
Wang and Han Journal of Inequalities and Applications 2014, 2014:388
http://www.journalofinequalitiesandapplications.com/content/2014/1/388

RESEARCH Open Access

Unicity of meromorphic functions and their
linear differential polynomials
Chenguang Wang1* and Qi Han2

*Correspondence:
cwang@jnxy.edu.cn
1Department of Mathematics,
Jining University, Qufu, Shandong
273155, P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper studies the unicity of meromorphic functions that share an arbitrary
nonzero small function with their general linear differential polynomials. The result
derived here extends one by Brück in 1996 and others.
MSC: 30D35; 30D30

Keywords: Nevanlinna theory; meromorphic functions; small functions; entire
functions; differential polynomials

1 Introduction
In , R Nevanlinna [–] proved his celebrated five-value and four-value theorems,
which gave birth to the study of the unicity of meromorphic functions in the open com-
plex plane C; in , by considering the unicity of an entire function f and its first order
derivative f ′, Rubel andYang [] showed that f ≡ f ′ when they share two distinct, finite val-
ues CM, which was generalized to meromorphic functions independently by Gundersen
[] as well as byMues and Steinmetz [] in . Since these results, there have beenmany
papers on several related problems about f and its derivatives, and we refer the reader to
[, –] and the references therein for more details.
Before we proceed, we spare the reader for a moment and assume the familiarity with

the basics of Nevanlinna’s value distribution theory of meromorphic functions in C such
as the first and second main theorems, and the common notations such as the charac-
teristic function T(r, f ), the proximity function m(r, f ) and the counting functions N(r, f )
(with multiplicities) and N̄(r, f ) (without multiplicities); S(r, f ) denotes any quantity satis-
fying S(r, f ) = o(T(r, f )) as r → ∞ except possibly on a set of finite Lebesgue measure, not
necessarily the same at each occurrence.
Let a, f , g be some meromorphic functions on C. a is said to be a small function to f ,

provided T(r,a) = S(r, f ). Given a, a small function to both f and g or some value in C ∪
{∞}, one says that f and g share a CM provided the twomeromorphic functions f –a and
g – a have the same zeros with counting multiplicities.
Now, we continue our discussion and observe a question that arises naturally: When

only f and f ′ share one value CM, then what can one have accordingly? Towards this di-
rection, in , Brück [] first proved the following result.
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Theorem A Let f be a nonconstant entire function with N(r, 
f ′ ) = S(r, f ). When f and f ′

share a finite, nonzero value a CM, then there is a constant c �=  such that

f – a
f ′ – a

= c. ()

This interesting result was extended by Zhang [] in , when he proved, among
some related results, the following one.

Theorem B Let f be a nonconstant meromorphic function such that

N̄(r, f ) +N
(
r,


f ′

)
<

(
λ + o()

)
T

(
r, f ′) for λ ∈

(
,




)
. ()

When f and f ′ share a finite, nonzero value a CM, then we have ().

Quite recently, via replacing the finite, nonzero value a by a small function a(z) related
to f , Al-Khaladi [, ] obtained the following striking result.

Theorem C Let f be a nonconstant meromorphic function such that

N̄(r, f ) + N̄
(
r,


f ′

)
<

(
λ + o()

)
T

(
r, f ′) for λ ∈

(
,




)
. ()

When f and f ′ share a small function a(z) ( �≡ ,∞) CM, then we have f –a
f ′–a =  – c

a , where c
is a constant such that c

a �=  and N(r,  – c
a ) = S(r, f ).

Remark D There are reasons why the condition on the zeros of f ′ is posed by Brück []:
To control the multiple values of f for each finite value, inspired by the exponential func-
tion; yet, it is not natural to generalize this condition by the zeros of f (k) when k ≥  as
there is no need to control the multiple values of f ′.

Next, we define a linear differential polynomial of order k ≥ , such as

L(f ) := af ′ + af ′′ + · · · + akf (k) (ak �≡ ), ()

associated with f , where aj are small functions of f for j = , , . . . ,k. Then we can prove
the following theorems, which are the main results of this paper.

Theorem  Let f be a nonconstant meromorphic function satisfying () with λ ∈ (, 
k+ ).

When f and L(f ) share a small function a(z) ( �≡ ,∞) CM, then we have f –a
L(f )–a =  – c

a for
a constant c with c

a �=  and N(r,  – c
a ) = S(r, f ).

Theorem  Under the assumptions of Theorem , we further suppose that f , a(z) ( �≡ ,∞)
and aj, j = , , . . . ,k, are all entire, then we have either f =L(f ), or f –a

L(f )–a = c for a constant
c �=  and a(z)must also be a constant as well.

As suggested by one of the referees, the reader may also feel interested in a very recent
paper by Al-Khaladi [], where in fact some results of Lahiri and Sarkar [] were gen-
eralized that in turn was deeply related to a paper of Yu []. One notices the paper []
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was not suitably cited in the key reference of [] (not the paper [] itself ), despite the
conclusions as well as the methods being very similar.
It is worth to mention that the machinery used in this paper is standard Nevanlinna’s

value distribution theory while the methods involved are combinations of those already
applied in Al-Khaladi [, ] as well as in Han and Yi [].

2 Proofs of themain results
This section is devoted to the detailed proofs of Theorems  and . We first define the
following auxiliary function α as

α :=
f – a
L – a

. ()

Here and hereafter, we use L for L(f ) for brevity. Our hypotheses imply α is such a mero-
morphic function that T(r,α) =O(T(r, f )) yet N(r,α) = S(r, f ).
Case I. a is a finite, nonzero constant.
Rewrite () as f – a = αL – aα and differentiate it to yield

f ′ = (αL)′ – aα′ = α
(
βf ′ – γ

)
, ()

where we introduced two meromorphic functions β := (αL)′
αf ′ and γ := a α′

α
.

Notice that α �≡ . We get easily

{

α
= β – γ 

f ′ ,
– α′

α
= β ′ + γ

f ′′
(f ′) – γ ′ 

f ′ .
()

Substitute 
α
from the top line to the bottom line in () to derive

(
γ

f ′ – β

)
α′

α
= β ′ + γ

f ′′

(f ′)
– γ ′ 

f ′ . ()

That is, for the meromorphic function δ := γ ( α′
α
+ γ ′

γ
– f ′′

f ′ ), one has

δ

f ′ = β ′ + β

α′

α
. ()

Now, when γ ≡ , then we see α is a constant, so that f –a
L(f )–a = c for a constant c = α �= .

As a consequence, we assume in the following that γ �≡ .
Next, if δ ≡ , then α′

α
+ γ ′

γ
– f ′′

f ′ ≡ ; using αγ = aα′, one derives

αγ = aα′ = cf ′. ()

Here, c �=  is a constant. Hence, it follows that N(r, f ) = O(N(r,α)) = S(r, f ), which fur-
ther yields N(r, 

α
)≤ kN̄(r, f ) + S(r, f ) = S(r, f ). On the other hand, combining () and ()

provides us with the following identity:

( + c)f ′ = (αL)′. ()
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If c = –, then αL = c for a constant c �= ; yet, since now f ′ = –aα′, we have L = –aL(α)
via an easy computation, so that –aαL(α) = c. Rewrite it as

c
α = –a

L(α)
α

. ()

This then implies thatm(r, 
α
)≤ 

m(r, L(α)
α

) + S(r, f ) = S(r, f ). Consequently, using the first
main theorem, one has T(r,α) = S(r, f ) and thus T(r, f ) = S(r, f ) from (). This is a con-
tradiction. If c �= –, then from () one observes

 + c
α

=
(αL)′
αf ′ = β . ()

An easy calculation saysm(r, 
α
) ≤ m(r,β)+S(r, f ) = S(r, f ), so thatT(r,α) = S(r, f ) and thus

T(r, f ) = S(r, f ) by (). This is a contradiction again.
All these foregoing discussions imply that δ �≡ . So, from (), we have

m
(
r,


f ′

)
≤ m

(
r,

α′

α

)
+m(r,β) +m

(
r,

β ′

β

)
+m

(
r,

δ

)

=m
(
r,

δ

)
+ S(r, f ) = T(r, δ) –N

(
r,

δ

)
+ S(r, f )

=m(r, δ) +N(r, δ) –N
(
r,

δ

)
+ S(r, f ).

Keeping in mindm(r,γ ) = S(r, f ), we havem(r, δ) = S(r, f ) and thus

m
(
r,


f ′

)
+N

(
r,

δ

)
=N(r, δ) + S(r, f ). ()

Reset δ = a( α′
α
) + a( α′

α
)′ – a α′

α

f ′′
f ′ and note that the zeros of α come from the poles of f .

When f ′(z) =  with multiplicity p ≥ k + , then α(z) �=  and L(f )(z) = (L(f ))′(z) = 
withmultiplicities at least p–k+ and p–k, respectively; using (), one observes α′(z) = 
with multiplicity at least p – k since f ′ – (αL)′ = aα′; thus, recalling γ = a α′

α
, we know

γ (z) =  with multiplicity at least p – k. Thereby, δ(z) =  with multiplicity at least p –
k – . As a result, it follows that

N(k+

(
r,


f ′

)
≤ N

(
r,

δ

)
+ (k + )N̄(k+

(
r,


f ′

)
+ S(r, f ). ()

When δ(z) = ∞, then either α(z) =  (from f (z) = ∞ in fact) or f (z) = ∞ with multi-
plicity  of δ(z) = ∞, or f ′(z) =  with multiplicity  of δ(z) = ∞. In view of () for the
case where f ′(z) = , we can thus conclude that

N(r, δ)≤ N̄(r, f ) + N̄k)

(
r,


f ′

)
+ S(r, f ). ()

Here, Nk)(r, 
f ′ ), N̄k)(r, 

f ′ ), and N(k+(r, 
f ′ ), N̄(k+(r, 

f ′ ) are the counting functions of the
zeros of f ′ with multiplicities ≤ k and ≥ k + , respectively.
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Altogether with (), (), and (), we obtain

T
(
r, f ′) =m

(
r,


f ′

)
+Nk)

(
r,


f ′

)
+N(k+

(
r,


f ′

)

=N(r, δ) +Nk)

(
r,


f ′

)
+ (k + )N̄(k+

(
r,


f ′

)
+ S(r, f )

≤ N̄(r, f ) + N̄k)

(
r,


f ′

)
+Nk)

(
r,


f ′

)
+ (k + )N̄(k+

(
r,


f ′

)
+ S(r, f ),

which further implies that, as k ≥  and Nk)(r, 
f ′ ) ≤ kN̄k)(r, 

f ′ ) + S(r, f ),

T
(
r, f ′) ≤ (k + )

{
N̄(r, f ) + N̄

(
r,


f ′

)}
+ S(r, f ). ()

This obviously contradicts our assumption. As a result, when a is a finite, nonzero con-
stant, it follows that f –a

L(f )–a = c with a constant c �= .
Case II. a is a nonconstant, small function.
Like before, rewrite () as f – a = αL – aα and differentiate it to yield

f ′ – a′ = (αL)′ – (αa)′. ()

When (f ′ – a′)(z) = , then we have {(αL)′ – (αa)′}(z) = . Recall that the zeros of α

come from the poles of f . As a consequence, one deduces that

H(z) :=
{
(αL)′
αf ′ –

(aα)′

αa′

}
(z) = . ()

If H �≡ , then we have, noticing thatm(r,H) = S(r, f ),

N̄
(
r,


f ′ – a′

)
≤ N

(
r,


H

)
+ S(r, f )

= T(r,H) + S(r, f ) =N(r,H) + S(r, f ).

NotewhenH(z) = ∞, thenwe have either α(z) =  (from f (z) = ∞ actually) or f (z) = ∞
- withmultiplicity k ofH(z) = ∞, or f ′(z) =  - withmultiplicity k– ofH(z) = ∞. Thus,
we can derive that, similar to (),

N(r,H)≤ k
{
N̄(r, f ) + N̄

(
r,


f ′

)}
+ S(r, f ). ()

Apply the second main theorem for three small functions to f ′ to yield

T
(
r, f ′) ≤ N̄

(
r,


f ′

)
+ N̄

(
r, f ′) + N̄

(
r,


f ′ – a′

)
+ S(r, f ), ()

which together with () yields () again. This gives a contradiction.
Thus, H ≡ . That is, (αL)′ ≡ f ′

a′ (aα)′. Using (), one derives

a′(f ′ – a′) ≡ (aα)′
(
f ′ – a′), ()
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so that a′ ≡ (aα)′; in other words, α =  – c
a for a constant c with c

a �= . We thus conclude
that f –a

L(f )–a =  – c
a and N(r,  – c

a ) =N(r,α) = S(r, f ).
Finally, let us prove the associated Theorem . When f , a, and aj (j = , , . . . ,k) are all

entire functions, we have α(z) = eω(z) for some entire function ω(z). If a is constant, then
we have the same result as in Case I: f –a

L(f )–a = c with a constant c �= ; if a is nonconstant,
then c

a = –eω(z) admitsmany zeros, so that a cannot be entire unless c = , which provides
us with the case f =L(f ).
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