let Lp([a,b];Rd) denote the family of Rd-valued Ft-
adapted processes {f (t)}a≤t≤b such that

∫ b
a |f (t)|p dt <∞ a.s.

Consider the d-dimensional stochastic differential equations of Itô type

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t) on t ≤ t ≤ T (.)

with initial value x(t) = x, f : Rd × [t,T] → Rd , and g : Rd × [t,T] → Rd×m be Borel
measurable.
In [], the author presented a result stating that, for initial value x(t) = x, the pth mo-

ment of the unique solution x(t), t ≤ t ≤ T of equation (.) under Lipschitz condition
and linear growth condition will grow at most exponentially with exponent pα. We repro-
duce the result here.

Theorem . Let p ≥  and x ∈ Lp(�;Rd). Assume that there exists a constant α such
that for all (x, t) ∈ Rd × [t,T],

xT f (x, t) +
p – 


∣∣g(x, t)∣∣ ≤ α
(
 + |x|). (.)

Then

E
∣∣x(t)∣∣p ≤ (p–)/

[
 + E|x|p

]
exp

(
pα(t – t)

)
. (.)

3 Main results
The topic of our analysis is equation (.) with initial data x(t) = x. An {Ft}-adapted
process x(t) with values in Rd is said to be the solution to equation (.) if it satisfies the
initial condition and the corresponding stochastic integral equation holds a.s., i.e., for ev-
ery t ≥ t,

x(t) = x +
∫ t

t
f
(
x(s), s

)
ds +

∫ t

t
g
(
x(s), s

)
dB(s) on t ≤ t ≤ T .
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The basic existence and uniqueness theorem based on the Picard method of iterations
requires the global or, in a weakened version, Lipschitz condition and linear growth con-
dition for f and g (see [–]). Then there exists a unique a.s. continuous and adapted
solution x(t) to equation (.) satisfying E| supt≤t≤T x(t)| < ∞ for every T ≥ t under the
linear growth condition. Moreover, if x ∈ Lp(�;Rd), p ≥ , then E|x(t)|p < ∞ under the
monotone condition. Since our goal is to study Lp-estimate and almost surely asymptotic
estimate problems, we assume that there exists a unique solution x(t) to equation (.) un-
der non-Lipschitz condition and nonlinear growth condition (see [, ]). We also assume
that all the Lebesgue and Itô’s integrals employed further are well defined.
We start with the following Lp-estimate.

Theorem . Let p ≥  and x ∈ Lp(�;Rd). Assume that for all (x, t) ∈ Rd × [t,T],
{f (x(t), t)} ∈L([t,T];Rd), and {g(x(t), t)} ∈L([t,T];Rd), it follows that

xT f
(
x(t), t

) ∨ p – 


∣∣g(x(t), t)∣∣ ≤ κ
(
 +

∣∣x(t)∣∣), (.)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ() = , κ(u) > 
for u > . Then, for a pair of positive constants a and b such that κ(u) ≤ a + bu, we have

E
∣∣x(t)∣∣p ≤ (p–)/

[
 + E|x|p

]
exp

(
p(a + b)(t – t)

)
(.)

for all t ∈ [t,T].

Proof By Itô’s formula, we can derive that for t ∈ [t,T],

[
 +

∣∣x(t)∣∣]p/ = [
 +

∣∣x(t)∣∣]p/ + p
∫ t

t

[
 +

∣∣x(s)∣∣](p–)/xT (s)f (x(s), s)ds

+
p


∫ t

t

[
 +

∣∣x(s)∣∣](p–)/∣∣g(x(s), s)∣∣ ds

+
p(p – )



∫ t

t

[
 +

∣∣x(s)∣∣](p–)/∣∣xT (s)g(x(s), s)∣∣ ds

+ p
∫ t

t

[
 +

∣∣x(s)∣∣](p–)/xT (s)g(x(s), s)dB(s).

By condition (.), it is easy to see that

[
 +

∣∣x(t)∣∣] p
 ≤ 

p–


(
 + |x|p

)
+ p

∫ t

t

[
 +

∣∣x(s)∣∣] p–
 κ

(
 +

∣∣x(s)∣∣)ds

+ p
∫ t

t

[
 +

∣∣x(s)∣∣](p–)/xT (s)g(x(s), s)dB(s). (.)

Given that κ(·) is concave and κ() = , we can find a pair of positive constants a and b
such that κ(u) ≤ a+ bu for all u≥ . And for each number n≥ , define the stopping time

τn = T ∧ inf
{
t ∈ [t,T] :

∣∣x(t)∣∣ ≥ n
}
.
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Obviously, as n → ∞, τn ↑ T a.s. Moreover, it follows from (.) and the property of Itô’s
integral that

E
([
 +

∣∣x(t ∧ τn)
∣∣] p


) ≤ 

p–


[
 + E|x|p

]
+ p(a + b)E

∫ t∧τn

t

[
 +

∣∣x(s)∣∣] p
 ds

≤ 
p–


[
 + E|x|p

]
+ p(a + b)

∫ t

t
E
([
 +

∣∣x(s∧ τn)
∣∣] p


)
ds.

The Gronwall inequality yields

E
([
 +

∣∣x(t ∧ τn)
∣∣] p


) ≤ 

p–


[
 + E|x|p

]
ep(a+b)(t–t).

Letting n → ∞ yields

E
([
 +

∣∣x(t)∣∣] p

) ≤ 

p–


[
 + E|x|p

]
ep(a+b)(t–t) (.)

and the desired inequality follows. �

Let us now turn to considering the case of  < p < . This is rather easy if we note that
the Hölder inequality implies

E
∣∣x(t)∣∣p ≤ (

E
∣∣x(t)∣∣) p

 .

In other words, the estimate for E|x(t)|p can be done via the estimate for the second mo-
ment. For instance, we have the following corollary.

Corollary . Let  < p <  and x ∈ Lp(�;Rd). Assume that for all (x, t) ∈ Rd × [t,T],
{f (x(t), t)} ∈L([t,T];Rd), and {g(x(t), t)} ∈L([t,T];Rd), it follows that

xT f
(
x(t), t

) ∨ 

∣∣g(x(t), t)∣∣ ≤ κ

(
 +

∣∣x(t)∣∣), (.)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ() = , κ(u) > 
for u > . Then, for a pair of positive constants a and b such that κ(u) ≤ a + bu, we have

E
∣∣x(t)∣∣p ≤ [

 + E|x|
] p
 exp

(
p(a + b)(t – t)

)
(.)

for all t ∈ [t,T].

We now verify that if a nonlinear growth condition

∣∣f (x(t), t)∣∣ ∨ ∣∣g(x(t), t)∣∣ ≤ κ
(
 +

∣∣x(t)∣∣), (.)

with κ(·) is a concave nondecreasing function from R+ to R+ such that κ() = , κ(u) > 
for u >  is fulfilled, then condition (.) is satisfied with κ(u) = u

√
κ(u)∨ p–

 κ(u). In fact,
using (.) and the elementary inequality ab≤ a + b, one can derive that for any ε > ,

xT f (x, t)≤ |x|∣∣f (x, t)∣∣ = 
(√

ε|x|)(∣∣f (x, t)∣∣/√ε
)

≤ ε|x| + 
ε

∣∣f (x, t)∣∣ ≤ ε|x| + 
ε
κ

(
 +

∣∣x(t)∣∣).
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Letting ε =
√

κ( + |x(t)|) yields

xT f (x, t)≤ (
 +

∣∣x(t)∣∣)
√

κ
(
 +

∣∣x(t)∣∣).

Consequently,

xT f (x, t)∨ (p – )


∣∣g(x, t)∣∣ ≤ (
 + |x|)

√
κ

(
 + |x|) ∨ (p – )


κ

(
 + |x|).

We therefore obtain the following useful corollary.

Corollary . Let p ≥  and x ∈ Lp(�;Rd). Assume that the nonlinear growth condition
(.) holds. Then inequality (.) holds with

κ
(
 + |x|) = (

 + |x|)
√

κ
(
 + |x|) ∨ (p – )


κ

(
 + |x|).

We now apply this result to show one of the important properties of the solution.

Theorem . Let p ≥  and x ∈ Lp(�;Rd). Assume that the nonlinear growth condition
(.) holds for all (x, t) ∈ Rd × [t,T]. Then

E
∣∣x(t) – x(s)

∣∣p ≤
[


C(α)

p
 +Cp–β

p

[
 + E|x|p

]
ep(a+b)(T–t)

]
(t – s)

p
 ,

where C = ((T – t))
p
 + 

 (p(p – ))
p
 . In particular, the pth moment of the solution is

continuous on [t,T].

Proof Applying the elementary inequality |a+b|p ≤ p–(|a|p + |b|p), we can easily see that

E
∣∣x(t) – x(s)

∣∣p ≤ p–E
∣∣∣∣
∫ t

s
f
(
x(r), r

)
dr

∣∣∣∣
p

+ p–E
∣∣∣∣
∫ t

s
g
(
x(r), r

)
dB(r)

∣∣∣∣
p

.

Using the Hölder inequality, the moment inequality ([], Theorem ..), and condition
(.), one can show that

E
∣∣x(t) – x(s)

∣∣p ≤ (
(t – s)

)p–E
∫ t

s

∣∣f (x(r), r)∣∣p dr

+


(
p(p – )

) p
 (t – s)

p–
 E

∫ t

s

∣∣g(x(r), r)∣∣p dr

≤ C(t – s)
p–
 E

∫ t

s

(
κ

(
 +

∣∣x(r)∣∣)) p
 dr,

where C = ((T – t))
p
 + 

 (p(p – ))
p
 . Given that κ(·) is concave and κ() = , we can

find a pair of positive constants α and β such that κ(u) ≤ α + βu for all u≥ . So we have

E
∣∣x(t) – x(s)

∣∣p ≤ 

C(α)

p
 (t – s)

p
 +



C(β)

p
 (t – s)

p–


∫ t

s
E
(
 +

∣∣x(r)∣∣) p
 dr.
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Substituting this into (.) yields that

E
∣∣x(t) – x(s)

∣∣p ≤
(


C(α)

p
 +Cp–β

p

[
 + E|x|p

]
ep(a+b)(T–t)

)
(t – s)

p
 ,

which is the required inequality. �

Theorem . Let p ≥  and x ∈ Lp(�;Rd). Assume that the nonlinear growth condition
(.) for all (x, t) ∈ Rd × [t,T]. Then

E
(
sup

t≤s≤t

∣∣x(s)∣∣p) ≤ CeCp–β
p
 (t–t)

for all t ≤ t ≤ T ,where C = p–(T – t)
p–
 [(T – t)

p
 + ( p

(p–) )
p
 ] and C = +p–E|x|p +


C(α)

p
 (T – t).

Proof Using the Hölder inequality, the moment inequality ([], Theorem ..), and con-
dition (.), one can show that

E
(
sup

t≤s≤t

∣∣x(s)∣∣p) ≤ p–E|x|p +CE
∫ t

t

(
κ

(
 +

∣∣x(s)∣∣)) p
 ds,

where C = p–(T – t)
p–
 [(T – t)

p
 + (p/(p – ))

p
 ]. From the definition of κ(·), we can

find a pair of positive constants α and β such that κ(u) ≤ α + βu for all u≥ . So we have

E
(
sup

t≤s≤t

∣∣x(s)∣∣p) ≤ p–E|x|p + 

C(α)

p
 (T – t) +Cp–β

p
 E

∫ t

t

(
 +

∣∣x(s)∣∣p)ds.

Hence

 + E
(
sup

t≤s≤t

∣∣x(s)∣∣p) ≤ C +Cp–β
p


∫ t

t
E
(
 + sup

t≤r≤s

∣∣x(r)∣∣p)ds.

By the Gronwall inequality one can see that

 + E
(
sup

t≤s≤t

∣∣x(s)∣∣p) ≤ CeCp–β
p
 (t–t),

which is the required inequality. �

Let us now consider a d-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t) (.)

on t ∈ [t,∞) with initial value x(t) = x ∈ L(�,Rd). Assume that the equation has a
unique global solution x(t) on t ∈ [t,∞). Moreover, we shall impose the condition: There
is a concave nondecreasing function κ(·) from R+ to R+ such that, for all (x, t) ∈ Rd ×
[t,∞),

xT f
(
x(t), t

) ∨ 

∣∣g(x(t), t)∣∣ ≤ κ

(
 +

∣∣x(t)∣∣). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/395
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Let  < p≤ . In view of Theorem . and Corollary ., we know that the pth moment of
the solution satisfies

E
∣∣x(t)∣∣p ≤ [

 + E|x|
] p
 exp

(
p(a + b)(t – t)

)

for all t ≥ t. This means that the pth moment will grow at most exponentially with expo-
nent p(a + b). This can also be expressed as

lim sup
t→∞


t
log

(
E
∣∣x(t)∣∣p) ≤ p(a + b). (.)

The left-hand side of (.) is called the pth moment Lyapunov exponent, and (.)
shows that the pth moment Lyapunov exponent should not be greater than p(a + b).
In what follows, we shall establish the asymptotic estimate for the solution almost surely.
More accurately, we shall estimate

lim sup
t→∞


t
log

∣∣x(t)∣∣

almost surely, which is called the sample Lyapunov exponent.

Theorem . Under condition (.), the sample Lyapunov exponent of the solution of
equation (.) should not be greater than (a + b), that is,

lim sup
t→∞


t
log

∣∣x(t)∣∣ ≤ (a + b)

almost surely.

Proof By Itô’s formula and condition (.), we obtain

log
(
 +

∣∣x(t)∣∣)

= log
(
 + |x|

)
+ 

∫ t

t


 + |x(s)|

(
xT (s)f

(
x(s), s

)
+


∣∣g(x(s), s)∣∣

)
ds

– 
∫ t

t

|xT (s)g(x(s), s)|
( + |x(s)|) ds +M(t)

≤ log
(
 + |x|

)
+ 

∫ t

t

κ( + |x(s)|)
 + |x(s)| ds – 

∫ t

t

|xT (s)g(x(s), s)|
( + |x(s)|) ds +M(t),

where

M(t) = 
∫ t

t

xT (s)g(x(s), s)
 + |x(s)| dB(s).

Furthermore, for every integer n≥ t, using the exponential martingale inequality (see [],
Theorem ..) on sees that

P
{

sup
t≤t≤n

[
M(t) – 

∫ t

t

|xT (s)g(x(s), s)|
( + |x(s)|) ds

]
>  logn

}
≤ 

n
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/395
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An application of the Borel-Cantelli lemma then yields that for almost all ω ∈ �, there is
a random integer n = n(ω)≥ t +  such that

sup
t≤s≤t

[
M(t) – 

∫ t

t

|xT (s)g(x(s), s)|
( + |x(s)|) ds

]
≤  logn

if n≥ n. That is,

M(t) ≤  logn + 
∫ t

t

|xT (s)g(x(s), s)|
( + |x(s)|) ds (.)

for all t ≤ t ≤ n, n ≥ n almost surely. From inequality (.) and the definition of the
function κ(·), we deduce that

log
(
 +

∣∣x(t)∣∣) ≤ log
(
 + |x|

)
+ (a + b)(t – t) +  logn

for all t ≤ t ≤ n, n ≥ n almost surely. Therefore, for almost all ω ∈ �, if n ≥ n, n –  ≤
t ≤ n,


t
log

(
 +

∣∣x(t)∣∣) ≤ 
n – 

[
log

(
 + |x|

)
+ (a + b)(t – t) +  logn

]
.

This implies

lim sup
t→∞


t
log

(
 +

∣∣x(t)∣∣) ≤ lim sup
t→∞


t

log
(
 +

∣∣x(t)∣∣)

≤ lim sup
t→∞


(n – )

[
log

(
 + |x|

)
+ (a + b)(t – t) +  logn

]

= (a + b)

almost surely, which is the required inequality. �
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