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Abstract
In this paper, we prove some strong and weak convergence theorems for continuous
pseudocontractive mapping and a weak convergence theorem for nonexpansive
mapping in real uniformly convex Banach spaces. As an application of the strong
convergence theorem, we give an interesting example.
Keywords: uniformly convex Banach space; pseudocontractive mapping;
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1 Introduction and preliminaries
Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space of E
and J : E → E∗ is the normalized duality mapping defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖f ‖ = ‖x‖}

for all x ∈ E, where 〈·, ·〉 denotes duality pairing between E and E∗. A single-valued nor-
malized duality mapping is denoted by j.
Let C be a nonempty closed convex subset of a real Banach space E. A mapping T : C →

C is said to be pseudocontractive [] if, for any x, y ∈ C, there exists j(x – y) ∈ J(x – y) such
that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖. (.)

It is well known [] that (.) is equivalent to the following:

‖x – y‖ ≤ ∥∥x – y + s
[
(I – T)x – (I – T)y

]∥∥ (.)

for all s >  and x, y ∈ C.
A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.

Remark . It is easy to see that, if T is nonexpansive, then T is continuous pseudocon-
tractive, but the converse is not true in general.

©2014 Guo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
mailto:yjcho@gnu.ac.kr
http://creativecommons.org/licenses/by/2.0


Guo et al. Journal of Inequalities and Applications 2014, 2014:384 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/384

Example . Let E = (–∞,∞) with the usual norm | · |. Then E∗ = E, 〈x, f 〉 = xf for all
x ∈ E and f ∈ E∗ and the normalized duality mapping J : E → E∗ is as follows:

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = |x||f |, |f | = |x|} = {x}

for all x ∈ E. Let C = E and define a mapping T : C → C by Tx = –x for all x ∈ C. It is easy
to prove that T is continuous pseudocontractive, but not nonexpansive.

In , Deimling [] proved the following fixed point theorem.

Theorem . Let E be a real Banach space, C be a nonempty closed convex subset of E,
and T : C → C be a continuous strongly pseudocontractive mapping. Then T has a unique
fixed point in C.

Let E be a real Banach space, C be a nonempty closed convex subset of E and T : C → C
be a continuous pseudocontractive mapping. For all u ∈ C and t ∈ (, ), define the map-
ping St : C → C by

Stx = tu + ( – t)Tx

for all x ∈ C. It is easy to prove that St is a continuous strongly pseudocontractivemapping.
By Theorem ., there exists a unique fixed point xt ∈ C of St such that

xt = tu + ( – t)Txt

for all t ∈ (, ).
Let T : C → C be a continuous pseudocontractive mapping and define an implicit iter-

ation process {xn} by
{
x ∈ C,
xn = αnxn– + ( – αn)Txn

(.)

for each n≥ , where {αn} is a sequence in (, ) with some conditions.
In , Zhou [] studied the implicit iteration process (.) and proved a weak con-

vergence theorem for the strict pseudocontraction in a real reflexive Banach space which
satisfies Opial’s condition.
The purpose of this paper is to discuss the implicit iteration process (.) and to prove

some strong and weak convergence theorems for a continuous pseudocontractive map-
ping and a weak convergence theorem for a nonexpansive mapping in real uniformly con-
vex Banach spaces. As an application of the strong convergence theorem, we give an in-
teresting example.
In order to prove the main results, we need the following:
A Banach space E is said to satisfy Opial’s condition [] if, for any sequence {xn} of E,

xn → x weakly as n→ ∞ implies that

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖
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for all y ∈ E with y �= x. A Banach space E is said to have the Kadec-Klee property [] if, for
every sequence {xn} in E, xn → x weakly and ‖xn‖ → ‖x‖, it follows that xn → x strongly.

Lemma . ([]) Let E be a uniformly convex Banach space with the modulus of uniform
convexity δE . Then δE : [, ]→ [, ] is continuous, increasing, δE() = , δE(t) >  for t > 
and, further,

∥∥cu + ( – c)v
∥∥ ≤  – min{c,  – c}δE

(‖u – v‖)
whenever ≤ c ≤  and ‖u‖,‖v‖ ≤ .

Lemma . ([]) Let X be a uniformly convex Banach space and C be a convex subset of X .
Then there exists a strictly increasing continuous convex function γ : [,∞)→ [,∞) with
γ () =  such that, for each S : C → C with Lipschitz constant L,

∥∥αSx + ( – α)Sy – S
[
αx + ( – α)y

]∥∥ ≤ Lγ –
(

‖x – y‖ – 
L

‖Sx – Sy‖
)

for all x, y ∈ C and  < α < .

Lemma . ([]) Let X be a uniformly convex Banach space such that its dual space X∗

has the Kadec-Klee property. Suppose that {xn} is a bounded sequence and f, f ∈Ww({xn})
(whereWw({xn}) denotes the set of all weak subsequential limits of a bounded sequence {xn}
in X) such that

lim
n→∞

∥∥αxn + ( – α)f – f
∥∥

exists for all α ∈ [, ]. Then f = f.

Lemma . ([]) Let E be a real uniformly convex Banach space, C be a nonempty closed
convex subset of E and T : C → C be a continuous pseudocontractive mapping. Then I –T
is semi-closed at zero, i.e., for each sequence {xn} in C, if {xn} converges weakly to q ∈ C and
{(I – T)xn} converges strongly to , then (I – T)q = .

2 Convergence for continuous pseudocontractive mappings
Lemma. Let E be a real uniformly convex Banach space,C be a nonempty closed convex
subset of E and T : C → C be a continuous pseudocontractive mapping with F(T) = {x ∈
C : Tx = x} �= ∅. Let {xn} be defined by (.), where αn ∈ (, ) and lim supn→∞ αn < . Then
() ‖xn – p‖ ≤ ‖xn– – p‖ for all n≥  and all p ∈ F(T);
() limn→∞ ‖xn – p‖ exists for all p ∈ F(T);
() limn→∞ d(xn,F(T)) exists;
() limn→∞ ‖xn – Txn‖ = .

Proof For all n≥  and p ∈ F(T), since T is pseudocontractive, it follows from (.) that

‖xn – p‖ = 〈
xn – p, j(xn – p)

〉
= αn

〈
xn– – p, j(xn – p)

〉
+ ( – αn)

〈
Txn – p, j(xn – p)

〉
≤ αn‖xn– – p‖‖xn – p‖ + ( – αn)‖xn – p‖,
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which implies that ‖xn – p‖ ≤ ‖xn– – p‖ and d(xn,F(T)) ≤ d(xn–,F(T)). Therefore,
limn→∞ ‖xn – p‖ and limn→∞ d(xn,F(T)) exist. Thus (), (), and () are proved.
Now, we prove (). By using (.), (.), and Lemma ., it follows that, for all p ∈ F(T),

‖xn – p‖ ≤
∥∥∥∥xn – p +

 – αn

αn
(xn – Txn)

∥∥∥∥
=

∥∥∥∥xn – p +
 – αn


(xn– – Txn)

∥∥∥∥
=

∥∥∥∥xn – p +
xn– – xn



∥∥∥∥
=

∥∥∥∥xn– + xn


– p
∥∥∥∥

= ‖xn– – p‖
∥∥∥∥  xn– – p

‖xn– – p‖ +



xn – p
‖xn– – p‖

∥∥∥∥
≤ ‖xn– – p‖

[
 – δE

(‖xn – xn–‖
‖xn– – p‖

)]
.

This implies that

‖xn– – p‖δE
(‖xn – xn–‖

‖xn– – p‖
)

≤ ‖xn– – p‖ – ‖xn – p‖.

If ‖xn – p‖� , then we have xn – xn– →  as n→ ∞ by the properties of δE . It follows
from ‖xn– – Txn‖ = 

–αn
‖xn – xn–‖ and lim supn→∞ αn <  that xn– – Txn →  as n→ ∞

and so

‖xn – Txn‖ = αn‖xn– – Txn‖ ≤ ‖xn– – Txn‖ → 

as n→ ∞.
If ‖xn – p‖ → , then, since T is continuous, it follows that

lim
n→∞‖xn – Txn‖ = ‖p – Tp‖ = .

This completes the proof. �

Theorem. Under the assumptions of Lemma ., {xn} converges strongly to a fixed point
of T if and only if lim infn→∞ d(xn,F(T)) = .

Proof The necessity is obvious. So, we will prove the sufficiency. Assume that

lim inf
n→∞ d

(
xn,F(T)

)
= .

By Lemma ., limit limn→∞ d(xn,F(T)) exists and so limn→∞ d(xn,F(T)) = .
Now, we show that {xn} is a Cauchy sequence in C. In fact, it follows from Lemma .

that ‖xm – p‖ ≤ ‖xn – p‖ for all positive integers m, n with m > n≥  and p ∈ F(T). So,

‖xm – xn‖ ≤ ‖xn – p‖ + ‖xm – p‖ ≤ ‖xn – p‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
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Taking the infimum over all p ∈ F(T), we have

‖xm – xn‖ ≤ d
(
xn,F(T)

)
.

It follows from limn→∞ d(xn,F(T)) =  that {xn} is a Cauchy sequence. C is a closed subset
of E and so {xn} converges strongly to some q ∈ C. Further, by the continuity of T , it is
easy to prove that F(T) is closed and it follows from limn→∞ d(xn,F(T)) =  that q ∈ F(T).
This completes the proof. �

Corollary . Under the assumptions of Lemma ., {xn} converges strongly to a fixed point
p of T if and only if there exists a subsequence {xnk } of {xn} such that {xnk } converges strongly
to p.

Proof Since

lim inf
n→∞ d

(
xn,F(T)

) ≤ lim inf
k→∞

d
(
xnk ,F(T)

) ≤ lim
k→∞

‖xnk – p‖,

it follows from Theorem . that Corollary . holds. This completes the proof. �

Theorem . Under the assumptions of Lemma ., if there exists a nondecreasing func-
tion f : [,∞)→ [,∞) with f () =  and f (r) >  for all r ∈ (,∞) such that

f
(
d
(
x,F(T)

)) ≤ ‖x – Tx‖

for all x ∈ C, then {xn} converges strongly to a fixed point of T .

Proof Since limn→∞ ‖xn – Txn‖ =  by Lemma . and so limn→∞ f (d(xn,F(T))) = . Fur-
ther, by using Lemma. limn→∞ d(xn,F(T)) exists, andwe assume limn→∞ d(xn,F(T)) = r.
If r > , there exists a positive integer N such that d(xn,F(T)) > r

 for all n >N . Thus we
have

lim
n→∞ f

(
d
(
xn,F(T)

)) ≥ f
(
r


)
> ,

which is a contradiction. Therefore, r = . It follows from Theorem . that Theorem .
holds. This completes the proof. �

Definition . ([]) Let E be a real normed linear space, C be a nonempty subset of E,
and T : C → E be a mapping. The pair (T ,C) is said to satisfy the condition (A) if, for any
bounded closed subset G of C, {z = x – Tx : x ∈G} is a closed subset of E.

Now, we prove strong convergence and weak convergence theorems for a continuous
pseudocontractive mapping in real uniformly convex Banach spaces.

Theorem. Under the assumptions of Lemma ., if the pair (T ,C) satisfies the condition
(A), then {xn} converges strongly to a fixed point of T .

Proof The sequence {xn} is bounded inC by Lemma .. LettingG = {xn}, whereA denotes
the closure ofA,G is a bounded closed subset ofC and soM = {z = x–Tx : x ∈ G} is a closed

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
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subset of E since the pair (T ,C) satisfies the condition (A). It follows from {xn –Txn} ⊂M
and xn – Txn →  as n → ∞ by Lemma .() that the zero vector  ∈ M and so there
exists q ∈ G such that q = Tq. This shows that q is a fixed point of T and so there exists a
positive integer n such that xn = q or there exists a subsequence {xnk } of {xn} such that
xnk → q as n→ ∞.
If xn = q, then it follows from Lemma .() that xn = q for all n ≥ n and so xn → q as

n→ ∞.
If xnk → q, then, since limn→∞ ‖xn – q‖ exists by Lemma .(), xn → q as n→ ∞. This

completes the proof. �

As an application of Theorem ., we give the following.

Example . Let E = (–∞,∞) with the usual norm | · |. Then E∗ = E, 〈x, f 〉 = xf for all
x ∈ E and f ∈ E∗ and J(x) = {x} for all x ∈ E. Let C = [,∞). Define a mapping T : C → C
by

Tx =

⎧⎨
⎩


 ,  ≤ x ≤ 

 ,

x,


 < x <∞.

Then T is continuous pseudocontractive with F(T) = { 
 } and the pair (T ,C) satisfies the

condition (A). In fact, for all x ∈ [,  ] and y ∈ (  ,∞), we have x < y +  and so

 <


y –



< y – x. (.)

For all x ∈ (  ,∞) and y ∈ [,  ], we obtain y < x +  and so

 <


x –



< x – y. (.)

Thus, for all x, y ∈ C, taking j(x – y) = x – y ∈ J(x – y), it follows from (.) and (.) that

〈
Tx – Ty, j(x – y)

〉

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈 
 –


 ,x – y〉 =  ≤ |x – y|, x, y ∈ [,  ],

〈 
 –


y,x – y〉 = ( y –


 )(y – x) < |x – y|, x ∈ [,  ], y ∈ (  ,∞),

〈 x – 
 ,x – y〉 = ( x –


 )(x – y) < |x – y|, x ∈ (  ,∞), y ∈ [,  ],

〈 x – 
y,x – y〉 = 

 (x – y) ≤ |x – y|, x, y ∈ (  ,∞).

This shows that T is continuous pseudocontractive.
Now, we prove that the pair (T ,C) satisfies the condition (A). For any bounded closed

subsetG ofC, we denoteM = {z = x–Tx : x ∈G}. ThenM is closed. Indeed, for any zn ∈M
with zn → z, there exists xn ∈G such that zn = xn –Txn. We consider the following cases.

Case . There exists a positive integer n such that xn ∈ [,  ] for all n ≥ n.
Case . There exists a subsequence {xnk } of {xn} such that xnk ∈ (  ,∞) for all k ≥ .

If Case  holds, then zn = xn–Txn = xn– 
 for all n ≥ n and so xn = zn+ 

 → z+ 
 ∈ [,  ]

as n→ ∞. Since G is closed, it follows that z + 
 ∈ G and so z = (z + 

 ) – T(z + 
 ) ∈M.

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
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If Case  holds, then znk = xnk – Txnk =

xnk for all k ≥  and so xnk = znk → z ∈ G. If

z = 
 , we have z =


 = 

 – T 
 = z – T(z) ∈ M. Otherwise, we have z ∈ (  ,∞) and so

z = z – T(z) ∈M.
By Theorem ., it is easy to prove that, for any x ∈ C, there exists a unique xn ∈ C such

that

xn = αnxn– + ( – αn)Txn

for all n ≥ , where αn = n
n+ ∈ (, ) for all n≥  and

lim sup
n→∞

αn = lim
n→∞αn =



< .

Thus it follows from Theorem . that the sequence {xn} converges to 
 .

Theorem . Under the assumptions of Lemma ., if E satisfies Opial’s condition, then
{xn} converges weakly to a fixed point of T .

Proof Since {xn} is bounded by Lemma . and E is reflexive, there exists a subse-
quence {xnk } of {xn} which converges weakly to a point p ∈ C. By Lemma ., we have
limk→∞ ‖xnk – Txnk‖ = . It follows from Lemma . that p ∈ F(T).
Now, we prove that {xn} converges weakly to p. Suppose that there exists a subsequence

{xmj} of {xn} such that {xmj} converges weakly to a point p∗ ∈ C. Then p = p∗. In fact, if
p �= p∗, then it follows from Opial’s condition that

lim
n→∞‖xn – p‖ = lim sup

k→∞
‖xnk – p‖ < lim sup

k→∞

∥∥xnk – p∗∥∥ = lim
n→∞

∥∥xn – p∗∥∥
= lim sup

j→∞

∥∥xnj – p∗∥∥ < lim sup
j→∞

‖xnj – p‖ = lim
n→∞‖xn – p‖,

which is a contradiction. So p = p∗. Therefore, {xn} converges weakly to a fixed point of T .
This completes the proof. �

Remark . By Remark ., clearly, Theorems ., ., . and . still hold for nonexpan-
sive mappings.

3 Weak convergence for nonexpansive mappings
In this section, we prove a weak convergence theorem for a nonexpansive mapping in real
uniformly convex Banach spaces.

Lemma . Let E be a real uniformly convex Banach space and C be a nonempty closed
convex subset of E. Let T : C → C be a nonexpansive mapping with F(T) �= ∅ and {xn} be
the sequence defined by (.), where αn ∈ (, ) and lim supn→∞ αn < . Then, for all p,p ∈
F(T), the limit limn→∞ ‖txn + ( – t)p – p‖ exists for all t ∈ [, ].

Proof Letting an(t) = ‖txn + ( – t)p – p‖ for all t ∈ [, ], limn→∞ an() = ‖p – p‖ and
limn→∞ an() = limn→∞ ‖xn – p‖ exists by Remark . and Lemma .. Thus it remains to

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
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prove Lemma . for any t ∈ (, ). For all n ≥  and x ∈ C, we define a mapping Ax,n– :
C → C by

Ax,n–y = αnx + ( – αn)Ty

for all y ∈ C. Then we have

‖Ax,n–u –Ax,n–v‖ = ( – αn)‖Tu – Tv‖ ≤ ( – αn)‖u – v‖

for all u, v ∈ C. It follows from  < –αn <  that Ax,n– is contractive and so it has a unique
fixed point in C, which is denoted by Gn–x. Define a mapping Gn : C → C by

Gn = αn+I + ( – αn+)TGn, (.)

where I is a identity mapping. It follows from (.) that

‖Gnx –Gny‖ ≤ αn+‖x – y‖ + ( – αn+)‖Gnx –Gny‖

for all x, y ∈ C and so

‖Gnx –Gny‖ ≤ ‖x – y‖. (.)

Using (.) and (.), we obtain

‖Gnxn – xn+‖ ≤ ( – αn+)‖Gnxn – xn+‖ (.)

and

‖Gnp – p‖ ≤ ( – αn+)‖Gnp – p‖ (.)

for all p ∈ F(T). It follows from (.), (.) and  < –αn+ <  thatGnxn = xn+ andGnp = p.
For eachm ≥ , let

Sn,m =Gn+m–Gn+m– · · ·Gn

and

bn,m =
∥∥Sn,m(

txn + ( – t)p
)
–

(
tSn,mxn + ( – t)Sn,mp

)∥∥. (.)

By (.), we have

‖Sn,mx – Sn,my‖ ≤ ‖x – y‖

for all x, y ∈ C. This shows that Sn,m is nonexpansive, Sn,mxn = xn+m and Sn,mp = p for all
p ∈ F(T). By Lemma ., we obtain

bn,m ≤ γ –(‖xn – p‖ – ‖xn+m – p‖
)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/384
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It is easy to prove that

an+m(t)≤
∥∥txn + ( – t)p – p

∥∥ + bn,m ≤ an(t) + bn,m

≤ an(t) + γ –(‖xn – p‖ – ‖xn+m – p‖
)
.

For fixed n and letting m → ∞, we have

lim sup
m→∞

am(t) ≤ an(t) + γ –
(
‖xn – p‖ – lim

m→∞‖xm – p‖
)
.

Again, letting n → ∞, we obtain

lim sup
n→∞

an(t) ≤ lim inf
n→∞ an(t) + γ –() = lim inf

n→∞ an(t).

This shows that

lim
n→∞

∥∥txn + ( – t)p – p
∥∥

exists for all t ∈ (, ). This completes the proof. �

Theorem. Under the assumptions of Lemma ., if the dual space E∗ of E has theKadec-
Klee property, then {xn} converges weakly to a fixed point of T .

Proof Using the same method as in the proof of Theorem ., we can prove that there
exists a subsequence {xnk } of {xn}, which converges weakly to a point p ∈ F(T).
Now, we prove that {xn} converges weakly to p. Suppose that there exists a subsequence

{xmj} of {xn} such that {xmj} converges weakly to a point p∗ ∈ C. Then p = p∗. In fact, it
follows from Lemma . that the limit

lim
n→∞

∥∥txn + ( – t)p – p∗∥∥
exists for all t ∈ [, ]. Again, since p,p∗ ∈ Ww({xn}), we have p∗ = p by Lemma .. This
shows that {xn} converges weakly to p. This completes the proof. �
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