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1 Introduction and preliminary results
Batir and Cancan [, Theorem .] presented the following sharp inequalities:
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is strictly increasing on (,∞), while inequalities () follow fromω() ≤ ω(n) < ω(∞). Such
an approach of the problem does not offer good results in the left-hand side inequality (),
when n approaches infinity. As we wish to see () as an accurate approximation of the form
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we are interested in finding δ(n) which gives the best such approximation for large values
of n. Moreover, numerical computations show us that for large values of n, the expres-
sion ( + /n)n gets closer to the right-hand side of (). This fact suggests us that the best
approximation () is obtained when δ(n) tends to /, as n→ ∞. For δ(n) = /, we deduce
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The rigorous argument is the following theorem, which is also an improvement of the
Batir and Cancan inequality ().

Theorem  For every real number x ≥ , we have
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We have f () = 
 – ln = –. · · · < , g() = ,
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Evidently, f is concave, g is convex on [,∞), with f (∞) = g(∞) = , so f <  and g >  on
[,∞). The proof is completed. �

The same remarks we make on Batir and Cancan’s assertion [, Theorem .], which is
proven to have some computation errors, since the expression ( + /n)n+ can be approx-
imated for large values of n as
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but a better result is
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as we can see from the following.
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Theorem  For every real number x ≥ , we have
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Evidently, v is concave, u is convex, with u(∞) = v(∞) = , so v <  and u >  on [,∞).
The proof is completed. �

2 Some extensions
In this section we discuss the problem of approximating ( + /n)n+a, a ∈ [, ], in the form
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More precisely, we propose as an open problem the following approximation formula:
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Particular values a =  and a =  in () lead again to () and ().
The special case a = / is treated at the final part of this section.
By now, we proved the approximation formula () for
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where θ = . · · · is the unique real root of a – ,a + a – .
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This assertion is sustained by the following three theorems.

Theorem  Let a ∈ [, –
√


 ). Then there exists x >  (depending on a) such that for every
real number x ≥ x, the following inequalities hold true:
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 ).Then there exists x >  (depending on a) such that, for every
real number x ≥ x, the following inequalities hold true:
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Theorem  Let a ∈ (θ , ]. Then there exists x >  (depending on a) such that, for every
real number x ≥ x, the following inequalities hold true:
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Inequalities ()-() are closely related to the functions
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Proofs of Theorems  and  For a ∈ [, –

√


 ) ∪ (  ,
+

√


 ), the leading coefficients of the
polynomials P and Q are negative. We are in a position to consider j >  (depending on a)
such that P(x) <  and Q(x) < , for every x ∈ [j,∞). By () and (), s is concave and t is
convex. But s(∞) = t(∞) = , so s <  and t >  on [j,∞).
Now inequalities s(x) <  and t(x) > , for every x ∈ [j,∞) are () and () and we are

done. �

Proof of Theorem  For a ∈ (θ , ], the leading coefficients of polynomials P and Q are
positive. We are in a position to consider l >  (depending on a) such that P(x) >  and
Q(x) > , for every x ∈ [l,∞). By () and (), now s is convex and t is concave. But s(∞) =
t(∞) = , so s >  and t <  on [l,∞).
Now inequalities s(x) >  and t(x) < , for every x ∈ [l,∞) are () and () and we are

done. �

The special case a = / provides the approximation formula
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It is sustained by the following.

Theorem  For every real number x≥ , the following inequalities hold:
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We have
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Evidently, b is concave, c is convex, with b(∞) = c(∞) = , so b <  and c >  on [,∞). The
proof is completed. �

In case a = /, the entire asymptotic representation
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Further research in the problem of approximating the constant e can be found in [–].
Finally, we leave as an open problem the approximation formula () for values of a ∈ [, ]

other than those discussed in this paper.
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