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Abstract
In this paper, we deal with the regularity and a variation of constant formula for
solutions of the nonlinear differential equation with delay nonlinear terms governed
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1 Introduction
Let H and V be two complex Hilbert spaces. Assume that V is dense subspace in H and
the injection of V intoH is continuous. The norm on V andH will be denoted by ‖ · ‖ and
| · |, respectively. LetA be a continuous linear operator fromV intoV ∗ which is assumed to
satisfy Gårding’s inequality, and let φ : V → (–∞, +∞] be a lower semicontinuous, proper
convex function. Then we study the following variational inequality problem with nonlin-
ear term:

⎧⎪⎪⎨
⎪⎪⎩
(x′(t) +Ax(t),x(t) – z) + φ(x(t)) – φ(z)

≤ (
∫ 
–r h(t, s,x(t),x(t + s),u(t))μ(ds) + k(t),x(t) – z), a.e. ∀z ∈ V ,

x() = g, x(s) = g(s), –r ≤ s ≤ .

(NVE)

Here, g = (g, g) ∈H×L(,T ;V ), a forcing term k ∈ L(,T ;V ∗) and h :R+×V ×H →H
is a nonlinear mapping.
By the definition of the subdifferential operator ∂φ, the problem (NVE) is represented

by the following nonlinear functional differential problem:

⎧⎨
⎩
x′(t) +Ax(t) + ∂φ(x(t)) 
 ∫ 

–r h(t, s,x(t),x(t + s),u(t))μ(ds) + k(t),  < t,

x() = g, x(s) = g(s), –r ≤ s ≤ .
(NDE)

The theory of variational evolution inequalities is one of the most important domains
of application of the ideas and techniques of differential equations associated with max-
imal monotone operators and semigroups of nonlinear contractions. There is extensive
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literature on parabolic variational inequalities and the Stefan problems (see Lions [, ],
Brézis [, ], Friedman [], Elliott and Ockendon [], Barbu [, ]). For more details on the
applications of the theory we refer to the survey of Lions [] and the book by Duvaut and
Lions [].
In this paperwe are primarily interested in the regular problem that arise as direct conse-

quences of the general theory developed previously, and we consider to put in perspective
those models of initial value problems which can be formulated as nonlinear differential
equations of variational inequalities. When the nonlinear mapping h is a Lipschitz con-
tinuous from R×V into H , we will find that the most part of the regularity for parabolic
variational inequalities can also be applicable to (NDE) with nonlinear perturbations. The
above operator h is the semilinear case of the nonlinear part of quasilinear equations con-
sidered by Yong and Pan []. The approach used here is similar to that developed in [–
] on the general semilinear evolution equations.
Without conditions of the uniform boundedness of the nonlinear terms and the com-

pactness of the principal operators, we obtain the wellposedness of (NDE) by converting
the problem into the contractionmapping principle and the norm estimate of a solution of
the above nonlinear equation on L(,T ;V )∩W ,(,T ;V ∗)∩C([,T];H). Consequently,
in view of the monotonicity of ∂φ and using the interpolation theory, we show that the so-
lution mapping

H × L(–r, ;V )× L(,T ;H) 
 (
g, g,k

) �→ x

∈ L
(
,T ;D(A)

) ∩W ,(,T ;H)

is continuous and the mapping k �→ xk is compact from L(,T ;H) to L(,T ;V ), which
is useful for physical applications for the equations related with forcing terms containing
control part.

2 Parabolic variational inequalities
If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the corre-
sponding injections are continuous. The norm on V , H , and V ∗ will be denoted by ‖ · ‖,
| · |, and ‖ · ‖∗, respectively. The duality pairing between the element v of V ∗ and the ele-
ment v of V is denoted by (v, v), which is the ordinary inner product in H if v, v ∈ H .
For the sake of simplicity, we may consider

‖u‖∗ ≤ |u| ≤ ‖u‖, u ∈ V .

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as an element of
V ∗ is given by

‖l‖∗ = sup
v∈V

|(l, v)|
‖v‖ .

Therefore, we assume that V has a stronger topology than H and, for brevity, we may
regard

‖u‖∗ ≤ |u| ≤ ‖u‖, ∀u ∈ V .
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Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying Gårding’s
inequality,

Rea(u,u) ≥ ω‖u‖ –ω|u|, (.)

where ω >  and ω is a real number.
Let A be the operator associated with the sesquilinear form a(·, ·):

(Au, v) = a(u, v), u, v ∈ V . (.)

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram theorem. The
realization for the operator A in H which is the restriction of A to

D(A) = {u ∈ V ;Au ∈H}

can also be denoted by A. We also assume that there exists a constant C such that

‖u‖ ≤ C‖u‖/D(A)|u|/ (.)

for every u ∈D(A), where

‖u‖D(A) =
(|Au| + |u|)/

is the graph norm of D(A). Thus, in terms of the intermediate theory we may assume that

(
D(A),H

)
/, = V ,

where (D(A),H)/, denotes the real interpolation space between D(A) and H .
If X is a Banach space, L(,T ;X) is the collection of all stronglymeasurable square inte-

grable functions from (,T) into X andW ,(,T ;X) is the set of all absolutely continuous
functions on [,T] such that their derivative belongs to L(,T ;X).C([,T];X) will denote
the set of all continuous functions from [,T] into X with the supremum norm.

Lemma . Let T > . Then

H =
{
x ∈ V ∗ :

∫ T



∥∥AetAx∥∥
∗ dt < ∞

}
.

Proof Put u(t) = etAx for x ∈H . From



d
dt

∣∣u(t)∣∣ = Re
(
u̇(t),u(t)

)
= Re

(
Au(t),u(t)

)

= –Rea
(
u(t),u(t)

) ≤ –c
∥∥u(t)∥∥,

it follows that



d
dt

∣∣u(t)∣∣ + c
∥∥u(t)∥∥ ≤ .
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Integrating over t yields



∣∣u(t)∣∣ + c

∫ t



∥∥u(s)∥∥ ds≤ 

|x|.

Hence, we obtain

∫ T



∥∥AetAx∥∥
∗ dt ≤

∫ T


‖A‖B(V ,V∗)

∥∥u(s)∥∥ ds < ∞.

Conversely, suppose that x ∈ V ∗ and
∫ T
 ‖AetAx‖∗ dt < ∞. Put u(t) = etAx. Then since A is

an isomorphism operator from V to V ∗ there exists a constant c >  such that

∫ T



∥∥u(t)∥∥ dt ≤ c
∫ T



∥∥Au(t)∥∥
∗ dt = c

∫ T



∥∥AetAx∥∥
∗ dt.

From the assumptions and u̇(t) = AetAx it follows that

u ∈ L(,T ;V )∩W ,(,T ;V ∗) ⊂ C
(
[,T];H

)
.

Therefore, x = u() ∈H . �

By Lemma ., from Theorem .. of Butzer and Berens [], we can see that

(
V ,V ∗)

/, =H .

Using the regularity for the variational inequality of parabolic type (i.e., in case where
g ≡ ) as seen in Section . of [] we have the following result on (VE). We denote the
closure in H of the set D(φ) = {u ∈ V : φ(u) < ∞} by D(φ).

Proposition . () Let k ∈ L(,T ;V ∗) and (g, g) ∈ D(φ) × L(–r, ;V ). Then (NDE)
has a unique solution

x ∈ L(,T ;V )∩W ,(,T ;V ∗) ∩C
(
[,T];H

)
,

which satisfies

x′(t) =
(
k(t) –Ax(t) – ∂φ

(
x(t)

))

and

‖x‖L∩W ,∩C ≤ C
(
 +

∣∣g∣∣ + ∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;V∗)
)
, (.)

where C is some positive constant and L ∩C = L(,T ;V )∩C([,T];H).
() Let A be symmetric and let us assume that there exists h ∈H such that for every ε > 

and any y ∈D(φ)

Jε(y + εh) ∈D(φ) and φ
(
Jε(y + εh)

) ≤ φ(y),

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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where Jε = (I + εA)–. Then for k ∈ L(,T ;H) and (g, g) ∈D(φ)∩V ×L(–r, ;V ), (NDE)
has a unique solution,

x ∈ L
(
,T ;D(A)

) ∩W ,(,T ;H)∩C
(
[,T];H

)
,

which satisfies

‖x‖L∩W ,∩C ≤ C
(
 +

∣∣g∣∣ + ∥∥g∥∥L(–r,;D(A)) + ‖k‖L(,T ;H)
)
. (.)

Remark . In terms of Lemma ., the inclusion

L(,T ;V )∩W ,(,T ;V ∗) ⊂ C
(
[,T];H

)

is well known and is an easy consequence of the definition of real interpolation spaces by
the trace method (see [, ]).

3 Regularity for nonlinear variational inequalities
LetL andB be the Lebesgue σ -field on [,∞) and the Borel σ -field on [–r, ], respectively.
Let μ be a Borel measure on [–r, ] and h : [,∞)× [–r, ]×V ×H → H be a nonlinear
mapping satisfying the following:
(G) for any x, y ∈ V the mapping h(·, ·,x, y) is strongly L×B-measurable;
(G) there exist positive constants Li (i = , , ) such that

∣∣h(t, s,x, y) – h(t, s, x̂, ŷ)
∣∣ ≤ L‖x – x̂‖ + L|y – ŷ|,∣∣h(t, s, , )∣∣ ≤ L

for all (t, s) ∈ [,∞)× [–r, ] and x, x̂, y, ŷ ∈ V .

Remark . The above operator h is the semilinear case of the nonlinear part of quasilin-
ear equations considered by Yong and Pan [].

For any x ∈ L(–r,T ;V ), T >  we set

G(t,x) =
∫ 

–r
h
(
t, s,x(t),x(t + s)

)
μ(ds). (.)

Here as in [] we consider the Borel measurable corrections of x(·).

Lemma . Let x ∈ L(–r,T ;V ), T > . Then the nonlinear term G(·,x) defined by (.)
belongs to L(,T ;H) and

∥∥G(·,x)∥∥L(,T ;H) ≤ μ
(
[–r, ]

){
L

√
T + (L + L)‖x‖L(,T ;V ) + L‖x‖L(–r,;V )

}
. (.)

Moreover, if x,x ∈ L(–r,T ;V ), then

∥∥G(·,x) –G(·,x)
∥∥
L(,T ;H)

≤ μ
(
[–r, ]

){
(L + L)‖x – x‖L(,T ;V ) + L‖x – x‖L(–r,;V )

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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Proof From (G) and (G) it is easily seen that

∥∥G(·,x)∥∥L(,T ;H)

≤ μ
(
[–r, ]

){
L

√
T + L‖x‖L(,T ;V ) + L‖x‖L(–r,T ;V )

}
≤ μ

(
[–r, ]

){
L

√
T + (L + L)‖x‖L(,T ;V ) + L‖x‖L(–r,;V )

}
.

The proof of (.) is similar. �

Wedenote the closure inH of the setD(φ) = {u ∈ V : φ(u) < ∞} byD(φ). In what follows
this paper, we assume that D(φ) = H for the sake of simplicity. First, we are going to give
the following result on a local solvability of (NDE). The following lemma is due to Brézis
[, Lemma A.].

Lemma . Let m ∈ L(,T ;R) satisfying m(t) ≥  for all t ∈ (,T) and a ≥  be a con-
stant. Let b be a continuous function on [,T]⊂R satisfying the following inequalities:



b(t) ≤ 


a +

∫ t


m(s)b(s)ds, t ∈ [,T].

Then

∣∣b(t)∣∣ ≤ a +
∫ t


m(s)ds, t ∈ [,T].

Let x ∈ L(,T ;V )∩C([,T];H). Then invoking Proposition ., we see that the problem

⎧⎨
⎩
y′(t) +Ay(t) + ∂φ(y(t)) 
G(t,x) + k(t),  < t ≤ T ,

y() = g, y(s) = g(s), –r ≤ s ≤ ,
(.)

has a unique solution y ∈ L(,T ;V )∩W ,(,T ;V ∗)∩C([,T];H).

Lemma . Let y, y be the solutions of (.) with x replaced by x,x ∈ L(,T ;V ), re-
spectively. Then the following inequalities hold:



∣∣y(t) – y(t)

∣∣ +ω

∫ t



∥∥y(s) – y(s)
∥∥ ds

≤
∫ t


eω(t–s)H(s)

∣∣y(s) – y(s)
∣∣ds (.)

and

∣∣y(t) – y(t)
∣∣ ≤

∫ t


eω(t–s)H(s)ds, (.)

where

H(t) = μ
(
[–r, ]

)
L

∥∥x(t) – x(t)
∥∥ +μ

(
[–r, ]

)
L‖x – x‖C([,t];H).

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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Proof For i = , , we consider the following equation:

⎧⎨
⎩
y′
i(t) +Ayi(t) + ∂φ(yi(t)) 
G(t,xi) + k(t),  < t ≤ T ,

yi() = g, yi(s) = g(s), –r ≤ s ≤ .
(.)

From (.) it follows that

d
dt

(
y(t) – y(t)

)
+A

(
y(t) – y(t)

)
+ ∂φ

(
y(t)

)
– ∂φ

(
y(t)

)


 G(t,x) –G(t,x), t > .

Multiplying on both sides of y(t) – y(t) and using the monotonicity of ∂φ, we get



d
dt

∣∣y(t) – y(t)
∣∣ + a

(
y(t) – y(t), y(t) – y(t)

)

≤ (
G(t,x) –G(t,x), y(t) – y(t)

)
.

Noting that since x(s) – x(s) =  for s ∈ [–r, ),

∣∣G(t,x) –G(t,x)
∣∣ ≤ μ

(
[–r, ]

)
L

∥∥x(t) – x(t)
∥∥ +μ

(
[–r, ]

)
L‖x – x‖C([,t];H),

and putting

H(t) = μ
(
[–r, ]

)
L

∥∥x(t) – x(t)
∥∥ +μ

(
[–r, ]

)
L‖x – x‖C([,t];H),

by (.) and (.), we have



d
dt

∣∣y(t) – y(t)
∣∣ +ω

∥∥y(t) – y(t)
∥∥

≤ ω
∣∣y(t) – y(t)

∣∣ +H(t)
∣∣y(t) – y(t)

∣∣. (.)

Hence, integrating (.) over (, t), this yields



∣∣y(t) – y(t)

∣∣ +ω

∫ t



∥∥y(s) – y(s)
∥∥ ds

≤ ω

∫ t



∣∣y(s) – y(s)
∣∣ ds +

∫ t


H(s)

∣∣y(s) – y(s)
∣∣ds. (.)

From (.) it follows that

d
dt

{
e–ωt

∫ t



∣∣y(s) – y(s)
∣∣ ds

}

= e–ωt
{


∣∣y(t) – y(t)

∣∣ –ω

∫ t



∣∣y(s) – y(s)
∣∣ ds

}

≤ e–ωt
∫ t


H(s)

∣∣y(s) – y(s)
∣∣ds. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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Integrating (.) over (, t) we have

e–ωt
∫ t



∣∣y(s) – y(s)
∣∣ ds

≤ 
∫ t


e–ωτ

∫ τ


H(s)

∣∣y(s) – y(s)
∣∣dsdτ

=

ω

∫ t



(
e–ωs – e–ωt

)
H(s)

∣∣y(s) – y(s)
∣∣ds,

thus, we get

ω

∫ t



∣∣y(s) – y(s)
∣∣ ds≤

∫ t



(
eω(t–s) – 

)
H(s)

∣∣y(s) – y(s)
∣∣ds. (.)

From (.) and (.), (.) holds, which implies



(
e–ωt

∣∣y(t) – y(t)
∣∣) +ωe–ωt

∫ t



∥∥y(s) – y(s)
∥∥ ds

≤
∫ t


e–ωsH(s)e–ωs

∣∣y(s) – y(s)
∣∣ds.

By using Lemma ., we obtain (.), as claimed. �

Theorem. Let the assumptions (G) and (G) be satisfied.Assume that k ∈ L(,T ;V ∗)
and (g, g) ∈ H × L(–r, ;V ). Then there exists a time T >  such that the functional
differential equation (NDE) admits a unique solution x in L(–r,T;V )∩C([,T];V ∗).

Proof Let us fix T >  such that

M(eωT – )
ωmin{/,ω} < , (.)

where

M ≡ (
Lμ

(
[–r, ]

)) + LLμ
(
[–r, ]

) + (
Lμ

(
[–r, ]

)).
We are going to show that x �→ y is strictly contractive from L(,T;V )∩C([,T];H) to
itself if the condition (.) is satisfied. The norm in L(,T;V )∩C([,T];H) is given by

‖ · ‖L(,T;V )∩C([,T];H) =max
{‖ · ‖L(,T;V ),‖ · ‖C([,T];H)

}
.

Let y, y be the solutions of (.) with x replaced by x,x ∈ L(,T;V ), respectively.
From (.) and (.) it follows that



∣∣y(t) – y(t)

∣∣ +ω

∫ t



∥∥y(s) – y(s)
∥∥ ds

≤
∫ t


eω(t–s)H(s)

∫ s


eω(s–τ )H(τ )dτ ds

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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= eωt
∫ t


e–ωsH(s)

∫ s


e–ωτH(τ )dτ ds

= eωt
∫ t





d
ds

{∫ s


e–ωτH(τ )dτ

}

ds =


eωt

{∫ t


e–ωτH(τ )dτ

}

≤ 

eωt

∫ t


e–ωτ dτ

∫ t


H(τ ) dτ =



eωt  – e–ωt

ω

∫ t


H(τ ) dτ

=


ω

(
eωt – 

)∫ t


H(s) ds. (.)

Here, since

∫ t


H(s) ds =

∫ t



{(
Lμ

(
[–r, ]

))∥∥x(s) – x(s)
∥∥

+ LLμ
(
[–r, ]

)∥∥x(s) – x(s)
∥∥ · ‖x – x‖C([,s];H)

+
(
Lμ

(
[–r, ]

))‖x – x‖C([,s];H)
}
ds

≤ {(
Lμ

(
[–r, ]

)) + LLμ
(
[–r, ]

)
+

(
Lμ

(
[–r, ]

))}‖x – x‖L(,t;V )∩C([,t];H),

taking

M ≡ (
Lμ

(
[–r, ]

)) + LLμ
(
[–r, ]

) + (
Lμ

(
[–r, ]

)),
from (.) it follows that

‖y – y‖L(,T;V )∩C([,T];H) ≤
M(eωT – )

ωmin{/,ω}‖x – x‖L(,T;V )∩C([,T];H). (.)

Starting from initial value x(t) = g, x(s) = g(s) for –r ≤ s ≤ , consider a sequence
{xn(·)} satisfying

⎧⎨
⎩
x′
n+(t) +Axn+(t) + ∂φ(xn+(t)) 
G(t,xn) + k(t),  < t ≤ T ,

xn+() = g, x′
n+(s) = g(s), –r ≤ s ≤ .

Then from (.) it follows that

‖xn+ – xn‖L(,T;V )∩C([,T];H) ≤
M(eωT – )

ωmin{/,ω}‖xn – xn–‖L(,T;V )∩C([,T];H).

So by virtue of the condition (.) the contraction principle shows that there exists x(·) ∈
L(,T;V )∩C([,T];H) such that

xn(·)→ x(·) in L(,T;V )∩C
(
[,T];H

)
. �

Now we give a norm estimation of the solution of (NDE) and establish the global exis-
tence of solutions with the aid of norm estimations.

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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Theorem . Let the assumptions (G) and (G) be satisfied. Then for any (g, g) ∈ H ×
L(–r, ;V ) (T > ) and k ∈ L(,T ;V ∗), the solution x of (NDE) exists and is unique in
W(T) ≡ L(–r,T ;V )∩W ,(,T ;V ∗), and there exists a constant C depending on T such
that

‖x‖W(T) ≤ C
(
 +

∣∣g∣∣ + ∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;V∗)
)
. (.)

Proof Let y be the solution of

⎧⎨
⎩

dy(t)
dt +Ay(t) + ∂φ(y(t)) 
 k(t),  < t ≤ T,

y() = g.

Then, since

d
dt

(
x(t) – y(t)

)
+A

(
x(t) – y(t)

)
+ ∂φ

(
x(t)

)
– ∂φ

(
y(t)

) 
G(t,x),

by multiplying by x(t) – y(t) and using the monotonicity of ∂φ, (.), and (.), we obtain



d
dt

∣∣x(t) – y(t)
∣∣ +ω

∥∥x(t) – y(t)
∥∥

≤ ω
∣∣x(t) – y(t)

∣∣ + ∣∣G(t,x)∣∣ · ∣∣x(t) – y(t)
∣∣. (.)

By integrating on (.) over (, t) we have



∣∣x(t) – y(t)

∣∣ +ω

∫ t



∥∥x(s) – y(s)
∥∥ ds

≤ ω

∫ t



∣∣x(s) – y(s)
∣∣ ds +

∫ t



∣∣G(s,x)∣∣ · ∣∣x(s) – y(s)
∣∣ds. (.)

By a procedure similar to (.) regarding

H(t) = μ
(
[–r, ]

)
L

∥∥x(t)∥∥ +μ
(
[–r, ]

)
L‖x‖C([,t];H),

we have

‖x – y‖L(,T;V )∩C([,T];H) ≤
M(eωT – )

ωmin{/,ω}‖x‖

L(,T;V )∩C([,T];H).

Put

N =
M(eωT – )

ωmin{/,ω} .

Then we have

‖x – y‖L(,T;V )∩C([,T];H) ≤ N /‖x‖L(,T;V )∩C([,T];H)
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and hence, from (.) in Proposition ., we have

‖x‖L(,T;V )∩C([,T];H)

≤ 
 –N / ‖y‖L(,T;V )∩C([,T];H)

≤ C

 –N /

(
 +

∣∣g∣∣ + ∥∥g∥∥L(,T;V ) + ‖k‖L(,T;V∗)
)

≤ C
(
 +

∣∣g∣∣ + ∥∥g∥∥L(,T;V ) + ‖k‖L(,T;V∗)
)

(.)

for some positive constant C. Acting on both side of (NDE) by x′(t) and by using

d
dt

φ
(
x(t)

)
=

(
g(t),

d
dt

x(t)
)
, a.e.  < t

for all g(t) ∈ ∂φ(x(t)), we have

∫ t



∣∣x′
n(s)

∣∣ ds + 

(
Axn(t),xn(t)

)
+ φ

(
xn(t)

)

≤ 

(Ax,x) + φ(x) +

∫ t



∣∣G(
s,xn(s)

)
+ k(s)

∣∣∣∣x′
n(s)

∣∣ds, (.)

thus, we obtain the norm estimate of x in W ,(,T ;H) satisfying (.). Since the condi-
tion (.) is independent of initial values we can derive from (.) that φ(x(nT)) < ∞,
and the solution of (NDE) can be extended to the internal [,nT] for the natural number
n, i.e., for the initial x(nT) in the interval [nT, (n + )T], an analogous estimate (.)
holds for the solution in [, (n + )T]. Furthermore, the estimate (.) is easily obtained
from (.) and (.). �

Theorem . Suppose that the assumptions (G) and (G) are satisfied. Let A be symmet-
ric and let us assume that there exists h ∈H such that for every ε >  and any y ∈D(φ)

Jε(y + εh) ∈D(φ) and φ
(
Jε(y + εh)

) ≤ φ(y).

If k ∈ L(,T ;H) and (g, g) ∈ V × L(–r, ;D(A)), then

x ∈W(T) ≡ L
(
–r,T ;D(A)

) ∩W ,(,T ;H),

and the mapping (g, g,k) �→ u ∈W(T) is continuous.

Proof It is easy to show that if (g, g) ∈ V × L(–r, ;D(A)) and k ∈ L(,T ;H), then from
Proposition . it follows that u belongs to W(T). Let (gi , gi ,ki) ∈ V × L(–r, ;D(A)) ×
L(,T ;H), and ui be the solution of (NDE) with (gi , gi ,ki) in place of (g, g,k) for i = , .
Then in view of Proposition . and Lemma . we have

‖x – x‖W(T) ≤ C
{∥∥g – g

∥∥ +
∥∥g – g

∥∥
L(–r,;D(A))

+
∥∥G(·,x) –G(·,x)

∥∥
L(,T ;H) + ‖k – k‖L(,T ;H)

}

http://www.journalofinequalitiesandapplications.com/content/2014/1/387
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≤ C
[∥∥g – g

∥∥ +
∥∥g – g

∥∥
L(–r,;D(A)) + ‖k – k‖L(,T ;H)

+μ
(
[–r, ]

){
(L + L)

(‖x – x‖L(,T ;V )

+ L
∥∥g – g

∥∥
L(–r,;V )

)}]
. (.)

Since

x(t) – x(t) = g – g +
∫ t



(
ẋ(s) – ẋ(s)

)
ds,

we get

‖x – x‖L(,T ;H) ≤
√
T

∣∣g – g
∣∣ + T√


‖x – x‖W ,(,T ;H).

Hence, arguing as in (.) we get

‖x – x‖L(,T ;V ) ≤ C‖x – x‖/L(,T ;D(A))‖x – x‖/L(,T ;H)

≤ C‖x – x‖/L(,T ;D(A))

×
{
T /∣∣g – g

∣∣/ +
(

T√


)/

‖x – x‖/W ,(,T ;H)

}

≤ CT /∣∣g – g
∣∣/‖x – x‖/L(,T ;D(A)) +C

(
T√


)/

‖x – x‖W(T)

≤ –/C
∣∣g – g

∣∣ + C

(
T√


)/

‖x – x‖W(T). (.)

Combining (.) and (.) we obtain

‖x – x‖W(T) ≤ C
{∥∥g – g

∥∥ +
∥∥g – g

∥∥
L(–r,;D(A))

+ ‖k – k‖L(,T ;H) +μ
(
[–r, ]

)
L

∥∥g – g
∥∥
L(–r,;V )

}

+ –/CCμ
(
[–r, ]

)
(L + L)

∣∣g – g
∣∣ + CC

(
T√


)/

× μ
(
[–r, ]

)
(L + L)‖x – x‖W(T). (.)

Suppose that (gn , gn,kn) → (g, g,k) in X × L(–r, ;D(A))× L(,T ;H), and let xn and x
be the solutions (SLE) with (gn , gn,kn) and (g, g,k), respectively. Let  < T ≤ T be such
that

CC(T/
√
)/(L + LLT/

√
) < .

Then by virtue of (.) with T replaced by T we see that un → u inW(T). This implies
that (xn(T), (xn)T ) �→ (x(T),xT ) in V ×L(–r, ;D(A)). Hence the same argument shows
that un → u in

L
(
T,min{T,T};D(A)) ∩W ,(T,min{T,T};H)

.

Repeating this process we conclude that un → u inW(T). �
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Theorem. For k ∈ L(,T ;H) let xk be the solution of (NDE). Let us assume the natural
assumption that the embeddingD(A) ⊂ V is compact.Then themapping k �→ xk is compact
from L(,T ;H) to L(,T ;V ).

Proof If k ∈ L(,T ;H), noting ‖k‖L(,T ;V∗) ≤ ‖k‖L(,T ;H), then in view of Theorem .

‖xk‖W(T) ≤ C
(
 +

∣∣g∣∣ + ∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;H)
)
. (.)

Since xk ∈ L(,T ;V ), G(·,xk) ∈ L(,T ;H). Consequently xk ∈ L(,T ;D(A))∩W ,(,T ;
H) and with aid of Proposition ., Lemma ., and (.),

‖xk‖L(,T ;D(A))∩W ,(,T ;V )

≤ C
(∥∥g∥∥ +

∥∥g∥∥L(–r,;D(A)) +
∥∥G(·,xk) + k

∥∥
L(,T ;H)

)

≤ C
{∥∥g∥∥ +

∥∥g∥∥L(–r,;D(A)) +μ
(
[–r, ]

)
L

√
T

+μ
(
[–r, ]

)
(L + L)‖x‖L(,T ;V ) +μ

(
[–r, ]

)
L

∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;H)
}

≤ C
[∥∥g∥∥ +

∥∥g∥∥L(–r,;D(A)) +μ
(
[–r, ]

)
L

√
T

+μ
(
[–r, ]

)
(L + L)C

{
 +

∣∣g∣∣ + ∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;H)
}

+μ
(
[–r, ]

)
L

∥∥g∥∥L(–r,;V ) + ‖k‖L(,T ;H)
]
.

Hence if k is bounded in L(,T ;H), then so is xk in L(,T ;D(A)) ∩ W ,(,T ;H). Since
D(A) is compactly embedded in V by assumption, the embedding

L
(
,T ;D(A)

) ∩W ,(,T ;H) ⊂ L(,T ;V )

is compact in view of Theorem  of Aubin []. �

Remark . Since the operator A : D(A) ⊂ H → H is an unbounded operator, we will
make use of the hypothesis (G). If A is a bounded operator from H into itself, we may
assume that h : [,∞) × [–r, ] × V × H → H is a nonlinear mapping satisfying the fol-
lowing: there exist positive constants Li (i = , ) such that

∣∣h(t, s,x, y) – h(t, s, x̂, ŷ)
∣∣ ≤ L|x – x̂| + L|y – ŷ|

for all (t, s) ∈ [,∞)× [–r, ] and x, x̂, y, ŷ ∈ V , then our results can be obtained directly.
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