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Abstract
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1 Introduction
We use the following notation. Let N denote the set of positive integers. Let C be complex
plane and D be a domain in C. For z ∈ C and r > , �(z, r) = {z | |z – z| < r}, �′(z, r) =
{z |  < |z – z| < r} and � = �(, ). Let n(D, f ) denote the number of poles of f (z) in D
(counting multiplicities) and n(D, f ) denote the number of poles of f (z) inD (not counting
multiplicities).Wewrite fn

χ⇒ f inD to indicate that the sequence {fn} converges to f in the
spherical metric uniformly on compact subsets of D and fn ⇒ f in D if the convergence is
in the Euclidean metric. For f meromorphic in D, set

f #(z) :=
|f ′(z)|

 + |f (z)| and S(D, f ) :=

π

∫∫
D

[
f #(z)

] dxdy.
The Ahlfors-Shimizu characteristic is defined by T(r, f ) =

∫ r


S(t,f )
t dt. Let T(r, f ) denote

the usual Nevanlinna characteristic function. Since T(r, f ) –T(r, f ) is bounded as a func-
tion of r, we can replace T(r, f ) with T(r, f ) in this paper.
Recall that an elliptic function [] is a meromorphic function h defined in C for which

there exist two nonzero complex numbers ω and ω with ω/ω not real such that h(z +
ω) = h(z +ω) = h(z) for all z in C.
Recall that a family F of functions meromorphic in D is said to be quasinormal in D

[] if from each sequence {fn} ⊂ F one can extract a subsequence {fnk } which converges
locally uniformly with respect to the spherical metric inD\E, where the set E (whichmay
depend on {fnk }) has no accumulation points in D. If E can always be chosen to satisfy
|E| ≤ ν , F is said to quasinormal of order ν in D. Thus a family is quasinormal of order 
in D if and only if it is normal in D. The family F is said to be (quasi)normal at z ∈D if it
is (quasi)normal in some neighborhood of z. Thus F is quasinormal in D if and only if it
is quasinormal at each point z ∈D. On the other hand, F fails to be quasinormal of order
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ν in D precisely when there exist points z, z, . . . , zν+ in D and a sequence {fn} ⊂ F such
that no subsequence of {fn} is normal at zj (j = , , . . . ,ν + ).
In , Nevo et al. proved the following quasinormal criterion.

TheoremA [, Theorem ] Let F be a family of meromorphic functions in D, all of whose
zeros have multiplicity at least k + . If there exists a holomorphic function H univalent in
D such that f (k)(z) �=H ′(z) for all f ∈F and all z ∈D, thenF is quasinormal of order  in D.

For k ≥ , we extend Theorem A in this paper. In fact, we obtain the following result.

Theorem . Let k ≥  be an integer, and let F be a family of meromorphic functions in
D, all of whose zeros have multiplicity at least k + . Let H be a nonconstant meromorphic
function. Suppose that there exists ν ∈ N such that for each a∗ ∈ C, n(D, 

H(z)–a∗ ) ≤ ν . If
f (k)(z) �=H ′(z) for all f ∈F and all z ∈D, then F is quasinormal of order ν in D.

Remark . For k ≥ , TheoremA is the special case of Theorem .with ν =  andH ′(z) �=
,∞ for all z ∈D. Unfortunately, the restricted condition thatH ′(z) �= ,∞ largely restricts
the applications of Theorem A, so it is important to remove the condition’s restriction.

For convenience, we give a generalized form of Theorem ..

Proposition . Let k ≥  be an integer, and let {fn} be a family of meromorphic functions
in D, all of whose zeros havemultiplicity at least k+. Let H be a nonconstantmeromorphic
function, and there exists ν ∈ N such that for each a∗ ∈ C, n(D, 

H(z)–a∗ ) ≤ ν . Let {hn} be a
family of meromorphic functions in D such that hn and H ′ have the same zeros and poles
with the same multiplicity, and hn(z)

χ⇒ H ′(z) in D. If f (k)n (z) �= hn(z) for all n ∈ N and all
z ∈D, then {fn} is quasinormal of order ν in D.
Moreover, for each subsequence {fnk } of {fn}, there exist a subsequence of {fnk } (still denoted

by {fnk }) and a corresponding point set E which has no accumulation points in D such that:
() fnk (z)

χ⇒ f (z) in D \ E, where f (z) is meromorphic or identically infinite there;
() for each ã ∈ E, H(ã) �=∞ and no subsequence of {fnk } is normal at ã;
() for each ã ∈ E, there exist rã >  and Nã >  such that for sufficiently large k,

n(�(ã, rã), 
fnk

) <Nã, where rã and Nã only depend on ã; and

() for each ã ∈ E, f (z) =
∫ z
ã

∫ ζ
ã · · · ∫ ζk–

ã H ′(ζk) dζk dζk– · · · dζ in D \ E.

The value distribution theory of meromorphic functions occupies one of the central
places in complex analysis which now has been applied to complex dynamics, complex
differential and functional equations, Diophantine equations, and others.
In his excellent paper [], Hayman studied the value distribution of certain meromor-

phic functions and their derivatives under various conditions. Among other important
results, he proved that if f (z) is a transcendental meromorphic function in the plane, then
either f (z) assumes every finite value infinitely often, or every derivative of f (z) assumes
every finite nonzero value infinitely often. This result is known as Hayman’s alternative.
Thereafter, the value distribution of derivatives of transcendental functions continued to
be studied.
In , Bergweiler and Eremenko proved the following result.
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Theorem B [, Theorem ] Let f be a meromorphic function of finite order in C. If f has
infinitely many multiple zeros, then f ′ assumes every finite nonzero value infinitely often.

In , Pang et al. obtained the following result.

Theorem C [, Theorem ] Let f be a transcendental meromorphic function in C, all but
finitely many of whose zeros are multiple, and let R ( �≡ ) be a rational function. Then f ′ –R
has infinitely many zeros.

R is a small function compared with f in Theorem C. Specifically, T(r,R) = o{T(r, f )} as
r → ∞ in Theorem C. A natural problem arises: What can we say if the rational function
R in Theorem C is replaced by a more general small function α(z)? In this direction, we
obtain the following result.

Theorem. Let k ≥  be an integer, let f (z) be ameromorphic function inC,and letα(z) =
R(z)h(z) ( �≡ ), where h(z) is an elliptic function and R(z) is a rational function. Suppose
that all but finitely many zeros of f have multiplicity at least k +  and T(r,α) = o{T(r, f )}
as r → ∞. Then the equation f (k)(z) = α(z) has infinitely many solutions (including the
possibility of infinitely many common poles of f (z) and α(z)).

2 Preliminary lemmas
Lemma . [, Corollary ] If h(z) is a nonconstant elliptic function with primitive periods
ω, ω, where ω/ω is not real, then T(r,h) = Ar( + o()) as r → ∞, where A >  is a
constant.

Lemma . Let F be a family of functions meromorphic in D, all of whose zeros have
multiplicity at least k, and suppose that there exists A ≥  such that |f (k)(z)| ≤ A whenever
f (z) = . Then if F is not normal at z, there exist, for each  ≤ α ≤ k,
(a) points zn, zn → z;
(b) functions fn ∈F ; and
(c) positive numbers ρn → 

such that ρ–α
n fn(zn +ρnζ ) = gn(ζ )

χ⇒ g(ζ ) inC,where g is a nonconstant meromorphic func-
tion in C such that g#(ζ )≤ g#() = kA + . In particular, g has order at most .

This is the local version of [, Lemma ] (cf. [, Lemma ]; [, pp.-]). The proof
consists of a simple change of variable in the result cited from []; cf. [, pp.-].

Lemma . [, Lemma .] Let {fn} be a family of functions meromorphic in �(z, r).
Suppose that fn

χ⇒ f in �′(z, r), where f is a nonconstant meromorphic function or f ≡ ∞
in �′(z, r). If there exists M >  such that for each n, n(�(z, r), 

fn ) <M, then there exists
M >  such that S(�(z, r/), fn) <M.

Lemma . [, Lemma ] Let k be a positive integer, let {fn} be a family of meromorphic
functions in D, and let {ψn} be a family of holomorphic functions in D such that ψn ⇒ ψ ,
where ψ(z) �= ,∞ in D. If for all n ∈N and all z ∈D, fn(z) �=  and f (k)n (z) �=ψn(z), then {fn}
is normal in D.

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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Lemma . Let {aj} be a sequence in D which has no accumulation points in D, and let
{ψn} be a family of holomorphic functions in D such thatψn ⇒ ψ in D,whereψ �= ,∞ in D.
Let {fn} be a family of meromorphic functions in D, all of whose zeros have multiplicity at
least k + , such that f (k)n (z) �=ψn(z) for all n ∈ N and all z ∈D. Suppose that:
(a) no subsequence of {fn} is normal at a;
(b) fn(z)

χ⇒ f (z) in D \ {aj}∞j=.
Then
(c) there exists r >  such that fn has a single (multiple) zero in �(a, r) for sufficiently

large n;
(d) there exists r >  such that for each  < r < r, fn has a single simple pole in �(a, r)

for sufficiently large n; and
(e) f (z) =

∫ z
a

∫ ζ
a

· · · ∫ ζk–
a

ψ(ζk) dζk dζk– · · · dζ for z ∈ D \ {aj}∞j=. Equivalently,
f extends to an analytic function in D \ {aj}∞j= such that f (k)(z) = ψ(z) and f (j)(a) = 
for j = , , , . . . ,k – .

Remark . Since Lemma . is not stated explicitly in [], let us indicate how it follows
from the results of that paper. Suppose first that (c) has been shown to hold. By Lemma 
in [], (d) and (e) hold. Next, suppose that (c) do not hold. Similar to the treatment in
Case  (pp.-) of the proof of Theorem  in [], we can finally derive a contradiction.

Lemma . Let k be a positive integer, and let {fn} be a family of meromorphic functions
in D, all of whose zeros have multiplicity at least k + . Let {hn} be a family of meromorphic
functions in D such that hn(z)

χ⇒ H ′(z) in D, where H is a holomorphic univalent function
in D. If f (k)n (z) �= hn(z) for all n ∈N and all z ∈D, then {fn} is quasinormal of order  in D.

Lemma . can be proved by an exactly analogous argument as in the proof of Theorem 
in []. In fact, there is no essential difference between Lemma . and Theorem  in [],
so we do not give the proof of Lemma ..

Lemma . [, Lemma ] Let R be a nonconstant rational function satisfying R′(z) �= 
in C. Then either R(z) = az + b or R(z) = a

(z+c)n + b, where n ∈N and a (�= ),b, c ∈ C.

Lemma . [, Theorem ] Let k be a positive integer, let f be a transcendental meromor-
phic function in C, and let R ( �≡ ) be a rational function. If all but finitely many zeros of f
have multiplicity at least k + , then f (k) – R has infinitely many zeros.

Remark . The proof of Lemma . is based, quite naturally, on a combination of ideas
from [] and []. In fact, fully understanding the ideas and methods in [] and [], one
can give the proof of Lemma . without difficulty.

Lemma . [, Lemma ] Let k and l be positive integers, and let R(z) be a rational func-
tion, all of whose zeros have multiplicity at least k. If R(k)(z) �= z–l in C, then R(z) is a con-
stant.

Lemma . [, Lemma ] Let k, l be positive integers with l ≥ k + , let {ϕn} be a family
of holomorphic functions, and let {fn} be a family of meromorphic functions, all of whose
poles are multiple and all of whose zeros have multiplicity at least k + . Suppose that:

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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() fn and ϕn are defined in �Rn , where the positive sequence Rn increases to ∞;
() ϕn ⇒  in C;
() f (k)n (z) �= ϕn(z)/zl for z ∈ �Rn ;
() fn

χ⇒ f in C; and
() f () = .

Then f has a zero in �.

Lemma . Let f be a nonconstant meromorphic function of finite order inC, all of whose
zeros have multiplicity at least k + . If f (k)(z) �=  in C, then

f (z) =

k!
(z – a)k+

z – b

for some a and b ( �= a) in C.

This follows from results in [], specifically Lemma  (whose proof depends in an es-
sential fashion on Corollary  of []) and Lemma . As an immediate consequence of
Lemma ., we have the following result, which appears as Lemma  of [].

Lemma. [, Lemma ] Let k be a positive integer, and let f be ameromorphic function
of finite order in C, all of whose poles are multiple and whose zeros all have multiplicity at
least k + . If f (k)(z) �= c for some constant c �=  and all z ∈C, then f (z) is a constant.

3 Auxiliary lemmas
Lemma . Let {fn} and {ψn} be families of meromorphic functions in D, and let f (z) and
ψ(z) be meromorphic functions in D. Suppose that:
(a) fn(z)

χ⇒ f (z) and ψn(z)
χ⇒ ψ(z) in D, and

(b) f (k)n (z) �=ψn(z) in D.
Then, either f (k)(z) ≡ ψ(z) or f (k)(z) �=ψ(z) in D.

Proof Suppose that f (k)(z) �≡ ψ(z) in D. Set A := f –(∞) ∪ ψ–(∞) ∪ (f (k) –ψ)–(). By (a)
and (b), we have

∞ �= 
f (k)n –ψn

⇒ 
f (k) –ψ

in D \A.

Since 
f (k)n –ψn

is holomorphic in D and A has no accumulation points in D, we have


f (k)n –ψn

⇒ 
f (k) –ψ

in D. (.)

Thus 
f (k)–ψ

is a holomorphic function in D and then f (k) –ψ �=  in D.
In order to show that f (k) �= ψ in D, we need only show that f and ψ have no common

poles in D. Otherwise, we assume that z ∈ D is a pole of orderm of f and a pole of order
m of ψ . Setm :=max{m + k,m}. Obviously, z is a zero of 

f (k)–ψ
of order at mostm.

By (a) and Hurwitz’ theorem, there exists δ∗ such that �(z, δ∗) ⊂ D and for each δ ∈
(, δ∗), fn and bn have at least m and m (counting multiplicities) poles respectively in
�(z, δ) for sufficiently large n. By (b), fn and ψn have no common poles in �(z, δ), and

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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hence f (k)n –ψn has at least m + k +m poles (counting multiplicities) in �(z, δ). Since δ

can be made arbitrarily small, z is a zero of 
f (k)–ψ

of order at least m + k +m by (.).
Thusm + k +m >m. This is a contradiction. �

Lemma . Let k be a positive integer, and let {fn} be a family of meromorphic functions in
�, all of whose zeros have multiplicity at least k + . Let {bn} be a sequence of meromorphic
functions in � such that bn(z)

χ⇒ b(z) in �, where b ( �≡ ) is a meromorphic function and
b() = . Suppose that:
(a) b and bn have the same zeros and poles with the same multiplicity;
(b) for all n ∈N and all z ∈D, f (k)n (z) �= bn(z);
(c) there exists points zn in � such that fn(zn) =  and zn → ; and
(d) fn(z)

χ⇒ f (z) in �′, where f (z) is a meromorphic function in �′.
Then f (k)(z) ≡ b(z) in �′.

Proof Set Fn(z) := f (k)n (z)
bn(z) . By (a) and (b), f (k)n () �= bn() = , and hence Fn() = ∞. Since all

zeros of {fn(z)} havemultiplicity at least k+, we have fn() �= .Hence zn �=  and Fn(zn) = 
for sufficiently large n. Since Fn() = ∞ and Fn(zn) =  for sufficiently large n, {Fn(ζ )} is not
equicontinuous at , and hence { f (k)n (z)

bn(z) – } is not normal at .
By Lemma ., we have either f (k)(z) ≡ b(z) or f (k)(z) �= b(z) in �′. Suppose that f (k)(z) �=

b(z) in �′. By the assumptions, there exists δ >  such that f (z) has no poles on (, δ) and
b(z) has no zeros on (, δ). Thus, we have

∞ �= 
f (k)n (z)
bn(z) – 

⇒ 
f (k)(z)
b(z) – 

, z ∈ (, δ). (.)

By the maximum principle, (.) holds in �(, δ), and then { f (k)n (z)
bn(z) – } is normal at . This

is a contradiction. Thus f (k)(z) ≡ b(z) in �′. �

Lemma . Let k be a positive integer, let {fn} be a family of meromorphic functions in
D, and let {hn} be a family of meromorphic functions in D such that hn

χ⇒ h in D, where
h �≡ ,∞. If all n ∈N and all z ∈ D, fn(z) �=  and f (k)n (z) �= hn(z), then {fn} is normal in D.

Proof By Lemma ., it suffices to prove that {fn} is normal at points which h has poles or
zeros. Without loss of generality, we assume that D = �, h(z) = zlb(z), where b(z) �= ,∞
in � and l ( �= ) is an integer. Then {fn} is normal in �′.
Suppose that {fn} is not normal at . Taking a subsequence and renumbering, we may

assume that no subsequence of {fn} is normal at . Since fn(z) �=  in �, there exists r > 
such that �r ⊂ � and fn ⇒  in �′

r . By the argument principle, we have, for sufficiently
large n,

n
(
r,


f (k)n – hn

)
– n

(
r, f (k)n – hn

)
=


π i

∫
|z|=r

f (k+)n – h′
n

f (k)n – hn
dz =


π i

∫
|z|=r

h′

h
dz = l.

Since f (k)n (z) �= hn(z), we have –n(r, f (k)n – hn) = l. Thus l <  and fn has poles (otherwise
fn

χ⇒ ∞ in �′) which are different from the poles of hn. Hence n(r, f (k)n – hn) > –l. This is a
contradiction. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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Lemma . Let k be a positive integer, and let {fn} be a family of meromorphic functions
in D, all of whose zeros have multiplicity at least k +. Let {ψn} be a family of meromorphic
functions in D such that ψn

χ⇒ ψ , where ψ(z) �≡ ,∞ in D. If f (k)n �=ψn for all n ∈N and all
z ∈D, then {fn} is quasinormal in D.

Proof It suffices to show that {fn} is quasinormal in a neighborhood of each point ofD. Let
p ∈D. There exists t >  such that �(p, t) ⊂ D and ψ is holomorphic and does not vanish
in �′(p, t). By Lemma ., {fn} is quasinormal in �′(p, t).
Suppose now that {fn} is not quasinormal at p. Then there exist points zj ∈ �′(p, δ)

(j = , , . . .) and a subsequence of {fn} (still denoted by {fn}) such that zj → p and no subse-
quence of {fn} is normal at any zj, j = , , . . . . Set E := {zj : j = , , . . .}. Taking a subsequence
of {fn} (still denoted by {fn}), we may assume that fn

χ⇒ H in �′(p, δ) \E. By Lemma ., we
have H(k) ≡ ψ and H(zj) = . It follows that H is holomorphic in �′(p, t) and H(k) ≡ ψ

there. Moreover, since ψ has no essential singularity at p, the same is true of H . But
that H(zj) =  for j = , , . . . implies that H ≡ , and hence H (k) ≡ , which contradicts
H (k) ≡ ψ �≡ . �

Lemma . Let k and l be positive integers, and let R be a rational function. If R(k)(z) �= zl

for all z ∈ C, then

R(z) =
∏n++l

i= (z – αi)
(l + k)(l + k – ) · · · (l + )(z – β)n+–k

, (.)

where n (≥ k – ) is an integer and αi,β ∈ C ( ≤ i≤ l + n + ).

Proof Obviously, (R(k–)(z) – zl+
l+ )

′ �= . Then R(k–)(z) – zl+
l+ is a nonconstant rational func-

tion. By Lemma .,

R(k–)(z) =
zl+

l + 
+ az + b or R(k–)(z) =

zl+

l + 
+

a
(z + c)n

+ b,

where n (≥ k) is an integer and a (�= ),b, c ∈ C. In fact, if R(k–)(z) = zl+
l+ + a

(z+c)n + b, then
z = –c is a pole of R(z) of order at least k, and hence n ≥ k. Now, we have

R(z) =
zl+k

(l + k) · · · (l + )
+ Pk(z) or R(z) =

zl+k

(l + k) · · · (l + )
+

c
(z + c)n+–k

+ Pk–(z),

where Pk(z) is a polynomial of degree k, Pk–(z) is a polynomial of degree at most k – ,
and c is a constant. Thus R(z) has the following form:

R(z) =
∏n++l

i= (z – αi)
(l + k)(l + k – ) · · · (l + )(z – β)n+–k

,

where n (≥ k – ) is an integer and αi,β ∈C (≤ i≤ l + n + ). �

Lemma . Let d and k (≥ ) be integers, and let f be a transcendental meromorphic
function, all of whose zeros have multiplicity at least k + . Set g(z) := f (z)

zd with g := f if

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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d = . If limr→∞ T(r,f )
r = ∞, then there exist points an → ∞ and positive numbers δn → 

such that

f (an)
adn

→ ,
f (k)(an)
adn

→ ∞ and S
(
�(an, δn), g

) → ∞.

Proof By standard results in Nevanlinna theory, T(r, f ) = T(r, zdg) ≤ T(r, g) +T(r, zd) and
T(r, zd) =O(log r) as r → ∞. Thus, limr→∞ T(r,g)

r =∞, and then limr→∞ T(r,g)
r =∞.

We claim that there exist tn → ∞ and εn →  such that

S
(
�(tn, εn), g

)
=


π

∫∫
|z–tn|<εn

[
g#(z)

] dxdy→ ∞. (.)

Otherwise there would exist ε >  and M >  such that S(�(z, ε), g) < M for all z ∈ C.
From this follows

S(r, g) =

π

∫∫
|z|<r

[
g#(z)

] dxdy =O
(
r

)
.

Obviously, T(r, g) =
∫ r


S(t)
t dt =O(r). This contradicts the fact that limr→∞ T(r,g)

r =∞.
By (.), there exist points bn such that |bn – tn| < εn and g#(bn) → ∞. Set gn(z) := g(z +

bn). Clearly, g#n() = g#(bn) → ∞, and hence {gn} is not normal at . Obviously, all zeros
of gn(z) have multiplicity at least k +  in � for sufficiently large n. Using Lemma . for
α = k –/, there exist points zn → , positive numbers ρn → , and a subsequence of {gn}
(still denoted by {gn}) such that Gn(ζ ) = gn(zn+ρnζ )

ρk–/n

χ⇒ G(ζ ) in C, where G is a nonconstant
meromorphic function in C, all of whose zeros have multiplicity at least k + .
Since G(k)(ζ ) is not a constant (otherwise, either G(ζ ) is a constant, or the zero of G(ζ )

have multiplicity at most k), we may assume ζ is not a zero or pole of G(k)(ζ ). Set an :=
zn + ρnζ + bn. Now we have

g(i)(an) = g(i)n (zn + ρnζ) = ρ
k– 

 –i
n G(i)

n (ζ),

where i = , , . . . ,k. Obviously, an → ∞, g(k)(an) → ∞, and g(i)(an) →  for i = , , . . . ,
k – .
Now, we have f (an)

adn
= g(an)→  and

f (k)(an)
adn

=
(zdg(z))(k)

adn

∣∣∣∣
z=an

=
m=k∑
m=

Tmam–k
n g(m)(an) → ∞,

where Tm (m = , , . . . ,k) are constants and Tk �= . Set δn := εn + |an – tn|. Obviously,
δn →  and �(tn, εn) ⊂ �(an, δn), and hence S(�(an, δn), g) → ∞. �

Lemma . Let k be a positive integer, and let {fn} be a family of meromorphic functions
in D, all of whose poles are multiple and whose zeros all have multiplicity at least k + . Let
{hn} be a family of meromorphic functions in D such that hn

χ⇒ h in D, where h ( �= ) is a
holomorphic function in D. If f (k)n (z) �= hn(z) for each n ∈ N and z ∈ D, then {fn} is normal
in D.
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Proof Suppose that {fn} is not normal at a point z∗ ∈ D. Then by Lemma ., there exist
points zn → z∗, positive numbers ρn →  and a subsequence of {fn} (still denoted by {fn})
such that gn(ζ ) = fn(zn+ρnζ )

ρkn

χ⇒ g(ζ ) in C, where g is a nonconstant meromorphic function
in C, all of whose poles are multiple and whose zeros all have multiplicity at least k + .
In particular, g has order at most . Obviously, g(k)n (ζ ) = f (k)n (zn + ρnζ ) �= hn(zn + ρnζ ) and
hn(zn + ρnζ ) ⇒ h(z∗) ( �= ) in C. By Lemma ., we have either g(k)(z) ≡ h(z∗) or f (k)(z) �=
h(z∗) in C. Firstly, suppose that g(k)(z) ≡ h(z∗) in C. It follows that g(z) = akzk + ak–zk– +
· · ·+ az + a. We arrive at a contradiction as g(z) is nonconstant and all zeros of g(z) have
multiplicity at least k + . Secondly, suppose that g(k)(z) �= h(z∗) in C. By Lemma ., then
g(z) is a constant. A contradiction. �

Lemma . Let k be a positive integer, and let {fn} be a family of meromorphic functions
in D, all of whose poles are multiple and whose zeros all have multiplicity at least k + . Let
{hn} be a family of meromorphic functions in D such that hn

χ⇒ h in D, where h ( �= ) is a
meromorphic function in D. Suppose that h and hn have the same poles, all with the same
multiplicity. If f (k)n (z) �= hn(z) for all n ∈N and all z ∈ D, then {fn} is normal in D.

Lemma . can be proved by an exactly analogous argument as in the proof of Theorem 
in []. To facilitate the reading, Lemma . was proved in this paper.

Lemma . Let k ≥  be an integer, and let {fn} be a family of meromorphic functions in
D, all of whose zeros have multiplicity at least k + . Let {hn} be a family of meromorphic
functions in D such that hn(z)

χ⇒ h(z) in D, where h ( �≡ ,∞) is a meromorphic function.
Let E ⊂D be a set which has no accumulation points in D. Suppose that:

(∗a) h and hn have the same zeros and poles with the same multiplicity;
(∗b) for all n ∈N and all z ∈D, f (k)n (z) �= hn(z);
(∗c) for each ã ∈ E, no subsequence of {fn} is normal at ã; and
(∗d) fnk

χ⇒ f (z) in D \ E, where f (z) is meromorphic or identically infinite there.

Then

(∗e) for each ã ∈ E, h(ã) �=∞;
(∗f ) for each ã ∈ E, there exist rã >  and Nã >  such that for sufficiently large n,

n(�(ã, rã), 
fn ) <Nã, where rã and Nã only depend on ã; and

(∗g) for each ã ∈ E, f (z) =
∫ z
ã

∫ ζ
ã · · · ∫ ζk–

ã h(ζk) dζk dζk– · · · dζ in D \ E.

4 Proof of Lemma 3.8
Proof Since normality is a local property, by Lemma ., we only need to prove that {fn} is
normal at every pole of h(z). Making standard normalizations, we may assume D =� and

h(z) =

zl

+
a–l+
zl–

+ · · · = φ(z)
zl

(z ∈ �),

where l is a positive integer, φ() = , and φ(z) �= ,∞ for all z ∈ �.
Set hn(z) := φn(z)

zl . Since h and hn have the same poles, all with the same multiplicity and
hn

χ⇒ h in D, we have φn(z) ⇒ φ(z) in �.
Clearly, it is enough to show that {fn} is normal at z = . Suppose, on the contrary, that

{fn} is not normal at . By Lemma ., {fn} is normal in �′. Taking a subsequence and

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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renumbering, we may assume that no subsequence of {fn} is normal at . Our goal is to
obtain a contradiction in the sequel.
We distinguish two cases.
Case . ≤ l ≤ k.
By Lemma ., there exist points zn → , positive numbers ρn →  and a subsequence

of {fn} (still denoted by {fn}) such that

Fn(ζ ) =
fn(zn + ρnζ )

ρk–l
n

χ⇒ F(ζ ) in C,

where F(ζ ) is a nonconstant meromorphic function in C. By Hurwitz’s theorem, all poles
of F(ζ ) are multiple and all zeros of F(ζ ) have multiplicity at least k + .
Taking a subsequence and renumbering, we may assume zn/ρn → α as n → ∞, where

α ∈ C or α =∞. Again we distinguish two subcases.
Subcase .. zn/ρn → ∞.
Set gn(ζ ) := zl–kn fn(zn + znζ ) = zl–kn fn(zn( + ζ )). Obviously, all poles of gn(ζ ) are multiple

and all zeros of gn(ζ ) have multiplicity at least k + ,

g(k)n (ζ ) = zlnf
(k)
n

(
zn(+ζ )

) �= φn(zn( + ζ ))
( + ζ )l

and
φn(zn( + ζ ))

( + ζ )l
χ⇒ 

( + ζ )l
in C.

Then, by Lemma ., the family {gn} is normal in �. Taking a subsequence and renumber-
ing, we may assume that gn(ζ )

χ⇒ g(ζ ) in �. Obviously, all zeros of g(ζ ) have multiplicity
at least k +  in �.
We claim that g(ζ ) is a meromorphic function in �. Otherwise, suppose that g(ζ ) ≡ ∞

in �. Then

Fn(ζ ) =
fn(zn + zn( ρn

zn ζ ))
ρk–l
n

=
(
zn
ρn

)k–l fn(zn + zn( ρn
zn ζ ))

zk–ln

=
(
zn
ρn

)k–l

gn
(

ρn

zn
ζ

)
χ⇒ ∞ in C.

Thus, F(ζ )≡ ∞ in C. A contradiction.
We claim that g() �=∞. Since F(ζ ) is a nonconstant meromorphic function in C, there

exist ζ ∈ C such that F(ζ) �=∞. Noting that ρn
zn ζ →  as n→ ∞, we have

g() = lim
n→∞ gn

(
ρn

zn
ζ

)
= lim

n→∞
fn(zn + ρnζ)

ρk–l
n

(
ρn

zn

)k–l

=

⎧⎨
⎩F(ζ) if l = k,

 if l < k.

For any ζ ∈C \ F–(∞), we have

F (k–l)(ζ ) = lim
n→∞F (k–l)

n (ζ ) = lim
n→∞ f (k–l)n (zn + ρnζ ) = lim

n→∞ f (k–l)n

(
zn + zn

(
ρn

zn
ζ

))

= lim
n→∞ g(k–l)n

(
ρn

zn
ζ

)
= g(k–l)().

This implies that F (k–l)(ζ ) ≡ g(k–l)() in C \ F–(∞) and thus F (k)(ζ ) is a constant in C. It
follows that F(ζ ) = akζ k + · · ·+aζ +a.We arrive at a contradiction as F(ζ ) is nonconstant
and all zeros of F(ζ ) have multiplicity at least k +  in C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/389
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Subcase .. zn/ρn → α (α ∈C).
Clearly, we have

F (k)
n (ζ ) = ρ l

nf
(k)
n (zn + ρnζ ) �= ρ l

nhn(zn + ρnζ ) and

ρ l
nhn(zn + ρnζ ) =

ρ l
nφn(zn + ρnζ )
(zn + ρnζ )l

χ⇒ 
(α + ζ )l

in C.

By Lemma ., either F (k)(ζ ) �= /(α + ζ )l or F (k)(ζ ) ≡ /(α + ζ )l in C. The latter possibil-
ity contradicts the fact that all poles of F (k)(ζ ) have multiplicity at least k +  (> l). Thus
F (k)(ζ ) �= /(α + ζ )l inC. It follows from Lemma . and Lemma . that F(ζ ) is a constant.
A contradiction.
Case . l ≥ k + .
Set

G :=
{
gn(z) | gn(z) = fn(z)/hn(z), z ∈ �

}
.

Clearly, all poles of gn(z) are multiple and all zeros of gn(z) have multiplicity at least k + 
in�. Since f (k)n () �= hn() = ∞, we have fn() �=∞. Thus, for each n, gn() = fn()/hn() = .
Obviously, gn has a zero of order at least l at z =  for each n.
We first prove that G is normal in �. Suppose that G is not normal at z ∈ �. Then by

Lemma ., there exist points zn → z, positive numbers ρn → , and a subsequence of
{gn} (still denoted by {gn}) such that

Gn(ζ ) =
gn(zn + ρnζ )

ρk
n

χ⇒ G(ζ ) in C,

where G(ζ ) is a nonconstant meromorphic function in C. In particular, G(ζ ) has order at
most . By Hurwitz’s theorem, all poles of G(ζ ) are multiple and all zeros of G(ζ ) have
multiplicity at least k + .
Taking a subsequence and renumbering, we may assume zn/ρn → α as n → ∞, where

α ∈ C or α =∞. Again we distinguish two subcases.
Subcase .. zn/ρn → ∞.
By simple calculation, we have

g(k)n (z) =
f (k)n (z)
hn(z)

–
(
n


)
g(k–)n (z)

h′
n(z)

hn(z)
–

(
n


)
g(k–)n (z)

h′′
n(z)

hn(z)
– · · · – gn(z)

h(k)n (z)
hn(z)

.

Then we have

G(k)
n (ζ ) = g(k)n (zn + ρnζ )

=
f (k)n (zn + ρnζ )
hn(zn + ρnζ )

–
(
n


)
g(k–)n (zn + ρnζ )

h′
n(zn + ρnζ )

hn(zn + ρnζ )
– · · ·

– gn(zn + ρnζ )
h(k)n (zn + ρnζ )
hn(zn + ρnζ )

=
f (k)n (zn + ρnζ )
hn(zn + ρnζ )

–
(
n


)
g(k–)n (zn + ρnζ )

(
–l

zn + ρnζ
+

φ′
n(zn + ρnζ )

φn(zn + ρnζ )

)
– · · ·
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– gn(zn + ρnζ )
(
(–)kl(l – ) · · · (l – k + )

(zn + ρnζ )k

+
(
k


)
(–)k–l(l – ) · · · (l – k + )

(zn + ρnζ )k–
φ′
n(zn + ρnζ )

φn(zn + ρnζ )
+ · · · + φ

(k)
n (zn + ρnζ )

φn(zn + ρnζ )

)

=
f (k)n (zn + ρnζ )
hn(zn + ρnζ )

–
(
n


)
g(k–)n (zn + ρnζ )

ρn

(
–l

zn/ρn + ζ
+

ρnφ
′
n(zn + ρnζ )

φn(zn + ρnζ )

)
– · · ·

–
gn(zn + ρnζ )

ρk
n

(
(–)kl(l – ) · · · (l – k + )

(zn/ρn + ζ )k

+
(
k


)
(–)k–l(l – ) · · · (l – k + )

(zn/ρn + ζ )k–
ρnφ

′
n(zn + ρnζ )

φn(zn + ρnζ )
+ · · · + ρk

nφ
(k)
n (zn + ρnζ )

φn(zn + ρnζ )

)
.

On the other hand, we have limn→∞ 
zn/ρn+ζ

=  and then for i = , , . . . ,k,

ρnφ
(i)
n (zn + ρnζ )

φn(zn + ρnζ )
⇒  in C.

Since gn(zn + ρnζ )/ρk
n

χ⇒ G(ζ ), g(k–i)n (ζ̂ )/ρi
n is locally bounded in C \G–(∞). Thus,

f (k)n (zn + ρnζ )
hn(zn + ρnζ )

χ⇒ G(k)(ζ ) in C \G–(∞).

Since f (k)n (z)/hn(z) �= ,Hurwitz’s theorem yields that eitherG(k)(ζ ) �=  orG(k)(ζ )≡  inC. If
G(k)(ζ ) �=  inC, then by Lemma .,G(ζ ) is a constant. A contradiction. ThusG(k)(ζ )≡ ,
and then G(ζ ) = 

k!ζ
k + ck–ζ k– + · · · + c. This contradicts the fact that all zeros of G(ζ )

have multiplicity at least k + .
Subcase .. zn/ρn → α (α ∈C).

gn(ρnζ )
ρk
n

=
gn(zn + ρn(ζ – zn/ρn))

ρk
n

=Gn(ζ –zn/ρn)
χ⇒ G(ζ –α) = Ĝ(ζ ) in C. (.)

Clearly, all poles of Ĝ(ζ ) are multiple and all zeros of Ĝ(ζ ) have multiplicity at least k + ,
and Ĝ(ζ ) has a zero of order at least l at ζ = .
Set Hn(ζ ) := ρ l–k

n fn(ρnζ ). Then, we have

Hn(ζ ) = ρ l
nhn(ρnζ )

fn(ρnζ )
ρk
nhn(ρnζ )

= ρ l
nhn(ρnζ )

gn(ρnζ )
ρk
n

.

Noting that ρ l
nhn(ρnζ )

χ⇒ 
ζ l
in C, we have

Hn(ζ )
χ⇒ 

ζ l Ĝ(ζ ) =H(ζ ) in C \ {}.

Since Ĝ(ζ ) has a zero at ζ = , by (.), there exists δ ∈ (, ) such that gn(ρnζ ) is holo-
morphic in �(, δ) for sufficiently large n, and thus Hn(ζ ) is holomorphic in �(, δ) for
sufficiently large n. By the maximum principle, we have

Hn(ζ )
χ⇒ 

ζ l Ĝ(ζ ) =H(ζ ) in C.
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Yang Journal of Inequalities and Applications 2014, 2014:389 Page 13 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/389

Obviously, all poles of H(ζ ) are multiple and all zeros of H(ζ ) have multiplicity at least
k + . Since Ĝ(ζ ) has a zero of order at least l at ζ = , we have H() �=∞ and thus H(ζ ) is
a meromorphic function in C. Noting that

H(k)
n (ζ ) = ρ l

nf
(k)
n (ρnζ ) �= ρ l

nhn(ρnζ ) and ρ l
nhn(ρnζ )

χ⇒ 
ζ l in C.

By Lemma ., eitherH(k)(ζ ) �= /ζ l orH(k)(ζ ) ≡ /ζ l inC. The latter possibility contradicts
the fact thatH() �=∞. ThusH (k)(ζ ) �= /ζ l inC. It follows fromLemma. and Lemma.
that H(ζ ) is a constant. Next we will show that this is impossible. Indeed, suppose that
H ≡ c. Since G is not a constant, c �= . Then we have

fn() =
Hn()
ρ l–k
n

→ ∞ as n → ∞. (.)

Suppose first that there exists δ ∈ (, ) such that fn(z) �=  in �(, δ) for sufficiently
large n. By Lemma ., {fn} is normal in �(, δ). But this contradicts our assumption
that no subsequence of {fn} is normal at . Hence, taking a subsequence and renum-
bering, we may assume that z∗

n is the zero of fn of smallest modulus and z∗
n → . Since

Hn(ζ ) = ρ l–k
n fn(ρnζ ) ⇒ c ( �= ), we have z∗

n/ρn → ∞. Set

H∗
n (ζ ) :=

(
z∗
n
)l–kfn(z∗

nζ
)
.

In view of the fact that

H∗(k)
n (ζ ) =

(
z∗
n
)lf (k)n

(
z∗
nζ

) �= φn(z∗
nζ )

ζ l
χ⇒ 

ζ l

and H∗
n (ζ ) �=  in �, by Lemma ., {H∗

n (ζ )} is normal in �. By Lemma ., {H∗
n (ζ )} is

normal in C \ {}. Hence, {H∗
n (ζ )} is normal in C. Therefore, there exists a subsequence

{H∗
n (ζ )} (still denoted by {H∗

n (ζ )}) such that H∗
n

χ⇒H∗ in C. By the definition of H∗
n (ζ ), we

get H∗
n () =  and thus H∗() = . Since

H∗
n () =Hn()

(
z∗
n

ρn

)l–k

= c
(
z∗
n

ρn

)l–k

→ ∞,

we get thatH∗() = ∞. ThusH∗ is nonconstant. However, sinceH∗() = ∞ andH∗
n (ζ ) �= 

in�, we haveH∗ �=  in� byHurwitz’s theorem. However, Lemma . implies thatH∗(ζ )
has a zero in �. A contradiction.
Thus G is normal in �. It remains to show that {fn} is normal at . Since G is normal

in �, then G is equicontinuous in � with respect to the spherical distance. On the other
hand, gn() =  for each n, so there exists δ >  such that |gn(z)| ≤  for all n in �(, δ). It
follows that fn(z) is holomorphic in �(, δ) for all n. Since {fn} is normal in �′, there exists
a subsequence of {fn} (still denoted by {fn}) which converges locally uniformly in �′(, δ).
The maximum modulus principle implies that fn converges locally uniformly in �(, δ),
and thus {fn} normal at z = , which contradicts our assumption that no subsequence of
{fn} is normal at . �
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5 Proof of Lemma 3.9
Proof It suffices to prove that each subsequence of {fn} has a subsequence which satisfies
that (∗f ), and prove that (∗e) and (∗g) hold. So suppose that we have a subsequence of {fn},
which (to avoid complication in notation) we again call {fn}.
Without loss of generality, for each ã ∈ E, we may assume that ã = , � ⊂D, �′ ∩ E = ∅,

and

h(z) = zl + al+zl+ + · · · = zlĥ(z)

in �, where ĥ() =  and ĥ(z) �= ,∞ in �.
We consider the following three cases.
Case . h() =∞.
We will derive a contradiction in the case, and hence (∗e) holds. For convenience, we set

m := –l, and then

h(z) =

zm

+
a–m+

zm– + · · · = ĥ(z)
zm

in �, where ĥ(z) �= ,∞ in �, ĥ() = , and m is a positive integer. Clearly, we have h(z) �=
,∞ in �′, hn(z) �= ,∞ in �′, and h() = hn() = ∞.
Subcase .. For sufficiently large n, fn() �= .
We claim that for each δ > , there exists at least one zero of fn in �(, δ) for sufficiently

large n. Otherwise, there exist δ∗ (> ) and a subsequence of {fn} (still denoted by {fn})
such that fn(z) �=  in �(, δ∗). By Lemma ., {fn} is normal at . This contradicts (∗c).
Taking a subsequence and renumbering, we may assume that an ( �= ) is the zero of {fn}

of smallest modulus and an → . Set Fn(ζ ) := am–k
n fn(anζ ). We have:

(A) Fn(ζ ) �=  in �;
(A) all zeros of Fn(ζ ) have multiplicity at least k +  and Fn() = ;
(A) F (k)

n (ζ ) �= amn hn(anζ ) and amn hn(anζ )
χ⇒ 

ζm in C.
By Lemma . and Lemma ., {Fn(ζ )} is normal in � and quasinormal in C. Thus, there
exist a subsequence of {Fn(ζ )} (still denoted by {Fn(ζ )}) and D ⊂C such that:
(B) D has no accumulation points in C;
(B) for each ζ ∈D, no subsequence of {Fn(ζ )} is normal at ζ;
(B) Fn(ζ )

χ⇒ F(ζ ) in C \D.
Obviously, D ∩ � = ∅ and all zeros of F(ζ ) have multiplicity at least k +  in C \D.
Subcase ...  /∈ D.
Obviously, F() = F (k)() =  by (A). Let ζ ∈ D. By Lemma ., F (k)(ζ ) = 

ζm , which
contradicts F (k)() = . Thus D is an empty set. Since F() = , F(ζ ) is a meromorphic
function inC. By Lemma . and (A), either F (k)(ζ ) ≡ 

ζm or F (k)(ζ ) �= 
ζm inC. If F (k)(ζ ) ≡


ζm , then F (k)() = , which contradicts F (k)() = . If F (k)(ζ ) �= 

ζm , then by Lemma . and
Lemma ., F is a constant function. Since F() = , F(ζ )≡  in C. Now,

Fn(ζ ) = am–k
n fn(anζ ) ⇒  in C. (.)

We claim that for each δ > , there exists at least one pole of fn in �′(, δ) for sufficiently
large n. Otherwise, there exist δ∗ (> ) and a subsequence of {fn} (still denoted by {fn}) such
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that fn(z) has no poles in �′(, δ∗). Since f (k)n (z) �= hn(z) and hn() = ∞, we have f () �= ∞.
Thus fn(z) �=∞ in �(, δ∗). By Lemma ., {fn} is normal at . This contradicts (∗c).
Taking a subsequence and renumbering, we may assume that yn ( �= ) is the pole of fn(z)

of smallest modulus and yn → . By Hurwitz’s theorem and (.), an
yn → . Set Gn(ζ ) :=

ym–k
n fn(ynζ ), we have:
(C) Gn(ζ ) is holomorphic in �;
(C) Gn() =∞;
(C) all zeros of Gn(ζ ) have multiplicity at least k + ;
(C) G(k)

n (ζ ) �= ymn hn(ynζ ) and ymn hn(ynζ )
χ⇒ 

ζm in C.
By Lemma . and Lemma ., {Gn(ζ )} is normal in � and quasinormal in C. Thus, there
exist a subsequence of {Gn(ζ )} (still denoted by {Gn(ζ )}) and D ⊂C such that:
(D) D has no accumulation points in C;
(D) for each ζ ∈D, no subsequence of {Gn(ζ )} is normal at ζ;
(D) Gn(ζ )

χ⇒ G(ζ ) in C \D.
Obviously, D ∩ � = ∅ and all zeros of G(ζ ) have multiplicity at least k +  in C \D.
Clearly, G() = limn→∞ Gn( anyn ) = ym–k

n fn(an) = , so G(z) is meromorphic in C \ D. By
Lemma . and (C), either G(k)(ζ ) ≡ 

ζm or G(k)(ζ ) �= 
ζm in C \D.

Subcase .... D is an empty set.
By (C), we have G() = ∞. If G(k)(ζ ) �= 

ζm in C, then by Lemma . and Lemma .,
G(ζ ) is a constant function which contradicts thatG() = ∞. IfG(k)(ζ ) – 

ζm ≡  in C, then
G() = ∞, which contradicts G() = .
Subcase .... D is not an empty set.
Let ζ ∈ E. SinceD ∩� = ∅, by Lemma ., we haveG(k)(ζ ) = 

ζm inC \D – {} Clearly,
G(k)(ζ ) and 

ζm are meromorphic functions in C \ D, so we have G(k)(ζ ) = 
ζm in C \ D,

which contradicts G() = .
Subcase ...  ∈D.
By Lemma ., we have F (k)(ζ ) = 

ξm in C \ D. If m ≤ k, then F(ζ ) is a multi-valued
function in C \D. A contradiction. Thus we have m > k.
We claim that D = {}. Otherwise, there exists ζ such that ζ ∈ D and ζ �= , . By

Lemma .,

F (k–)(ζ ) =
∫ ζ




ξm dξ =

ζ –m+ – 
–m + 

;

F (k–)(ζ ) =
∫ ζ



ξ–m+ – 
–m + 

dξ =
ζ –m+

(–m + )(–m + )
–

ζ

–m + 
+


(–m + )

;
(.)

F (k–)(ζ ) =
∫ ζ

ζ


ξm dξ =

ζ –m+ – ζ
–m+

–m + 
;

F (k–)(ζ ) =
∫ ζ

ζ

ξ–m+ – 
–m + 

dξ =
ζ –m+

(–m + )(–m + )
–

ζ

–m + 
+

ζ

(m + )
.

(.)

By (.) and (.), we obtain ζ = , which contradicts ζ �= . Thus D = {}.
By Lemma .,

F(ζ ) =
∫ ζ



∫ ζ


· · ·

∫ ζk–




ζm dζk dζk– · · · dζ

=
 + Pk–(ζ )ζm–k

(–m + k)(–m + k – ) · · · (–m + )ζm–k (.)
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in C \D, where Pk–(ζ ) is a polynomial of degree k – . By (.),

Fn(ζ )
χ⇒  + Pk–(ζ )ζm–k

(–m + k)(–m + k – ) · · · (–m + )ζm–k (.)

in �. By Hurwitz’ theorem, there exist γn,i (i = , , . . . ,m – k) such that γn,i →  and
Fn(γn,i) = ∞. Since F (k)

n (ζ ) �= amn hn(anζ ), we have Fn() �= ∞, and hence γn,i �=  for i =
, , . . . ,m – k.
Set Un(ξ ) := sm–k

n Fn(snξ ) and ηn,i =
γn,i
sn , where sn is one of {γn,,γn,, . . . ,γn,m–k} of largest

modulus. Clearly, |ηn,i| ≤ . Now, we have:
(E) for each R > , Un(ξ ) �=  in �(,R) for sufficiently large n;
(E) Un() = ∞;
(E) U (k)

n (ξ ) �= amn smn hn(amn smn ξ ) and amn smn hn(amn smn ξ ) χ⇒ 
ξm in C;

(E) Un(ξ ) has only m – k poles ηn,i on �, where i = , , . . . ,m – k.
In fact, (E) holds by (.). By Lemma ., (E), and (E), we find thatUn(ξ ) is normal inC.
We assume that Un(ξ )

χ⇒U(ξ ) in C. Obviously, U() =∞ by (E).
Subcase .... U(ξ ) is a meromorphic function in C.
By Lemma ., we have either U (k)(ζ ) ≡ 

ξm or U (k)(ξ ) �= 
ξm in C. Since U() = ∞,

U (k)(ξ ) �= 
ξm in C. By Lemma . and Lemma ., U(ξ ) is a constant function. This con-

tradicts U() = ∞.
Subcase .... U(ξ )≡ ∞ in C.
Set U∗

n (ξ ) := Un(ξ ) · ∏m–k
i= (ξ – ηn,i). By the maximum principle applied to 

U∗
n (ξ )

, we get
that

U∗
n (ξ )

χ⇒ ∞ in C. (.)

Set F∗
n (ζ ) := Fn(ζ ) · ∏m–k

i= (ζ – γn,i) = Fn(ζ ) · ∏m–k
i= (ζ – snηn,i). By (.), F∗

n (ζ ) has no poles
in �(,  ) for sufficiently large n. By the maximum principle,

F∗
n (ζ )

χ⇒  + Pk–(ζ )ζm–k

(–m + k)(–m + k – ) · · · (–m + )
in �

(
,




)
.

Hence,

F∗
n () →


(–m + k)(–m + k – ) · · · (–m + )

as n → ∞. (.)

On the other hand,

F∗
n (snξ ) = Fn(snξ ) ·

m–k∏
i=

(snξ – γn,i) = Fn(snξ ) ·
m–k∏
i=

(snξ – snηn,i)

= sm–k
n Fn(snξ ) ·

m–k∏
i=

(ξ – ηn,i) =U∗
n (ξ )

χ⇒ ∞

in C, and hence F∗
n ()→ ∞, which contradicts (.).

Subcase .. There exists a subsequence of {fn(z)} (still denoted by {fn(z)}) such that
fn() =  for each n.
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Doas in Subcase .., wemay assume that yn ( �= ) is the pole of fn(z) of smallestmodulus
and yn → . Set Gn(ζ ) := ym–k

n fn(ynζ ). We have:
(F) Gn(ζ ) is holomorphic function in �;
(F) Gn() = ∞;
(F) all zeros of Gn(ζ ) have multiplicity at least k + ;
(F) G(k)

n (ζ ) �= ymn hn(ynζ ) and ymn hn(ynζ )
χ⇒ 

ζm in C.
By Lemma . and Lemma ., {Gn(ζ )} is normal in � and quasinormal in C. Thus, there
exist a subsequence of {Gn(ζ )} (still denoted by {Gn(ζ )}) and D ⊂C such that:
(G) D has no accumulation points in C;
(G) for each ζ ∈ D, no subsequence of {Gn(ζ )} is normal at ζ;
(G) Gn(ζ )

χ⇒ G(ζ ) in C \D.
Obviously, D ∩ � = ∅ and all zeros of G(ζ ) have multiplicity at least k +  in C \D.
Obviously, G() = limn→∞ Gn() = ym–k

n fn() = , so G(z) is a meromorphic function in
C \D. By Lemma . and (F), either G(k)(ζ ) ≡ 

ζm or G(k)(ζ ) �= 
ζm in C \D.

Subcase ... D is an empty set.
By (F), G() = ∞. If G(k)(ζ ) �= 

ζm , then by Theorem . and Lemma ., G(ζ ) is a
constant function, which contradicts that G() = ∞. If G(k)(ζ ) – 

ζm ≡ , then we have
G() = ∞, which contradicts G() = .
Subcase ... D is not an empty set.
Let ζ ∈ E. Since D ∩ � = ∅, by Lemma ., we have G(k)(ζ ) = 

ζm , which contradicts
G() = .
Case . h() = .
In this case, we will show that (∗f ) and (∗g) hold. Clearly, we have h(z) �= ,∞ in �′,

hn(z) �= ,∞ in �′, and h() = hn() = .
We claim that for each δ > , there exists at least one zero of fn in �′(, δ) for sufficiently

large n. Otherwise, there exist δ∗ (> ) and a subsequence of {fn} (still denoted by {fn}) such
that fn(z) �=  in �′(, δ∗). Since f (k)n (z) �= hn(z) and all the zeros of {fn} have multiplicity at
least k + , we have fn() �= , and hence fn(z) �=  in �(, δ∗). By Lemma ., {fn} is normal
at , which contradicts (∗c).
Taking a subsequence and renumbering, we may assume that an ( �= ) is the zero of fn of

smallest modulus and an → . Set Fn(ζ ) := fn(anζ )
ak+ln

. We have:
(a) Fn(ζ ) �=  in �;
(a) all zeros of Fn(ζ ) have multiplicity at least k +  and Fn() = ;
(a) F (k)

n (ζ ) �= ζ lĥ(anζ ) and ζ lĥ(anζ )
χ⇒ ζ l in C.

By Lemma . and Lemma ., {Fn(ζ )} is normal in � and quasinormal in C. Thus, there
exist a subsequence of {Fn(ζ )} (still denoted by {Fn(ζ )}) and D ⊂C such that:
(b) D has no accumulation points in C;
(b) for each ζ ∈D, no subsequence of {Fn(ζ )} is normal at ζ;
(b) Fn(ζ )

χ⇒ F(ζ ) in C \D.
Obviously, D ∩ � = ∅ and all zeros of F(ζ ) have multiplicity at least k +  in C \D.
Subcase ..  /∈D.
By (a), F() = F (k)() = , and hence F(ζ ) is a meromorphic function in C \D.
We claim that D = ∅. Otherwise, let ζ ∈D. Since D ∩ � = ∅, by Lemma ., F (k)(ζ ) =

ζ k , which contradicts that F (k)() = .
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By Lemma . and (a), either F (k)(ζ )≡ ζ k or F (k)(ζ ) �= ζ k inC. Since F (k)() = , we have
F (k)(ζ ) �= ζ k in C. By Lemma . and Lemma ., we have

F(ζ ) =
∏t++l

i= (ζ – αi)
(l + k)(l + k – ) · · · (l + )(ζ – β)t+–k

,

where t ≥ k is an integer, β ∈C, and αi �= ,β ( ≤ i≤ t +  + l). Thus, we have

Fn(ζ )
χ⇒

∏t++l
i= (ζ – αi)

(l + k)(l + k – ) · · · (l + )(ζ – β)t+–k
in C. (.)

By Hurwitz’s theorem, there exist sequences ζn,i → αi and ηn,j → β (counting multiplic-
ities of zeros and poles, respectively) such that for sufficiently large n, Fn(ζn,i) =  and
Fn(ηn,j) = ∞, where i = , , . . . , t +  + l and j = , , . . . , t +  – k. set zn,i := anζn,i. Thus,
fn(zn,i) =  and zn,i → , where i = , , . . . , t +  + l. Set

Bn := {zn,, zn,, . . . , zn,t++l} (where the same elements are admissible).

Subcase ... For each δ > , fn has at least t +  + l zeros (counting multiplicities) in
�(, δ) for sufficiently large n.
Taking a subsequence and renumbering, we may assume that bn ( �= ) is the zero of fn of

smallest modulus in � \ Bn and bn → . Clearly, Fn( bnan ) =  and bn
an �= ζn,i for i = , , . . . , t +

 + l. By Hurwitz’s theorem and (.), an
bn →  as n→ ∞. Set Gn(ζ ) := fn(bnζ )

bk+ln
. We have, for

sufficiently large n:
(c) Gn(ζ ) has only t +  + l zeros anζn,i

bn in �. Obviously, | anζn,i
bn | → ;

(c) all zeros of Gn(ζ ) have multiplicity at least k +  and Gn() = ;
(c) G(k)

n (ζ ) �= ζ lĥ(bnζ ) and ζ lĥ(bnζ )
χ⇒ ζ l in C.

By Lemma . and Lemma ., {Gn(ζ )} is normal in �′ and quasinormal in C. Thus, there
exist a subsequence of {Gn(ζ )} (still denoted by {Gn(ζ )}) and D ⊂ C such that:
(d) D has no accumulation points in C;
(d) for each ζ ∈D, no subsequence of {Gn(ζ )} is normal at ζ;
(d) Gn(ζ )

χ⇒G(ζ ) in C \D.
Obviously, D ∩ �′ = ∅ and all zeros of G(ζ ) have multiplicity at least k +  in C \D.
Set

G∗
n(ζ ) :=Gn(ζ )

∏t+–k
j= (ζ – anηn,j

bn )∏t++l
i= (ζ – anζn,i

bn )
and F∗

n (ζ ) = Fn(ζ )
∏t+–k

j= (ζ – ηn,j)∏t++l
i= (ζ – ζn,i)

.

By (.), G∗
n(

anζ

bn ) = F∗
n (ζ ) ⇒ 

(l+k)(l+k–)···(l+) in C. Hence

G∗
n() →


(l + k)(l + k – ) · · · (l + )

. (.)

Subcase .... G(ζ )≡ ∞ in C \D.
Obviously,G∗

n(ζ ) has no zeros in � for sufficiently large n. Applying the maximum prin-
ciple to 

G∗
n(ζ )

, we see that G∗
n(ζ )

χ⇒ ∞ in �, which contradicts (.).
Subcase .... G(ζ ) is a meromorphic function in C \D.

http://www.journalofinequalitiesandapplications.com/content/2014/1/389


Yang Journal of Inequalities and Applications 2014, 2014:389 Page 19 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/389

We claim that

G(ζ ) =
ζ l+k

(l + k)(l + k – ) · · · (l + )
in C \D. (.)

By Lemma ., G(k)(ζ ) ≡ ζ l in �′, and then G(ζ ) = ζ l+k+Pk–(ζ )
(l+k)(l+k–)···(l+) in �′, where Pk–(z) is a

polynomial of degree≤ k–. SinceG∗
n(ζ ) has no zeros in� for sufficiently large n, applying

the maximum principle to 
G∗
n(ζ )

, G∗
n(ζ ) ⇒G∗(ζ ) = ζ l+k+Pk–(ζ )

(l+k)(l+k–)···(l+)


ζ l+k
in �. By (.),

G∗() =
ζ l+k + Pk–(ζ )

(l + k)(l + k – ) · · · (l + )


ζ l+k

∣∣∣∣
ζ=

=


(l + k)(l + k – ) · · · (l + )
. (.)

Since Pk–(z) is a polynomial of degree ≤ k – , we have Pk–(ζ ) ≡  by (.). Thus our
claim is proved.
Suppose that  /∈ D. By (c), we have G() = , which contradicts (.). Suppose that

 ∈ D. By Lemma ., G(k–)(ζ ) =
∫ ζ

 ξ l dξ = ζ l+–
l+ . However, we have G(k–)(ζ ) = ζ l+

l+ by
(.). This is a contradiction.
Subcase ... There exists δ >  such that fn has exactly t +  + l zeros (counting multi-

plicities) in �(, δ) for sufficiently large n.
Taking a subsequence and renumbering, wemay assume that fn has exactly t++ l zeros

(counting multiplicities) in �(, δ) for all n. Now, (∗f ) holds with rã = δ andNã =m+ k +.
Next, we will show that (∗g) also holds.
Set

f ∗
n (z) := fn(z)

∏t+–k
j= (z – anηn,j)∏t++l
i= (z – anζn,i)

and F∗
n (ζ ) = Fn(ζ )

∏t+–k
j= (ζ – ηn,j)∏t++l
i= (ζ – ζn,i)

.

Clearly, f ∗
n (z) has no zeros in �(, δ). By (.), f ∗

n (anζ ) = F∗
n (ζ ) ⇒ 

(l+k)(l+k–)···(l+) in C, and
hence

f ∗
n () →


(l + k)(l + k – ) · · · (l + )

. (.)

Subcase ... f (z) ≡ ∞ in D \ E.
By the maximum principle applied to 

f ∗n (z) , we have f
∗
n (z)

χ⇒ ∞ in �(, δ), which contra-
dicts (.).
Subcase .... f (z) is a meromorphic function in D \ E.
By Lemma ., f (k)(z) = h(z) in �′(, δ). By the maximum principle applied to 

f ∗n (z) ,
f ∗
n (z)

χ⇒ f (z)
zl+k in �(, δ). Hence by (.),

f ∗
n () →

f (z)
zl+k

∣∣∣∣
ζ=

=


(l + k)(l + k – ) · · · (l + )
. (.)

Equation (.) implies that z =  is a zero of order l + k of f (z). Thus we have

f (z) =
∫ z



∫ ζ


· · ·

∫ ζk–


h(ζk) dζk dζk– · · · dζ.

Subcase ..  ∈D.
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By Lemma .,

F (k–)(ζ ) =
∫ ζ


ξ l dξ =

ζ l+ – 
l + 

, (.)

F (k–)(ζ ) =
∫ ζ



ξ l+ – 
l + 

dξ =
ζ l+

(l + )(l + )
–

ζ

l + 
+


(l + )

. (.)

We claim that D = {}. Otherwise, there exists ζ ∈ E and ζ �= , . By Lemma ., in
C \D,

F (k–)(ζ ) =
∫ ζ

ζ

ξ l dξ =
ζ l+ – ζ

l+

l + 
. (.)

By (.) and (.), we obtain ζ
l+ = . Furthermore, by Lemma ., in C \D,

F (k–)(ζ ) =
∫ ζ

ζ

ξ l+ – 
l + 

dξ =
ζ l+

(l + )(l + )
–

ζ

l + 
+

ζ

(l + )
. (.)

By (.) and (.), we get ζ = . A contradiction. Thus D = {}.
By Lemma ., F(z) can extend to an analytic function in C and thus is a polynomial of

degree l+ k. Since  is a zero of order k of F , F must have at least one zero which is distinct
from . Let e ( �= ) is a zero of F(z). Since all zeros of F(ζ ) have multiplicity at least k + 
in C \ {}, we have F (k–)(e) =  and F (k)(e) = . Then e is a multiple zero of F (k–)(z).
However, by (.), F (k–)(z) only has zeros of order . This is a contradiction.
Case . h() �= ,∞.
Obviously, (∗g) holds by Lemma .. Next, we will show that (∗f ) also holds.
Since {fn} is not normal at , it follows fromLemma. thatwe can extract a subsequence

(still denoted by {fn}), points zn → , and positive numbers ρn →  such that

gn(ζ ) = ρ–k
n fn(zn + ρnζ )

χ⇒ g(ζ ) in C, (.)

where g is a nonconstant meromorphic function of finite order in C, all of whose zeros
have multiplicity at least k + . Since g(k)n (ζ ) = f (k)n (zn + ρnζ ) �= hn(zn + ρnζ ) ⇒ h() and
g(k)n ⇒ g(k)(ζ ) on the complement of the poles of g(ζ ), either g(k)(ζ ) �= h() or g(k)(ζ )≡ h()
inC by Hurwitz’s theorem. The latter case is not possible, as this would contradict the fact
that all zeros of g have multiplicity at least k + . Thus g(k)(ζ ) �= h() in C. By Lemma .,

g(ζ ) =
h()
k!

(ζ – a)k+

ζ – b
(.)

for distinct complex numbers a and b. It now follows from the argument principle that
there exists a sequence ξn → a such that, for sufficiently large n, gn(ξn) = . Thus, writing
zn, = zn + ρnξn, we have zn, → . By (.) and (.), the multiplicity of zn, as a zero of
fn is exactly k +  for sufficiently large n. By Lemma ., there exists r >  such that fn has
a single (multiple) zero in �(, r) for sufficiently large n. Thus for sufficiently large n, fn
has a single zero zn, of order exactly k +  in �(, r). Now, (∗f ) holds with rã = r and
Nã = k + . �
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6 Proof of Proposition 1.2
Proof By Lemma ., {fn} is quasinormal in D. Hence for each subsequence {fnk } of {fn},
there exists a subsequence of {fnk } (still denoted by {fnk }) and a corresponding point set E
which has no accumulation points in D such that:
(a) fnk (z)

χ⇒ f (z) in D \ E, where f (z) is meromorphic or identically infinite there;
(b) for each ã ∈ E, no subsequence of {fnk } is normal at ã.

By Lemma ., we have:
(c) for each ã ∈ E, h(ã) �=∞;
(d) for each ã ∈ E, there exist rã >  and Nã >  such that for sufficiently large k,

n(�(ã, rã), 
fnk

) <Nã, where rã and Nã only depend on ã;

(e) for each ã ∈ E, f (z) =
∫ z
ã

∫ ζ
ã · · · ∫ ζk–

ã H ′(ζk) dζk dζk– · · · dζ in D \ E.
Clearly, we see that (), (), (), and () hold.
Suppose that |E| > ν and z, z, . . . , zν+ are ν+ distinct points in E. Since for each a∗ ∈C,

n(D, 
H(z)–a∗ ) ≤ ν , there exist i, j ∈ N such that  ≤ i < j ≤ ν +  and H(zi) �=H(zj). However,

f (k–)(z) =H(z) –H(zi) and f (k–)(z) =H(z) –H(zj) by (e). Thus H(zi) =H(zj). A contradic-
tion. This completes the proof of Proposition .. �

7 Proof of Theorem 1.3
Proof We argue by contradiction. Suppose that the equation f (k)(z) = α(z) has at most
finitely many solutions. Let R(z)∼ czd as z → ∞, where c ∈C \ {} and d ∈ Z.
Clearly, T(r,R) = O(log r) and T(r, R ) = O(log r) as r → ∞. By Lemma ., T(r,h) =

Ar( + o()) as r → ∞, where A >  is a constant. By standard results in Nevanlinna
theory, T(r,h) = T(r, α

R ) ≤ T(r,α) + T(r, R ) and T(r,α) ≤ T(r,R) + T(r,h) as r → ∞.
Thus, T(r,α) = Ar( + o()) as r → ∞. Since T(r,α) = o{T(r, f )} as r → ∞, we have
limr→∞ T(r,f )

r =∞.
Set g(z) := f (z)

zd . By Lemma ., there exist points tn → ∞ and positive numbers εn → 
such that

S
(
�(tn, εn), g

) → ∞ as n→ ∞ (.)

and

f (tn)
tdn

→  and
f (k)(tn)
tdn

→ ∞ as n → ∞. (.)

Let ω, ω be the two fundamental periods of h(z) and P ( ∈ P) be a fundamental paral-
lelogram of h(z). There exist integers in and jn such that zn ∈ P, where zn = tn – inω – jnω.
There exists a subsequence of {zn} (still denoted by {zn}) such that zn → z as n→ ∞. Set

gn(z) := g(z + inω + jnω), (.)

fn(z) :=
f (z + inω + jnω)

tdn
. (.)

Clearly, we have S(�(zn, εn), gn) = S(�(tn, εn), g), fn(zn) = f (tn)
tdn

, and f (k)n (zn) = f (k)(tn)
tdn

. By (.)
and (.), we have

S
(
�(zn, εn), gn

) → ∞ as n → ∞, (.)
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fn(zn) →  and f (k)n (zn) → ∞ as n→ ∞. (.)

There exists R >  such that P ⊂ �(,R) and �(zn, εn) ⊂ �(,R) for each n. Set D :=
�(,R). Obviously, we have z ∈D. By assumption, for sufficiently large n,

f (k)n (z) =
f (k)(z + inω + jnω)

tdn
�= R(z + inω + jnω)h(z)

tdn
, z ∈D.

For each z ∈D,

∣∣tn – (z + inω + jnω)
∣∣ = ∣∣(zn + inω + jnω) – (z + inω + jnω)

∣∣ = |zn – z| < R.

So we have

R(z + inω + jnω)
tdn

→ c as n→ ∞.

Set

Tn(z) :=
R(z + inω + jnω)h(z)

tdn
.

Obviously, Tn(z)
χ⇒ ch(z) inD, and for sufficiently large n, ch and Tn have the same zeros

and poles with the same multiplicity in D.
Clearly, {fn} is a family of meromorphic functions inD such that for sufficiently large n:
(a) all zeros of {fn} have multiplicity at least k +  in D;
(a) Tn(z)

χ⇒ ch(z) in D, where ch(z) �≡ ,∞ in D;
(a) f (k)n (z) �= Tn(z) in D.

It follows from Lemma . that {fn} is quasinormal inD. Hence there exists τ >  such that
�(z, τ ) ⊂ D and {fn} is normal in �′(z, τ ). Then there exists a subsequence of {fn} (still
denoted by {fn}) such that:
(b) ch(z) and Tn(z) have the same zeros and poles with the same multiplicity in

�(z, τ );
(b) for all n ∈N, f (k)n (z) �= Tn(z) in �(z, τ );
(b) no subsequence of {fn} is normal at z;
(b) all zeros of {fn} have multiplicity at least k +  in �(z, τ ), and fn(z)

χ⇒ f (z) in
�′(z, τ ).

By (.), (b) holds. By Lemma ., we have:
(c) h(z) �=∞;
(c) there exist τ ∗ ∈ (, τ ) andM∗ >  such that n(�(z, τ ∗), 

fn ) <M∗ for sufficiently
large n;

(c) f (z) =
∫ z
z

∫ ζ
z

· · · ∫ ζk–
z

ch(ζk) dζk dζk– · · · dζ in �′(z, τ ).
By Lemma ., (c) and (c), there existsM >  such that for sufficiently large n,

S
(

�

(
z,

τ ∗



)
, fn

)
<M. (.)

Next, we will derive a contradiction with (.).
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By (.) and (.), gn(z) = fn(z)( + z–zn
tn )–d . Then

g#n(z) =
|( + z–zn

tn )df ′
n(z) – ( + z–zn

tn )d( d
tn+z–zn )fn(z)|

|( + z–zn
tn )d| + |fn(z)| ,

so

[
g#n(z)

] ≤ |( + z–zn
tn )df ′

n(z)|
(|( + z–zn

tn )d| + |fn(z)|) +
|( + z–zn

tn )d( d
tn+z–zn )fn(z)|

(|( + z–zn
tn )d| + |fn(z)|) . (.)

Using the simple inequality

C
C + x

≤ max(C, /C)


 + x

for C > , we have

|( + z–zn
tn )df ′

n(z)|
(|( + z–zn

tn )d| + |fn(z)|) ≤ max

(∣∣∣∣
(
 +

z – zn
tn

)∣∣∣∣d, 
|( + z–zn

tn )|d
)[

f #n (z)
]. (.)

The second term on the right of (.) is




∣∣∣∣ d
tn + z – zn

∣∣∣∣
( |( + z–zn

tn )dfn(z)|
|( + z–zn

tn )d| + |fn(z)|
)

≤ 


∣∣∣∣ d
tn + z – zn

∣∣∣∣. (.)

Putting (.), (.), and (.) together, we have for z ∈ �(z, τ∗
 ) and sufficiently large n,

[
g#n(z)

] ≤ 
[
f #n (z)

] + . (.)

It follows from (.) and (.) that

S
(

�

(
z,

τ ∗



)
, gn

)
≤ M +

(
τ ∗



)

:=M,

which contradicts (.). This completes the proof of Theorem .. �
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