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Abstract
We establish necessary and sufficient conditions on a weight pair (v,w) governing the
boundedness of the Riesz potential operator Iα defined on a homogeneous group G
from Lpdec,r(w,G) to Lq(v,G), where Lpdec,r(w,G) is the Lebesgue space defined for
non-negative radially decreasing functions on G. The same problem is also studied for
the potential operator with product kernels Iα1,α2 defined on a product of two
homogeneous groups G1 × G2. In the latter case weights, in general, are not of
product type. The derived results are new even for Euclidean spaces. To get the main
results we use Sawyer-type duality theorems (which are also discussed in this paper)
and two-weight Hardy-type inequalities on G and G1 × G2, respectively.
MSC: 42B20; 42B25

Keywords: Riesz potential; multiple Riesz potential; homogeneous group; cone of
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1 Introduction
A homogeneous group is a simply connected nilpotent Lie group G on a Lie algebra g
with the one-parameter group of transformations δt = exp(A log t), t > , where A is a di-
agonalized linear operator in G with positive eigenvalues. In the homogeneous group G
the mappings expoδto exp–, t > , are automorphisms in G, which will be again denoted
by δt . The number Q = trA is the homogeneous dimension of G. The symbol e will stand
for the neutral element in G.
It is possible to equip G with a homogeneous norm r :G → [,∞) which is continuous

on G, smooth on G\{e}, and satisfies the conditions:
(i) r(x) = r(x–) for every x ∈ G;
(ii) r(δtx) = t r(x) for every x ∈G and t > ;
(iii) r(x) =  if and only if x = e;
(iv) there exists c >  such that

r(xy) ≤ c
(
r(x) + r(y)

)
, x, y ∈ G.

In the sequel we denote by B(a, t) an open ball with the center a and radius t > , i.e.

B(a, t) :=
{
y ∈G; r

(
ay–

)
< t

}
.
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It can be observed that δtB(e, ) = B(e, t).
Let us fix a Haar measure | · | inG such that |B(e, )| = . Then |δtE| = tQ|E|. In particular,

|B(x, t)| = tQ for x ∈G, t > .
Examples of homogeneous groups are: the Euclidean n-dimensional space R

n, the
Heisenberg group, upper triangular groups, etc. For the definition and basic properties
of the homogeneous group we refer to [, p.].
An everywhere positive function ρ on G will be called a weight. Denote by Lp(ρ,G)

( < p < ∞) the weighted Lebesgue space, which is the space of all measurable functions
f :G →C defined by the norm

‖f ‖Lp(ρ,G) =
(∫

G

∣∣f (x)∣∣pρ(x)dx) 
p
< ∞.

If ρ ≡ , then we use the notation Lp(G).
Denote by DR(G) the class of all radially decreasing functions on G with values in R+,

i.e. the fact that φ ∈DR(G) means that there is a decreasing φ̄ :R+ �→R+ such that ϕ(x) =
φ̄(r(x)). In the sequel we will use the symbol φ itself for φ̄; φ ∈ DR(G) will be written
also by the symbol ϕ ↓ r. Let G and G be homogeneous groups. We say that a function
ψ :G ×G �→ R+ is radially decreasing if it is such in each variable separately uniformly
to another one. The fact that ψ is radially decreasing on G × G will be denoted as ψ ∈
DR(G ×G).
Let

(Iαf )(x) =
∫
G
f (y)

(
r
(
xy–

))α–Q dy,  < α <Q,

be the Riesz potential defined on G, where r is the homogeneous norm and dy is the nor-
malized Haar measure on G. The operator Iα plays a fundamental role in harmonic anal-
ysis, e.g., in the theory of Sobolev embeddings, in the theory of sublaplacians on nilpotent
groups etc.Weighted estimates for multiple Riesz potentials can be applied, for example,
to establish Sobolev and Poincaré inequalities on product spaces (see, e.g., []).
Let G and G be homogeneous groups with homogeneous norms r and r and homo-

geneous dimensionsQ andQ, respectively. We define the potential operator onG ×G

as follows:

(Iα,β f )(x, y) =
∫∫

G×G

f (t, τ )
(
r

(
xt–

))α–Q(r(yτ–))β–Q dt dτ ,

(x, y) ∈G ×G,  < α <Q,  < β <Q.

Our aim is to derive two-weight criteria for Iα on the cone of radially decreasing func-
tions on G. The same problem is also studied for the potential operator with product ker-
nels Iα,β defined on a product of two homogeneous groups, where only the right-hand side
weight is of product type. As far as we know the derived results for Iα,β are new, even in the
case of Euclidean spaces. The proofs of the main results are based on Sawyer (see []) type
duality theoremwhich is also true for homogeneous groups (see Propositions C and E be-
low) and Hardy-type two-weight inequalities in homogeneous groups. Analogous results
for multiple potential operators defined on R

n
+ with respect to the cone of non-negative
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decreasing functions on R
n
+ were studied in [, ]. It should be emphasized that the two-

weight problem for a multiple Hardy operator for the cone of decreasing functions on R
n
+

was investigated by Barza, Heinig and Persson [] under the restriction that both weights
are of product type.
Historically, the one-weight inequality for the classical Hardy operator on decreasing

functions was characterize by Arino and Muckenhoupt [] under the so called Bp con-
dition. The same problem for multiple Hardy transform was studied by Arcozzi, Barza,
Garcia-Domingo and Soria []. This problem in the two-weight setting was solved by
Sawyer []. Some sufficient conditions guaranteeing the two-weight inequality for the
Riesz potential Iα on R

n were given by Rakotondratsimba []. In particular, the author
showed that Iα is bounded from Lpdec,r(w,Rn) to Lq(v,Rn) if the weighted Hardy operators
(Hf )(x) = 

|x|n–α

∫
|y|<|x| f (y)dy and (H′f )(x) =

∫
|y|>|x|

f (y)
|y|n–α dy are bounded from Lp(w,Rn) to

Lq(v,Rn). In fact, the author studied the problem on the cone of monotone decreasing
functions.
Now we give some comments regarding the notation: in the sequel under the sym-

bol A ≈ B we mean that there are positive constants c and c (depending on appro-
priate parameters) such that cA ≤ B ≤ cA; A � B means that there is a positive con-
stant c such that A ≤ cB; integral over a product set E × E from g will be denoted by∫∫

E×E
g(x, y)dxdy or

∫
E

∫
E
g(x, y)dxdy; for a weight functions w and wi on G, by the

symbols W (t) and Wi(t) will be denoted the integrals
∫
B(e,t)w(x)dx and

∫
B(ei ,t)

wi(x)dx re-
spectively; for aweightw onG×G, we denoteW (t, τ ) :=

∫
B(e,t)×B(e,τ )

w(x, y)dxdy, where
e and e are neutral elements inG andG, respectively. Finally, wemention that constants
(often different constants in one and the same line of inequalities) will be denoted by c orC.
The symbol p′ stands for the conjugate number of p: p′ = p/(p – ), where  < p < ∞.

2 Preliminaries
We begin this section with the statements regarding polar coordinates in G (see e.g., [,
p.]).

Proposition A Let G be a homogeneous group and let S = {x ∈ G : r(x) = }. There is a
(unique) Radon measure σ on S such that for all u ∈ L(G),∫

G
u(x)dx =

∫ ∞



∫
S
u(δt ȳ)tQ– dσ (ȳ)dt.

Let a be a positive number. The two-weight inequality for the Hardy-type transforms

(
Haf

)
(x) =

∫
B(e,ar(x))

f (y)dy, x ∈G, (H̃af (x) =
∫
G\B(e,ar(x))

f (y)dy, x ∈G,

reads as follows (see [], Chapter  for more general case, in particular, for quasi-metric
measure spaces):

Theorem A Let  < p ≤ q < ∞ and let a be a positive number. Then
(i) The operator Ha is bounded from Lp(u,G) to Lq(u,G) if and only if

sup
t>

(∫
G\B(e,t)

u(x)dx
)/q(∫

B(e,at)
u–p

′
 (x)dx

)/p′

< ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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(ii) The operator H̃a is bounded from Lp(u,G) to Lq(u,G) if and only if

sup
t>

(∫
B(e,t)

u(x)dx
)/q(∫

G\B(e,at)
u–p

′
 (x)dx

)/p′

< ∞.

We refer also to [] for the Hardy inequality written for balls with center at the origin.
In the sequel we denote H by H .
The following statement for Euclidean spaces was derived by Barza, Johansson and Pers-

son [].

Proposition B Let w be a weight function on G and let  < p < ∞. If f ∈DR(G) and g ≥ ,
then

sup
f ↓r

∫
G f (x)g(x)dx

(
∫
G f (x)pw(x)dx)/p

≈ ‖w‖–/pL(G)‖g‖L(G) +
(∫

G
Hp′(

r(x)
)
W–p′(

r(x)
)
w(x)dx

)/p′

,

where H(t) =
∫
B(e,t) g(x)dx,W (t) =

∫
B(e,t)w(x)dx.

The proof of Proposition B repeats the arguments (for Rn) used in the proof of Theo-
rem . of [] taking Proposition A and the following lemma into account.

Lemma A Let  < p <∞. For a weight function w, the inequality∫
G
w(x)

(∫
G\B(e,r(x))

f (y)dy
)p

dx≤ p
∫
G
f p(x)Wp(r(x))w–p(x)dx, f ≥ ,

holds.

Proof The proof of this lemma is based onTheoremA (part (ii)) taking a = , p = q, u(x) =
v(x), u = w–p(x)Wp(r(x)) there. Details are omitted. �

Corollary A Let the conditions of Proposition B be satisfied and let
∫
G w(x)dx = ∞. Then

the following relation holds:

sup
f ↓r

∫
G f (x)g(x)dx

(
∫
G f p(x)w(x)dx)/p

≈
(∫

G
Hp′(

r(x)
)
W

(
r(x)

)
w(x)dx

)/p

.

Corollary A implies the following duality result, which follows in the standard way (see
[, ] for details).

Proposition C Let  < p,q < ∞ and let v, w be weight functions on G with
∫
G w(x)dx =∞.

Then the integral operator T defined on functions on G is bounded from Lpdec,r(w,G) to
Lq(v,G) if and only if

(∫
G

(∫
B(e,r(x))

(
T∗g

)
(y)dy

)p′

W–p′(
r(x)

)
w(x)dx

)/p′

≤ C
(∫

G
gq

′
(x)v–q

′
(x)dx

)/q′

(.)

holds for every positive measurable g on G.
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The next statement yields the criteria for the two-weight boundedness of the operator
H on the cone DR(G). In particular the following statement is true.

Theorem B Let  < p ≤ q < ∞ and let v and w be weights on G such that ‖w‖L(G) = ∞.
Then H is bounded from Lpdec,r(w,G) to L

q
v(v,G) if and only if

(i)

sup
t>

(∫
B(e,t)

w(x)dx
)–/p(∫

B(e,t)
v(x)rQq(x)dx

)/q

< ∞;

(ii)

sup
t>

(∫
B(e,t)

rQp′
(x)W–p′(

r(x)
)
w(x)dx

)/p′(∫
G\B(e,t)

v(x)dx
)/q

< ∞.

Proof The proof of this statement follows by the standard way applying Proposition C (see
e.g. [, ]). �

Definition . Let ρ be a locally integrable a.e. positive function on G. We say that ρ

satisfies the doubling condition at e (ρ ∈ DC(G)) if there is a positive constant b >  such
that for all t >  the following inequality holds:∫

B(e,t)
ρ(x)dx≤ b

∫
B(e,t)

ρ(x)dx.

Further, we say that w ∈ DCγ ,p(G), where  < p < ∞,  < γ < Q/p, if there is a positive
constant b such that for all t > ∫

G\B(e,t)
rγ p

′
(x)W–p′(

r(x)
)
w(x)dx≤ b

∫
G\B(e,t)

rγ p
′
(x)W–p′(

r(x)
)
w(x)dx.

Remark . It can be checked that if a weight w satisfies the doubling condition et e in
the strong sense, i.e., w ∈DC(G) and

∫
B(e,t)w(x)dx≤ c

∫
B(e,t)\B(e,t)w(x)dx with a constant

c independent of t, then w ∈DCγ ,p(G).

Definition . We say that a locally integrable a.e. positive function ρ onG ×G satisfies
the doubling condition with respect to the second variable (ρ ∈ DC(y)) uniformly to the
first one if there is a positive constant c such that for all t >  and almost every x ∈ G the
following inequality holds:∫

B(e,t)
ρ(x, y)dy≤ c

∫
B(e,t)

ρ(x, y)dy.

Analogously is defined the class of weights DC(x).

3 Riesz potentials on G
The main result of this section reads as follows.

Theorem . Let  < p ≤ q < ∞ and let v and w be weights such that either w ∈ DCα,p(G)
or v ∈ DC(G); let ‖w‖L(G) =∞.Then the operator Iα is bounded from Lpdec,r(w,G) to Lq(v,G)

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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if and only if
(i)

sup
t>

(∫
B(e,t)

w(x)dx
)–/p(∫

B(e,t)
rαq(x)v(x)dx

)/q

<∞; (.)

(ii)

sup
t>

(∫
B(e,t)

rp
′Q(x)W–p′(

r(x)
)
w(x)dx

)/p′(∫
G\B(e,t)

r(α–Q)q(x)v(x)dx
)/q

< ∞; (.)

(iii)

sup
t>

(∫
B(e,t)

v(x)dx
)/q(∫

G\B(e,t)
rαp

′
(x)W–p′(

r(x)
)
w(x)dx

)/p′

< ∞. (.)

To prove this result we need to prove some auxiliary statements.

Lemma . Let  < α <Q and let c be the constant from the triangle inequality of r. Then
there is a positive constant c depending only on Q, α, and c such that for all s ∈ B(e, r(x)/),

I(x, y) :=
∫
B(e,r(x))\B(e,cr(y))

r
(
ty–

)α–Q dt ≤ cr
(
xy–

)α . (.)

Proof We have

I(x, y) =
∫ ∞



∣∣{t ∈G : r
(
ty–

)α–Q > λ
} ∩ B

(
e, r(x)

) \ B(
e, cr(y)

)∣∣dλ

=
∫ r(xy–)α–Q


(· · · ) +

∫ ∞

r(xy–)α–Q
(· · · ) =: I()(x, y) + I()(x, y).

Observe that, by the triangle inequality for r, we have rQ(x) ≤ cQ Q–(rQ(xy–) + rQ(y)).
This implies that rQ(x) – (c)QrQ(y) ≤ cQ Q–rQ(xy–). Hence,

I()(x, y) ≤ r
(
xy–

)α–Q∣∣B(
e, r(x)

) \ B(
e, cr(y)

)∣∣
= r

(
xy–

)α–Q(
rQ(x) – (c)QrQ(y)

) ≤ cr
(
xy–

)α .

Further, it is easy to see that

I()(x, y)≤ cr
(
xy–

)α .

Finally we have (.). �

Let us introduce the following potential operators:

(Jαf )(x) =
∫
B(e,cr(x))

f (y)rα–Q
(
xy–

)
dy, (Sαf )(x) =

∫
G\B(e,cr(x))

f (y)rα–Q
(
xy–

)
dy,

x ∈G,  < α <Q.

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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It is easy to see that

Iαf = Jαf + Sαf . (.)

We need also to introduce the following weighted Hardy operator:

(Hαf )(x) = r(x)α–Q(Hf )(x).

Proposition . The following relation holds for all f ∈DR(G):

Jαf ≈Hαf . (.)

Proof We have

(Jαf )(x) =
∫
B(e,r(x)/c)

f (y)rα–Q
(
xy–

)
dy +

∫
B(e,cr(x))\B(e,r(x)/(c))

f (y)rα–Q
(
xy–

)
dy

=:
(
J ()α f

)
(x) +

(
J ()α f

)
(x).

If y ∈ B(e, r(x)/c), then r(x) ≤ c(r(xy–) + r(y)) ≤ cr(xy–) + r(x)/. Hence r(x) ≤
cr(xy–). Consequently,

(
J ()α f

)
(x) ≤ c(Hαf )(x).

Applying now the fact that f ∈DR(G) we see that

(
J ()α f

)
(x) ≤ f

(
r(x)/c

)∫
B(e,r(x)/c)\B(e,cr(x))

rα–Q
(
xy–

)
dy

≤ cf
(
r(x)/c

)
r(x)α ≤ c(Hαf )(x). �

Lemma . Let  < p ≤ q < ∞ and let v and w be weights on G such that ‖w‖L(G) = ∞.
Then the operator Sα is bounded from Lpdec,r(w,G) to Lq(v,G) if

sup
t>

(∫
G\B(e,t)

rαp
′
(x)W–p′(

r(x)
)
w(x)dx

)/p′(∫
B(e,t/(c))

v(x)dx
)/q

< ∞.

Conversely, if Sα is bounded from Lpdec,r(w,G) to Lq(v,G), then the condition

sup
t>

(∫
G\B(e,t)

rαp
′
(x)W–p′

(x)w(x)dx
)/q(∫

B(e,t/(c))
v(x)dx

)/p′

< ∞

is satisfied. Furthermore, if either w ∈ DCα,p(G) or v ∈ DC(G), then the operator Sα is
bounded from Lpdec,r(w,G) to Lq(v,G) if and only if

sup
t>

(∫
G\B(e,t)

rαp
′
(x)W–p′(

r(x)
)
w(x)dx

)/q(∫
B(e,t)

v(x)dx
)/p′

< ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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Proof Applying Proposition C, Sα is bounded from Lpdec,r(w,G) to Lq(v,G) if and only if

(∫
G

(∫
B(e,r(x))

(
S∗

αf
)
(y)dy

)p′

W–p′(
r(x)

)
w(x)dx

)/p′

≤ c
(∫

G
gq

′
(x)v–q

′
(x)dx

)/q′

,

where

(
S∗

αf
)
(x) =

∫
B(e,r(x)/(c))

f (y)rα–Q
(
xy–

)
dy.

Now we show that

crα(x)
∫
B(e,r(x)/(c))

g(s)ds≤
∫
B(e,r(x))

(
S∗

αg
)
(y)dy

≤ crα(x)
∫
B(e,r(x)/(c))

g(s)ds, g ≥ . (.)

To prove the right-hand side estimate in (.) observe that by Tonelli’s theorem and
Lemma . we have∫

B(e,r(x))

(
S∗

αg
)
(y)dy =

∫
B(e,r(x)/(c))

f (s)
(∫

B(e,r(x))\B(e,cr(s))
rα–Q

(
sy–

)
dy

)
ds

≤ cr(x)α
∫
B(e,r(x)/(c))

f (s)ds.

On the other hand,∫
B(e,r(x))

(
S∗

αg
)
(y)dy ≥ crα–Q(x)

(∫
B(e,r(x))\B(e,r(x)/)

(∫
B(e,r(y)/(c))

f (s)ds
)
dy

)
≥ crα(x)

(∫
B(e,r(x)/(c))

f (s)ds
)
.

Thus, Theorem A completes the proof. �

Proof of Theorem . By (.) it is enough to estimate the termswith Jαf and Sαf . By apply-
ing Proposition . and Theorem B we find that Jα is bounded from Lpdec,r(w,G) to Lq(v,G)
if and only if the conditions (ii) and (iii) are satisfied. Now by Lemma . and the equality
(which is a consequence of Proposition A)

(∫
G\B(e,t)

W
(
r(x)

)
w(x)dx

)/p′

=
(∫

B(e,t)
w(x)dx

)–/p

we see that Sα is bounded from Lpdec,r(w,G) to Lq(v,G) if and only if (i) is satisfied. �

4 Multiple potentials on G1 ×G2

Let us now investigate the two-weight problem for the operator Iα,α on the coneDR(G×
G). In the sequel without loss of generality we denote the triangle inequality constants
for G and G by one and the same symbol c.
The following statement can be derived just in the same way as Theorem . was ob-

tained in []. The proof is omitted to avoid repeating those arguments.

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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Proposition D Let  < p <∞ and let w(x, y) = w(x)w(y) be a product weight on G ×G.
Then the relation

sup
≤f ↓r

∫∫
G×G

f (x, y)g(x, y)dxdy
(
∫∫

G×G
f p(x, y)w(x, y))/p

≈
∑
i=

Ik

holds for a non-negative measurable function g, where

I := ‖w‖–/pL(G×G)
‖g‖L(G×G),

I := ‖w‖–/pL(G)

(∫
G

(∫
B(e,r(x))

∥∥g(t, ·)∥∥L(G)
dt

)p′

W–p′


(
r(x)

)
w(x)dx

)/p′

,

I := ‖w‖–/pL(G)

(∫
G

(∫
B(e,r(y))

∥∥g(·, τ )∥∥L(G)
dτ

)p′

W–p′


(
r(y)

)
w(y)dy

)/p′

,

I :=
(∫

G×G

(∫
G×G

g(t, τ )dt dτ

)p′

W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

.

Applying Proposition D together with the duality arguments we can get the following
statement (cf. []).

Proposition E Let  < p < ∞ and let v and w be weights on G × G such that w(x, y) =
w(x)w(y), ‖w‖L(G×G) = ∞. Then an integral operator T defined for functions from
DR(G × G) is bounded from Lpdec,r(w,G × G) to Lp(v,G × G) if and only if for all
non-negative measurable g on G ×G,

(∫∫
G×G

(∫∫
B(e,r(x))×B(e,r(y))

(
T∗g

)
(t, τ )dt dτ

)p′

W–p′
(x, y)w(x, y)dxdy

)/p′

≤ C
(∫∫

G×G

gq
′
(x, y)v–q

′
(x, y)dxdy

)/q′

.

The next statements deal with the double Hardy-type operators defined on G ×G:

(
Ha,bf

)
(x, y) =

∫
B(e,ar(x))

∫
B(e,br(x))

f (t, τ )dt dτ , (x, y) ∈G ×G,

(
H̃a,bf

)
(x, y) =

∫
G\B(e,ar(x))

∫
G\B(e,br(x))

f (t, τ )dt dτ , (x, y) ∈G ×G,

(
Ha,b

 f
)
(x, y) =

∫
B(e,ar(x))

∫
G\B(e,br(y))

f (t, τ )dt dτ , (x, y) ∈ G ×G,

(
Ha,b

 f
)
(x, y) =

∫
G\B(e,ar(x))

∫
B(e,br(y))

f (t, τ )dt dτ , (x, y) ∈G ×G.

Proposition . Let  < p≤ q < ∞. Suppose that v and w be weights on G ×G such that
either w(x, y) = w(x)w(y) or v(x, y) = v(x)v(y). Then:

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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(i) The operator Ha,b is bounded from Lp(w,G ×G) to Lq(v,G ×G) if and only if

A := sup
t>,τ>

(∫
G\B(e,t)

∫
G\B(e,τ )

v(x, y)dxdy
)/q

×
(∫

B(e,at)

∫
B(e,bτ )

w–p′
(x, y)dxdy

)/p′

<∞.

(ii) The operator H̃a,b is bounded from Lp(w,G ×G) to Lq(v,G ×G) if and only if

sup
t>,τ>

(∫
B(e,t)

∫
B(e,τ )

v(x, y)dxdy
)/q(∫

G\B(e,at)

∫
G\B(e,bτ )

w–p′
(x, y)dxdy

)/p′

< ∞.

(iii) The operator Ha,b
 is bounded from Lp(w,G ×G) to Lq(v,G ×G) if and only if

sup
t>,τ>

(∫
G\B(e,t)

∫
B(e,τ )

v(x, y)dxdy
)/q(∫

B(e,at)

∫
G\B(e,bτ )

w–p′
(x, y)dxdy

)/p′

< ∞.

(iv) The operator Ha,b
 is bounded from Lp(w,G ×G) to Lq(v,G ×G) if and only if

sup
t>,τ>

(∫
B(e,t)

∫
G\B(e,τ )

v(x, y)dxdy
)/q(∫

G\B(e,at)

∫
B(e,bτ )

w–p′
(x, y)dxdy

)/p′

< ∞.

Proof Let w(x, y) = w(x)w(y). Then the proposition follows in the same way as the ap-
propriate statements regarding the Hardy operators defined on R


+ in [, ] (see also

Theorem .. of []). If v is a product weight, i.e. v(x, y) = v(x)v(y), then the result fol-
lows from the duality arguments.We give the proof, for example, forHa,b in the case when
w(x, y) = w(x)w(y).
First suppose that S :=

∫
G

w–p′
 (y)dy = ∞. Let {xk}+∞

k=–∞ be a sequence of positive num-
bers for which the equality

k =
∫
B(e,bxk )

w–p′
 (y)dy (.)

holds for all k ∈ Z. This equality follows because of the continuity in t of the integral over
the ball B(e,bt). It is clear that {xk} is increasing and R+ =

⋃
k∈Z[xk ,xk+). Moreover, it is

easy to verify that

k =
∫
B(e,bxk+)\B(e,bxk )

w–p′
 (y)dy.

Let f ≥ . We have

∥∥Ha,bf
∥∥q
Lqv (G×G)

=
∫∫

G×G

v(x, y)
(
Ha,bf

)q(x, y)dxdy≤
∑
k∈Z

∫
G

∫
B(e,xk+)\B(e,xk )

v(x, y)

×
(∫∫

B(e,ar(x))×B(e,br(x))
f (t, τ )dt dτ

)q

dxdy

≤
∑
k∈Z

∫
G

(∫
B(e,xk+)\B(e,xk )

v(x, y)dy
)

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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×
(∫

B(e,ar(x))

(∫
B(e,bxk+)

f (t, τ )dτ

)
dt

)q

dx

=
∑
k∈Z

∫
G

Vk(x)
(∫

B(e,ar(x))
Fk(t)dt

)q

dx,

where

Vk(x) :=
∫
B(e,xk+)\B(e,xk )

v(x, y)dy; Fk(t) :=
∫
B(e,bxk+)

f (t, τ )dτ .

It is obvious that

Aq ≥ sup
a>
j∈Z

(∫
G\B(e,t)

vj(y)dy
)(∫∫

B(e,at)×B(e,bxj)
w–p′

(x, y)dxdy
)q/p′

.

Hence, by Theorem A

∥∥Ha,bf
∥∥q
Lqv (G×G)

≤ cAq
∑
j∈Z

[∫
G

w(x)
(∫

B(e,bxj)
w–p′
 (y)dy

)–p(
Fk(x)

)p dx]q/p

≤ cAq

[∫
G

w(x)
∑
j∈Z

(∫
B(e,bxj)

w–p′
 (y)dy

)–p

×
( j∑
k=–∞

∫
B(e,bxk+)\B(e,bxk )

f (x, τ )dτ

)p

dx

]q/p

.

On the other hand, (.) yields

+∞∑
k=n

(∫
B(e,bxk )

w–p′
 (y)dy

)–p
( n∑
k=–∞

∫
B(e,bxk+)\B(e,bxk )

w–p′
 (y)dy

)p–

=
+∞∑
k=n

(∫
B(e,bxk )

w–p′
 (y)dy

)–p(∫
B(e,bxn+)

w–p′
 (y)dy

)p–

=

( +∞∑
k=n

k(–p)
)
(n+)(p–) ≤ c

for all n ∈ Z. Hence by the discrete Hardy inequality (see e.g. []) and Hölder’s inequality
we have

∥∥Ha,bf
∥∥q
Lqv (G×G)

≤ cAq
[∫

G

w(x)
∑
j∈Z

(∫
B(e,bxj+)\B(e,bxj)

w–p′
 (y)dy

)–p

×
(∫

B(e,bxj+)\B(e,bxj)
f (x, τ )dτ

)p

dx
]q/p

≤ cAq
[∫

G

w(x)
∑
j∈Z

(∫
B(e,bxj+)\B(e,bxj)

w(τ )f p(x, τ )dτ

)
dx

]q/p

= cAq‖f ‖q
Lpw(G×G)

.
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If S < ∞, then without loss of generality we can assume that S = . In this case we choose
the sequence {xk}k=–∞ for which (.) holds for all k ∈ Z–. Arguing as in the case S = ∞
and using slight modification of the discrete Hardy inequality (see also [], Chapter  for
similar arguments), we finally obtain the desired result.
Finally we notice that the part (i) can also be proved if we first establish the boundedness

of the operator (Ha,bϕ)(t, τ ) =
∫ at


∫ bτ
 ϕ(s, r)dsdr in the spirit of Theorem .. in [] and

then pass to the case of G ×G by Proposition A. �

The next statement will be useful for us.

Proposition . Let  < p≤ q < ∞. Assume that v and w are weights on G ×G. Suppose
that w(x, y) = w(x)w(y) and that Wi(∞) = ∞, i = , . Then the operator H, is bounded
from Lpdec,r(w,G × G) to Lq(v,G × G) if and only if the following four conditions are
satisfied:
(i)

sup
a,a>

(∫
B(e,a)

∫
B(e,a)

w(x, y)dxdy
)–/p

×
(∫

B(e,a)

∫
B(e,a)

rQq
 (x)r(y)Qqv(x, y)dxdy

)/q

<∞;

(ii)

sup
a,a>

(∫
B(e,a)

∫
B(e,a)

rQp′
 (x)r(y)Qp′

W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

×
(∫

G\B(e,a)

∫
G\B(e,a)

v(x, y)dxdy
)/q

< ∞;

(iii)

sup
a,a>

(∫
B(e,a)

w
(
r(x)

)
dx

)–/p(∫
B(e,a)

r(y)Qp′
W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

B(e,a)

∫
G\B(e,a)

r(x)Qqv(x, y)dxdy
)/q

<∞;

(iv)

sup
a,a>

(∫
B(e,a)

r(x)Qp′
W–p′


(
r(x)

)
w(x)dt

)/p′(∫
B(e,a)

w(y)dy
)–/p

×
(∫

G\B(e,a)

∫
B(e,a)

r(y)Qqv(x, y)dxdy
)/q

< ∞.

Proof We follow the proof of Theorem . in []. First of all observe that by Proposition E,
if w is a product weight, i.e., w(x,x) = w(x)w(x), such that Wi(∞) = ∞, i = , , and v
is any weight on G × G, then H, is bounded from Lpdec,r(w,G) to Lq(v,G) if and only

http://www.journalofinequalitiesandapplications.com/content/2014/1/383
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if (∫∫
G×G

(∫
B(e,r(x))

∫
B(e,r(x))

[∫
G\B(e,r(t))

∫
G\B(e,r(τ ))

g(s, ε)dsdε

]
dt dτ

)p′

×W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

≤ c
(∫∫

G×G

gq
′
(x, y)v–q

′
(x, y)dxdy

)/q′

, g ≥ . (.)

Further, we have∫∫
B(e,r(x))×B(e,r(x))

(∫
G\B(e,r(t))

∫
G\B(e,r(t))

g(s, ε)dsdε

)
dt dτ

=
∫
B(e,r(x))

∫
B(e,r(x))

rQ
 (t)rQ

 (τ )g(t, τ )dt dτ

+ rQ
 (x)

∫
G\B(e,r(x))

∫
B(e,r(y))

rQ
 (τ )g(t, τ )dt dτ

+ rQ
 (y)

∫
B(e,r(x))

∫
G\B(e,r(y))

rQ
 (t)g(t, τ )dt dτ

+ rQ
 (x)rQ

 (y)
∫
G\B(e,r(x))

∫
G\B(e,r(y))

g(t, τ )dt dτ

=: I()(x, y) + I()(x, y) + I()(x, y) + I()(x, y).

It is obvious that (.) holds if and only if

(∫∫
G×G

(
I(j)

)p′
(x, y)W–p′(

r(x), r(y)
)
w(x, y)dxdy

)/p′

≤ c
(∫∫

G×G

gq
′ (x, y)v–q′ (x, y)dxdy

)/q′

(.)

for j = , , , . By using Proposition . (part (i)) we find that

(∫∫
G×G

(
I()

)p′
(x, y)W–p′(

r(x), r(y)
)
w(x, y)dxdy

)/p′

≤ c
(∫∫

G×G

gq
′
(x, y)v–q

′
(x, y)dxdy

)/q′

if and only if

(∫
G\B(e,t)

∫
G\B(e,τ )

W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

×
(∫∫

B(e,t)×B(e,τ )

(
v–q′ (x, y)

rQq′
 (x)rQq′

 (y)

)–q

dxdy
)/q

= cp
(∫∫

B(e,t)×B(e,τ )
w(x, y)dxdy

)–/p

http://www.journalofinequalitiesandapplications.com/content/2014/1/383


Meskhi et al. Journal of Inequalities and Applications 2014, 2014:383 Page 14 of 20
http://www.journalofinequalitiesandapplications.com/content/2014/1/383

×
(∫∫

B(e,t)×B(e,τ )
v(x, y)rQq

 (x)rQq
 (y)dxdy

)/q

≤ C.

In the latter equality we used the equality

(∫
Gi\B(ei ,t)

W–p′
i

(
ri(x)

)
wi(x)dx

)/p′

=
(∫

B(ei ,t)
wi(x)dx

)–/p

, i = , ,

which is a direct consequence of integration by parts and Proposition A. Taking now
Proposition . (part (ii)) into account we find that (.) holds for j =  if and only if condi-
tion (ii) is satisfied, while Proposition . (parts (iii) and (iv)) and the following observation:

sup
a,a>

(∫
G\B(e,a)

w(x)W
–p′


(
r(x)

)
dx

)/p′(∫
B(e,a)

rp
′Q

 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

B(e,a)

∫
G\B(e,a)

rQq
 (x)v(x, y)dxdy

)/q

= cp sup
a,a>

(∫
B(e,a)

w(x)dx
)–/p(∫

B(e,a)
rQp′
 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

B(e,a)

∫
G\B(e,a)

rQq
 (x)v(x, y)dxdy

)/q

< ∞;

sup
a,a>

(∫
B(e,a)

rQp′
 (x)W–p′


(
r(x)

)
w(x)dx

)/p′(∫
G\B(e,a)

w(y)W
–p′


(
r(y)

)
dy

)/p′

×
(∫

G\B(e,a)

∫
B(e,a)

rQq
 (y)v(x, y)dxdy

)/q

= cp sup
a,a>

(∫
B(e,a)

rQp′
 (x)W–p′


(
r(x)

)
w(x)dx

)/p′(∫
B(e,a)

w(t)dt
)–/p

×
(∫

G\B(e,a)

∫
B(e,a)

rQq
 (y)v(x, y)dxdy

)/q

< ∞

yield (.) for j = , . �

Let

(Jα,α f )(x, y) =
∫
B(e,cr(x))

∫
B(e,cr(y))

f (t, τ )r
(
xt–

)α–Qr
(
yτ–)α–Q dt dτ ,

(JαSα f )(x, y) =
∫
B(e,cr(x))

∫
G\B(e,cr(y))

f (t, τ )r
(
xt–

)α–Qr
(
yτ–)α–Q dt dτ ,

(Sα Jα f )(x, y) =
∫
G\B(e,cr(x))

∫
B(e,cr(y))

f (t, τ )r
(
xt–

)α–Qr
(
yτ–)α–Q dt dτ ,

(Sα,α f )(x, y) =
∫
G\B(e,cr(x))

∫
G\B(e,cr(y))

f (t, τ )r
(
xt–

)α–Qr
(
yτ–)α–Q dt dτ ,

where c is the constant from the triangle inequality for the homogeneous norms r
and r.
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It is obvious that

Iα,α f = Jα,α f + JαSα f + Sα Jα f + Sα,α f . (.)

Now we formulate the main result of this section.

Theorem . Let  < p ≤ q < ∞. Assume that v and w are weights on G × G such that
w(x, y) = w(x)w(y). Suppose that either wi ∈ DCαi ,p(G), i = , , or v ∈ DC(x) ∩ DC(y).
Then the operator Iα,α is bounded from Lpdec,r(w,G × G) to Lq(v,G × G) if and only if
the following conditions are satisfied:
(i)

A := sup
a,a>

(∫
B(e,a)

∫
B(e,a)

w(x, y)dxdy
)–/p

×
(∫

B(e,a)

∫
B(e,a)

(
rα (x)rα (y)

)qv(x, y)dxdy)/q

< ∞;

(ii)

A := sup
a,a>

(∫
B(e,a)

∫
B(e,a)

rQp′
 (x)rQp′

 (y)W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

×
(∫

G\B(e,a)

∫
G\B(e,a)

(
rα–Q
 (x)rα–Q

 (y)
)qv(x, y)dxdy)/q

<∞;

(iii)

A := sup
a,a>

(∫
B(e,a)

w(x)dx
)–/p(∫

B(e,a)
rQp′
 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

B(e,a)

∫
G\B(e,a)

rαq (x)rq(α–Q)
 (y)v(x, y)dxdy

)/q

< ∞;

(iv)

A := sup
a,a>

(∫
B(e,a)

rQp′
 (x)W–p′


(
r(x)

)
w(x)dx

)/p′(∫
B(e,a)

w(y)dy
)–/p

×
(∫

G\B(e,a)

∫
B(e,a)

rq(α–Q)
 (x)rqα (y)v(x, y)dxdy

)/q

< ∞;

(v)

A := sup
a,a>

(∫
G\B(e,a)

∫
G\B(e,a)

rαp
′

 (x)rαp
′

 (y)W–p′(
r(x), r(y)

)
w(x, y)dxdy

)/p′

×
(∫

B(e,a)

∫
B(e,a)

v(x, y)dxdy
)/q

<∞;
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(vi)

A := sup
a,a>

(∫
B(e,a)

w(x)dx
)–/p(∫

G\B(e,a)
rαp

′
 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

B(e,a)

∫
B(e,a)

rαq (x)v(x, y)dxdy
)/q

< ∞;

(vii)

A := sup
a,a>

(∫
B(e,a)

rQp′
 (x)W–p′


(
r(x)

)
w(x)dx

)/p′

×
(∫

G\B(e,a)
rαp

′
 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

G\B(e,a)

∫
B(e,a)

r(α–Q)q
 (x)v(x, y)dxdy

)/q

< ∞;

(viii)

A := sup
a,a>

(∫
G\B(e,a)

rαp
′

 (x)W–p′


(
r(x)

)
w(x)dx

)–/p(∫
B(e,a)

w(y)dy
)/p′

×
(∫

B(e,a)

∫
B(e,a)

rαq (x)v(x, y)dxdy
)/q

< ∞;

(ix)

A := sup
a,a>

(∫
B(e,a)

rQp′
 (y)W–p′


(
r(y)

)
w(y)dy

)/p′

×
(∫

G\B(e,a)
rαp

′
 (x)W–p′


(
r(x)

)
w(x)dx

)/p′

×
(∫

B(e,a)

∫
G\B(e,a)

r(α–Q)q
 (y)v(x, y)dxdy

)/q

< ∞.

Proof Let us assume that v ∈ DC(x) ∩DC(y). The case when wi ∈ DCαi ,p(Gi), i = , , fol-
lows analogously. By using representation (.) we have to investigate the boundedness of
the operators Jα,α f , JαSα f , Sα Jα f , Sα,α f separately.
Since f ∈DR(G ×G) by using the arguments of the proof of Proposition . it can be

checked that

(Jα,α f )(x, y)≈ rα–Q
 (x)rα–Q

 (y)
∫∫

B(e,r(x))×B(e,r(y))
f (t, τ )dt dτ

(see also [] for a similar estimate in the case of the multiple one-sided potentials on R

+).

Hence, by Proposition .wefind that Jα,α is bounded from Lpdec,r(w,G×G) to Lq(v,G×
G) if and only if conditions (i)- (iv) hold.
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Observe that the dual to Sα,α is given by

(
S∗

α,αg
)
(x, y) =

∫∫
B(e,r(x)/(c))×B(e,r(y)/(c))

g(t, τ )rα–Q


(
xt–

)
rα–Q


(
yτ–)dt dτ .

Further, Tonelli’s theorem together with Lemma . for both variables implies that there
are positive constants c and c such that for all (x, y) ∈ G ×G for the dual (see also the
proof of Lemma .),

rα (x)rα (y)
∫∫

B(e,r(x)/(c))×B(e,r(y)/(c))
g(t, τ )dt dτ

≤ c
∫∫

B(e,r(x))×B(e,r(y))

(
S∗

α,αg
)
(t, τ )dt dτ

≤ crα (x)rα (y)
∫∫

B(e,r(x)/(c))×B(e,r(y)/(c))
g(t, τ )dt dτ .

Applying Propositions . and . with the condition that v ∈ DC(G × G) we find that
the operator Sα,α is bounded from Lpdec,r(w,G ×G) to Lq(v,G ×G) if and only if con-
dition (v) is satisfied.
Further, observe that due to the fact that f is radially decreasing with respect to the first

variable we have

(JαSα f )(x, y) ≈ (HαSα f )(x, y),

where

(HαSα f )(x, y) = rα–Q
 (x)

∫
B(e,cr(x))

∫
G\B(e,cr(y))

f (t, τ )r
(
yτ–)α–Q dt dτ .

Dual ofHαSα is given by

(
H∗

αS
∗
αg

)
(t, τ ) =

∫
G\B(e,r(t))

∫
B(e,r(τ )/c)

rα–Q
 (s)rα–Q


(
ετ–)f (s, ε)dsdε.

Further, we have

T(x, y) :=
∫∫

B(e,r(x))×B(e,r(y))

(
H∗

αS
∗
αg

)
(t, τ )dt dτ

=
∫∫

B(e,r(x))×B(e,r(y))

(∫
B(e,r(x))\B(e,r(t))

∫
B(e,r(τ )/c)

rα–Q
 (s)

× rα–Q


(
τε–

)
f (s, ε)dsdε

)
dt dτ

+
∫∫

B(e,r(x))×B(e,r(y))

(∫
G\B(e,r(x))

∫
B(e,r(τ )/(c))

rα–Q
 (s)

× rα–Q


(
τε–

)
f (s, ε)dsdε

)
dt dτ

=: T(x, y) + T(x, y).
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Tonelli’s theorem for G, the inequality rα–Q
 (τε–) ≥ crα–Q

 (y) for τ ∈ B(e, r(y)), ε ∈
B(e, r(τ )/(c)), and the fact that the integral

∫
B(e,τ ) f (s, ε)ds is decreasing in τ uniformly

to ε yield

T(x, y) ≥ crα–Q
 (y)

×
∫
B(e,r(x))

∫
B(e,r(y))\B(e,r(y)/)

(∫
B(e,r(x))\B(e,r(t))

∫
B(e,r(y)/(c))

rα–Q
 (s)

× f (s, ε)dsdε

)
dt dτ

= crα (y)
∫
B(e,r(x))

(∫
B(e,r(x))\B(e,r(t))

rα–Q
 (s)

×
(∫

B(e,r(y)/(c))
f (s, ε)dε

)
ds

)
dt

= crα (y)
∫
B(e,r(x))

(∫
B(e,r(x))\B(e,r(t))

F(s, y)ds
)
dt

= crα (y)
∫
B(e,r(x))

F(s, y)
(∫

B(e,r(s))
dt

)
ds

= crα (y)
∫
B(e,r(x))

∫
B(e,r(y)/(c))

rα (s)f (t, τ )dε ds.

Here we used the notation

F(s, y) :=
∫
B(e,r(y)/(c))

f (s, ε)dε.

Taking into account that the function
∫
B(e,cλ) f (s, ε)dε is decreasing in λ uniformly

to s, the inequality r(τε–) ≤ cr(y) for τ ∈ B(e, r(y)), ε ∈ B(e, r(τ )/(c)), and Tonelli’s
theorem for G we find that

T(x, y) ≥ crQ
 (x)rα (y)

∫
G\B(e,r(x))

∫
B(e,r(y)/(c))

rα–Q
 (s)f (t, τ )dε ds.

To get the upper estimate, observe that Tonelli’s theorem for G × G and Lemma .
for r yield

T(x, y) ≤
∫
B(e,r(x))

∫
B(e,r(y)/(c))

rα–Q
 (s)f (s, ε)

×
(∫

B(e,r(s))

∫
B(e,r(y))\B(e,cr(ε))

rα–Q


(
τε–

)
dt dτ

)
dsdε

≤ crα (y)
∫∫

B(e,r(x))×B(e,r(y)/(c))
rα (s)f (s, ε)dsdε.

Similarly,

T(x, y) ≤ crQ
 (x)rα (y)

∫∫
G\B(e,r(x))×B(e,r(y)/(c))

rα–Q
 (s)f (s, ε)dsdε.
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Summarizing these estimates we see that there are positive constants c and c depend-
ing only on α, α, Q, and Q such that

rα (y)
∫∫

B(e,r(x))×B(e,r(y)/(c))
rα (s)f (s, ε)dsdε

+ rQ
 (x)rα (y)

∫∫
G\B(e,r(x))×B(e,r(y)/(c))

rα–Q
 (s)f (s, ε)dsdε.

≤ cT(x, y) ≤ rα (y)
∫∫

B(e,r(x))×B(e,r(y)/(c))
rα (s)f (s, ε)dsdε

+ rQ
 (x)rα (y)

∫∫
G\B(e,r(x))×B(e,r(y)/(c))

rα–Q
 (s)f (s, ε)dsdε.

Taking Propositions . and E into account together with the doubling condition for
v with respect to the second variable we see that the operator JαSα is bounded from
Lpdec,r(w,G) to Lq(v,G) if and only if the conditions (vi) and (vii) are satisfied.
In a similar manner (changing the roles of the first and second variables) we can see that

Sα Jα is bounded from Lpdec,r(w,G) to Lq(v,G) if and only if the conditions (viii) and (ix)
are satisfied. �

Theorem . and Remark . imply criteria for the trace inequality for Iα,α . Namely the
following statement holds.

Theorem . Let  < p ≤ q < ∞ and let  < αi <Qi/p, i = , . Then Iα,α is bounded from
Lpdec,r(G ×G) to Lq(v,G ×G) if and only if the following condition holds:

B := sup
a,a>

(∫
B(e,a)

∫
B(e,a)

v(x, y)dxdy
)/q

aα–Q/p
 aα–Q/p

 < ∞.

Proof Sufficiency is a consequence of the inequality max{A, . . . ,A} ≤ cB, while ne-
cessity follows immediately by taking the test function fa,a (x, y) = χB(e,a)(x)χB(e,a)(y),
a,a > . �
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