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1 Introduction
In the present article, our main purpose is to study the split problem. First, we recall some
relevant background in the literature.

Problem 1: the split feasibility problem
Let C andQ be two nonempty closed convex subsets of Hilbert spacesH andH, respec-
tively, and let A : H → H be a bounded linear operator. The problem of finding a point
x∗ such that

x∗ ∈ C and Ax∗ ∈ Q (.)

is called the split feasibility; it was first introduced by Censor and Elfving [] in finite di-
mensional Hilbert spaces. Such problems arise in the field of intensity-modulated radia-
tion therapy when one attempts to describe physical dose constraints and equivalent uni-
form dose constraints within a single model. When C ∈ R

N and Q ∈ R
M are a single pair

of sets, Censor and Elfving [] introduced the simultaneous multi-projections algorithm:

xn+ = A–(λI + λAA∗)–(λvn+ + λAA∗vn+
)
, n≥ , (.)

where λ > , λ > , λ + λ = , vn+i = Pfi
Ci
(bn) (i = , ), and bn is the solution of the equa-

tion

∑
i=

λi∇fi(bn) =
∑
i=

∇fi
(
vni

)
.
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Note that the simultaneous multi-projections algorithm (.) involve a matrix inversion
A– at each iterative step. This is very time-consuming, particularly if the dimensions are
large. In order to solve this problem, Byrne [] derived a new algorithm, called the CQ-
algorithm:

xn+ = PC
(
xn – τA∗(I – PQ)Axn

)
, n≥ ,

where τ ∈ (, L ) with L being the largest eigenvalue of the matrix A∗A, I is the unit matrix
or operator, and PC and PQ denote the orthogonal projections onto C and Q, respectively.
The CQ-algorithm and its variant forms have now been studied for the split feasibility
problem; see, for instance [–].

Problem 2: the split common fixed point problem
If every closed convex subset of a Hilbert space is the fixed point set of its associating
projection, then the split feasibility problem becomes a special case of the split common
fixed point problem of finding a point x∗ with the property:

x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T). (.)

This problem was first introduced by Censor and Segal [] who invented an algorithm
which generates a sequence {xn} according to the iterative procedure:

xn+ =U
(
xn – γA∗(I – T)Axn

)
, n ∈N. (.)

Moudafi [] extended (.) to the following relaxed algorithm:

xn+ =Uαn

(
xn + γA∗(Tβ – I)Axn

)
, n ∈N,

where β ∈ (, ), αn ∈ (, ) are relaxation parameters. Consequently, Wang and Xu []
considered a general cyclic algorithm. Very recently, the split problem has also been ex-
tended to solve other problems, such as the split monotone variational inclusions and the
split variational inequalities, please refer to [, –] and [–].

Problem 3: the equilibrium problem
Consider the following equilibrium problem: Finding x∗ ∈ C such that

F
(
x∗,x

) ≥ , ∀x ∈ C, (.)

where F : C ×C →R is a bifunction. We will denote by EP(F) the set of solutions of (.).
The equilibrium problems, in its various forms, found application in optimization prob-

lems, fixed point problems, and convex minimization problems; in other words, equi-
librium problems are a unified model for problems arising in physics, engineering, eco-
nomics, and so on (see [–]).
Motivated by the split common fixed point problem and the equilibrium problem, He

and Du [] presented the following split equilibrium problem and fixed point problem:

Find a point x∗ ∈ Fix(T)∩ EP(F) such that Ax∗ ∈ Fix(S)∩ EP(G), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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where Fix(S) and Fix(T) are the sets of fixed points of two nonlinear mappings S and
T , respectively, EP(F) and EP(G) are the solution sets of two equilibrium problems with
bifunctions F andG, respectively, andA is a bounded linear mapping. Denote the solution
set of (.) by

� =
{
x ∈ Fix(T)∩ EP(F) : Ax ∈ Fix(S)∩ EP(G)

}
.

Special cases
. If F =  and G = , then (.) is reduced to the following split common fixed point

problem, which has been considered by many authors, for example, [, , ] and
[]:

Find a point x∗ ∈ Fix(T) such that Ax∗ ∈ Fix(S). (.)

. If S = PQ and T = PC , then (.) is reduced to the split feasibility problem (.).
. If S and T are all identity operators, then (.) is reduced to the split equilibrium

problem which has been considered in []:

Find a point x∗ ∈ EP(F) such that Ax∗ ∈ EP(G).

Based on the work in this direction, in this paper we will develop new algorithms to
solve the split equilibrium problem and the fixed point problem (.). We first introduce a
parallel superimposed algorithm. Consequently, strong convergence theorems are shown
with some analysis techniques.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty closed convex subset of H .

Definition . A mapping T : C → C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.

Wewill use Fix(T) to denote the set of fixed points of T , that is, Fix(T) = {x ∈ C : x = Tx}.

Definition . A mapping f : C → C is called contractive if

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖

for all x, y ∈ C and for some constant ρ ∈ (, ). In this case, we call f is a ρ-contraction.

Definition . A linear bounded operator B : H → H is called strongly positive if there
exists a constant γ >  such that

〈Bx,x〉 ≥ γ ‖x‖

for all x, y ∈ H .

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Definition . We call PC :H → C the metric projection if for each x ∈ H

∥∥x – PC(x)
∥∥ = inf

{‖x – y‖ : y ∈ C
}
.

It is well known that the metric projection PC :H → C is characterized by

〈
x – PC(x), y – PC(x)

〉 ≤ 

for all x ∈H , y ∈ C. From this, we can deduce that PC is firmly nonexpansive, that is,

∥∥PC(x) – PC(y)
∥∥ ≤ 〈

x – y,PC(x) – PC(y)
〉

(.)

for all x, y ∈ H . Hence PC is also nonexpansive.
It is well known that in a real Hilbert space H , the following two equalities hold:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ (.)

for all x, y ∈ H and t ∈ [, ], and

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖ (.)

for all x, y ∈ H . It follows that

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉 (.)

for all x, y ∈ H .
Throughout this paper, we assume that a bifunction F : C×C →R satisfies the following

conditions:
(H) F(x,x) =  for all x ∈ C;
(H) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(H) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y)≤ F(x, y);
(H) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C × C → R be a bifunction which satisfies conditions (H)-(H). Let r >  and x ∈ C.
Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, if UF
r (x) = {z ∈ C : F(z, y) + 

r 〈y – z, z – x〉 ≥ ,∀y ∈ C}, then the following hold:
(i) UF

r is single-valued and UF
r is firmly nonexpansive, i.e., for any x, y ∈H ,

‖UF
r x –UF

r y‖ ≤ 〈UF
r x –UF

r y,x – y〉;
(ii) EP(F) is closed and convex and EP(F) = Fix(UF

r ).

Lemma . ([]) Let the mapping UF
r be defined as in Lemma .. Then, for r, s >  and

x, y ∈H ,

∥∥UF
r (x) –UF

s (y)
∥∥ ≤ ‖x – y‖ + |s – r|

s
∥∥UF

s (y) – y
∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Lemma . ([]) Let {xn} and {yn} be two bounded sequences in a Banach space X and
let {βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that

xn+ = ( – βn)yn + βnxn

for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H and let S : C →
C be a nonexpansive mapping. Then the mapping I – S is demiclosed. That is, if {xn} is a
sequence in C such that xn → x∗ weakly and (I – S)xn → y strongly, then (I – S)x∗ = y.

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n ∈N,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn =∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Main results
In this section, we introduce our algorithm and prove our main results.
LetH andH be two realHilbert spaces and letC andD be two nonempty closed convex

subsets of H and H, respectively. Let A :H → H be a bounded linear operator with its
adjoint A∗, B be a strongly positive bounded linear operator on H with coefficient γ > .
Let f : C → C be a ρ-contraction and F : C×C →R andG :D×D →R be two bifunctions
satisfying the conditions (H)-(H). Let S : D → D and T : C → C be two nonexpansive
mappings.

Algorithm . Taking x ∈ H arbitrarily, we define a sequence {xn} by the following:

xn+ = αnσ f (xn) + βnxn +
(
( – βn)I – αnB

)
TUF

λn

(
xn + δA∗(SUG

γn – I
)
Axn

)
(.)

for all n ∈ N, where {λn} and {γn} are two real number sequences in (,∞), δ ∈ (, 
‖A‖ )

and σ >  are two constants and {αn} and {βn} are two real number sequences in (, ).

Theorem . Suppose � �= ∅ and suppose the following conditions hold:
(C): limn→∞ αn =  and

∑∞
n= αn =∞;

(C):  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(C): lim infn→∞ λn >  and limn→∞ λn+

λn
= ;

(C): lim infn→∞ γn >  and limn→∞ γn+
γn

= ;
(C): σρ < γ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Then the sequence {xn} generated by algorithm (.) converges strongly to p = Proj�(σ f +
I – B)p, which solves the following VI:

〈
(σ f – B)x, y – x

〉 ≤ , ∀y ∈ �. (.)

Proof First, we know that the solution of (.) is unique. We denote the unique solution
by p. That is, p = Proj�(σ f + I – B)p. Then we have p ∈ Fix(T) ∩ EP(F) and Ap ∈ Fix(S) ∩
EP(G). Set zn = UG

γnAxn, yn = xn + δA∗(SUG
γn – I)Axn and un = UF

λn (xn + δA∗(SUG
γn – I)Axn)

for all n ∈ N. Then un = UF
λnyn. From Lemma ., we know that UF

λn and UG
γn are firmly

nonexpansive. By these facts, we have the following conclusions:

‖zn –Ap‖ = ∥∥UG
γnAxn –Ap

∥∥ ≤ ‖Axn –Ap‖, (.)

‖un – p‖ = ∥∥UF
λnyn – p

∥∥ ≤ ‖yn – p‖ (.)

and

∥∥SUG
γnAxn –Ap

∥∥ ≤ ∥∥UG
γnAxn –Ap

∥∥

≤ ‖Axn –Ap‖ – ∥∥UG
γnAxn –Axn

∥∥. (.)

Applying Lemma ., we deduce

‖un+ – un‖ =
∥∥UF

λn+yn+ –UF
λnyn

∥∥
≤ ‖yn+ – yn‖ +

∣∣∣∣λn+ – λn

λn+

∣∣∣∣‖un+ – yn+‖ (.)

and

‖zn+ – zn‖ =
∥∥UG

γn+Axn+ –UG
γnAxn

∥∥
≤ ‖Axn+ –Axn‖ +

∣∣∣∣γn+ – γn

γn+

∣∣∣∣‖zn+ –Axn‖. (.)

From (.), we have

‖xn+ – p‖ =
∥∥αn

(
σ f (xn) – Bp

)
+ βn(xn – p) +

(
( – βn)I – αnB

)
(Tun – p)

∥∥
≤ αnσ

∥∥f (xn) – f (p)
∥∥ + αn

∥∥σ f (p) – Bp
∥∥ + βn‖xn – p‖

+ ( – βn – αnγ )‖un – p‖. (.)

Using (.), we get

‖yn – p‖ = ∥∥xn – p + δA∗(Szn –Axn)
∥∥

= ‖xn – p‖ + δ
∥∥A∗(Szn –Axn)

∥∥

+ δ
〈
xn – p,A∗(Szn –Axn)

〉
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Since A is a linear operator with its adjoint A∗, we have

〈
xn – p,A∗(Szn –Axn)

〉
=

〈
A(xn – p),Szn –Axn

〉
=

〈
Axn –Ap + Szn –Axn – (Szn –Axn),Szn –Axn

〉
= 〈Szn –Ap,Szn –Axn〉 – ‖zn –Axn‖. (.)

Again from (.), we obtain

〈Szn –Ap,Szn –Axn〉 = 

(‖Szn –Ap‖ + ‖Szn –Axn‖ – ‖Axn –Ap‖). (.)

From (.), (.), and (.), we have

〈
xn – p,A∗(Szn –Axn)

〉
=



(‖Szn –Ap‖ + ‖Szn –Axn‖ – ‖Axn –Ap‖)

– ‖Szn –Axn‖

≤ 

(‖Axn –Ap‖ – ‖zn –Axn‖ + ‖Szn –Axn‖

– ‖Axn –Ap‖) – ‖Szn –Axn‖

= –


‖zn –Axn‖ – 


‖Szn –Axn‖. (.)

Substituting (.) into (.) to deduce

‖yn – p‖ ≤ ‖xn – p‖ + δ‖A‖‖Szn –Axn‖ + δ
(
–


‖zn –Axn‖ – 


‖Szn –Axn‖

)

= ‖xn – p‖ + (
δ‖A‖ – δ

)‖Szn –Axn‖ – δ‖zn –Axn‖

≤ ‖xn – p‖.

It follows that

‖yn – p‖ ≤ ‖xn – p‖.

Thus, from (.), we get

‖xn+ – p‖ ≤ αnσρ‖xn – p‖ + αn
∥∥σ f (p) – Bp

∥∥ + βn‖xn – p‖ + ( – βn – αnγ )‖xn – p‖
=

[
 – (γ – σρ)αn

]‖xn – p‖ + αn
∥∥σ f (p) – Bp

∥∥
≤ max

{
‖xn – p‖, ‖σ f (p) – Bp‖

γ – σρ

}
.

The boundedness of the sequence {xn} follows.
Next, we estimate ‖un+ – un‖. Observe that

‖yn+ – yn‖

=
∥∥xn+ – xn + δ

[
A∗(Szn+ –Axn+) –A∗(Szn –Axn)

]∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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= ‖xn+ – xn‖ + δ
∥∥A∗(Szn+ –Axn+) –A∗(Szn –Axn)

∥∥

+ δ
〈
xn+ – xn,A∗[(Szn+ –Axn+) – (Szn –Axn)

]〉
≤ ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)

∥∥

+ δ
〈
Axn+ –Axn,Szn+ – Szn – (Axn+ –Axn)

〉
= ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)

∥∥

+ δ
〈
Szn+ – Szn,Szn+ – Szn – (Axn+ –Axn)

〉
– δ

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

= ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖Szn+ – Szn‖ +

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

– ‖Axn+ –Axn‖
)
– δ

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

= ‖xn+ – xn‖ +
(
δ‖A‖ – δ

)∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖Szn+ – Szn‖ – ‖Axn+ –Axn‖

)
≤ ‖xn+ – xn‖ +

(
δ‖A‖ – δ

)∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖zn+ – zn‖ – ‖Axn+ –Axn‖

)
. (.)

Since δ ∈ (, 
‖A‖ ), we derive by virtue of (.) and (.) that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖

+ δ

∣∣∣∣γn+ – γn

γn+

∣∣∣∣(‖zn+ – zn‖ + ‖Axn+ –Axn‖
)
. (.)

According to (.) and (.), we have

‖un+ – un‖ =
∥∥UF

λn+yn+ –UF
λnyn

∥∥

≤
(

‖yn+ – yn‖ +
∣∣∣∣λn+ – λn

λn+

∣∣∣∣‖un+ – yn+‖
)

≤ ‖yn+ – yn‖ +
∣∣∣∣λn+ – λn

λn+

∣∣∣∣
(
‖yn+ – yn‖‖un+ – yn+‖

+
∣∣∣∣λn+ – λn

λn+

∣∣∣∣‖un+ – yn+‖
)

≤ ‖xn+ – xn‖ +
∣∣∣∣λn+ – λn

λn+

∣∣∣∣
(
‖yn+ – yn‖‖un+ – yn+‖

+
∣∣∣∣λn+ – λn

λn+

∣∣∣∣‖un+ – yn+‖
)

+ δ

∣∣∣∣γn+ – γn

γn+

∣∣∣∣(‖zn+ – zn‖ + ‖Axn+ –Axn‖
)

≤ ‖xn+ – xn‖ +
(∣∣∣∣λn+ – λn

λn+

∣∣∣∣ + δ

∣∣∣∣γn+ – γn

γn+

∣∣∣∣
)
M, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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whereM >  is a constant such that

sup
n

{
‖yn+ – yn‖‖un+ – yn+‖ +

∣∣∣∣λn+ – λn

λn+

∣∣∣∣‖un+ – yn+‖

+ δ
(‖zn+ – zn‖ + ‖Axn+ –Axn‖

)} ≤M.

Therefore,

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
√(∣∣∣∣λn+ – λn

λn+

∣∣∣∣ + δ

∣∣∣∣γn+ – γn

γn+

∣∣∣∣
)
M. (.)

From (.), we write xn+ = βnxn + ( – βn)wn where wn = Tun + αn
–βn

(σ f (xn) – BTun) for all
n ∈N. Then we have

‖wn+ –wn‖

=
∥∥∥∥Tun+ – Tun +

αn+

 – βn+

(
σ f (xn+) – BTun+

)
–

αn

 – βn

(
σ f (xn) – BTun

)∥∥∥∥
≤ ‖Tun+ – Tun‖ + αn+

 – βn+

∥∥σ f (xn+) – BTun+
∥∥ +

αn

 – βn

∥∥σ f (xn) – BTun
∥∥

≤ ‖un+ – un‖ + αn+

 – βn+

∥∥σ f (xn+) – BTun+
∥∥ +

αn

 – βn

∥∥σ f (xn) – BTun
∥∥

≤ ‖xn+ – xn‖ +
√(∣∣∣∣λn+ – λn

λn+

∣∣∣∣ + δ

∣∣∣∣γn+ – γn

γn+

∣∣∣∣
)
M

+
αn+

 – βn+

∥∥σ f (xn+) – BTun+
∥∥ +

αn

 – βn

∥∥σ f (xn) – BTun
∥∥.

Noting the condition (C) and the boundedness of the sequences {un+}, {yn+}, {zn+},
{Axn}, {f (xn)}, and {BTun}, we have

lim sup
n→∞

(‖wn+ –wn‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we deduce

lim
n→∞‖xn –wn‖ = .

Hence,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖xn –wn‖ = . (.)

Since xn+ – xn = αn(σ f (xn) – BTun) + ( – βn)(Tun – xn), we obtain

‖Tun – xn‖ ≤ 
βn

{
αn

∥∥σ f (xn) – BTun
∥∥ + ‖xn+ – xn‖

}
.

Thus,

lim
n→∞‖xn – Tun‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Using the firmly nonexpansiveness of UF
λn , we have

‖un – p‖ =
∥∥UF

λnyn – p
∥∥

≤ ‖yn – p‖ – ∥∥UF
λnyn – yn

∥∥

= ‖yn – p‖ – ‖un – yn‖

= ‖yn – p‖ – ∥∥un – xn – δA∗(SUG
γn – I

)
Axn

∥∥

= ‖yn – p‖ – ‖un – xn‖ – δ
∥∥A∗(SUG

γn – I
)
Axn

∥∥

+ δ
〈
un – xn,A∗(SUG

γn – I
)
Axn

〉
. (.)

Applying (.) to (.) to deduce

‖xn+ – p‖

=
∥∥αn

(
σ f (xn) – Bp

)
+ βn(xn – Tun) + (I – αnB)(Tun – p)

∥∥

≤ ∥∥(I – αnB)(Tun – p) + βn(xn – Tun)
∥∥ + αn

〈
σ f (xn) – Bp,xn+ – p

〉
≤ [‖I – αnB‖‖Tun – p‖ + βn‖xn – Tun‖

] + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖
≤ [

( – αnγ )‖un – p‖ + βn‖xn – Tun‖
] + αn

∥∥σ f (xn) – Bp
∥∥‖xn+ – p‖

= ( – αnγ )‖un – p‖ + β
n‖xn – Tun‖ + ( – αnγ )βn‖un – p‖‖xn – Tun‖

+ αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖. (.)

It follows from (.) that

‖xn+ – p‖ ≤ ‖xn – p‖ – ‖un – yn‖ + β
n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖
+ αn

∥∥σ f (xn) – Bp
∥∥‖xn+ – p‖. (.)

Then

‖un – yn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + β
n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖ + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + β

n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖ + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖.

This together with (C), (.), and (.) implies that

lim
n→∞‖un – yn‖ = . (.)

From (.), we have

‖xn+ – p‖ ≤ ( – αnγ )‖un – p‖ + β
n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖ + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖
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≤ ‖yn – p‖ + β
n‖xn – Tun‖ + ( – αnγ )βn‖un – p‖‖xn – Tun‖

+ αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖
≤ ‖xn – p‖ + (

δ‖A‖ – δ
)‖Szn –Axn‖ – δ‖zn –Axn‖

+ β
n‖xn – Tun‖ + ( – αnγ )βn‖un – p‖‖xn – Tun‖

+ αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖.

Hence,

(
δ – δ‖A‖)‖Szn –Axn‖ + δ‖zn –Axn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + β
n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖ + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖
≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + β

n‖xn – Tun‖

+ ( – αnγ )βn‖un – p‖‖xn – Tun‖ + αn
∥∥σ f (xn) – Bp

∥∥‖xn+ – p‖,

which implies that

lim
n→∞‖Szn –Axn‖ = lim

n→∞‖zn –Axn‖ = .

So,

lim
n→∞‖Szn – zn‖ = . (.)

Note that

‖yn – xn‖ =
∥∥δA∗(SUG

γn – I
)
Axn

∥∥
≤ δ‖A‖‖Szn –Axn‖.

Therefore,

lim
n→∞‖xn – yn‖ = . (.)

From (.), (.), and (.), we get

lim
n→∞‖xn – Txn‖ = . (.)

Now, we show that lim supn→∞〈(σ f –B)p,xn – p〉 ≤ . Choose a subsequence {xni} of {xn}
such that

lim sup
n→∞

〈
(σ f – B)p,xn – p

〉
= lim

i→∞
〈
(σ f – B)p,xni – p

〉
. (.)

Since the sequence {xni} is bounded, we can choose a subsequence {xnij } of {xni} such that
xnij ⇀ z. For the sake of convenience, we assume (without loss of generality) that xni ⇀ z.

http://www.journalofinequalitiesandapplications.com/content/2014/1/380
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Consequently, we derive from the above conclusions that

yni ⇀ z, uni ⇀ z, Axni ⇀ z and zni ⇀ Az. (.)

By the demi-closed principle of the nonexpansive mappings S and T (see Lemma .), we
deduce z ∈ Fix(T) and Az ∈ Fix(S) (according to (.) and (.), respectively).
Next, we show that z ∈ EP(F). Since un =UF

λnyn, we have

F(un, y) +

λn

〈y – un,un – yn〉 ≥ , ∀y ∈ C. (.)

It follows from the monotonicity of F that


λn

〈y – un,un – yn〉 ≥ F(y,un), (.)

and hence〈
y – uni ,

uni – yni
λni

〉
≥ F(y,uni ). (.)

Since ‖un – yn‖ → , uni ⇀ z, and lim infn→∞ λn > , we obtain uni–yni
λni

→ . It follows that
 ≥ F(y, z). For t with  < t ≤  and y ∈ C, let yt = ty+(– t)z ∈ C. It follows that F(yt , z) ≤ .
So,

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt , z) ≤ tF(yt , y). (.)

Therefore,  ≤ F(yt , y). Thus  ≤ F(z, y). This implies that z ∈ EP(F). Similarly, we can
prove thatAz ∈ EP(G). To this end, we deduce z ∈ Fix(T)∩EP(F) andAz ∈ Fix(S)∩EP(G).
That is to say, z ∈ �. Therefore,

lim sup
n→∞

〈
(σ f – B)p,xn – p

〉
= lim

i→∞
〈
(σ f – B)p,xni – p

〉
= lim

i→∞
〈
(σ f – B)p, z – p

〉
≤ . (.)

Finally, we prove xn → p. From (.), we have

‖xn+ – p‖

=
〈
αn

(
σ f (xn) – Bp

)
+ βn(xn – p) +

(
( – βn)I – αnB

)
(Tun – p),xn+ – p

〉
= αn

〈
σ f (xn) – Bp,xn+ – p

〉
+ βn〈xn – p,xn+ – p〉

+
〈(
( – βn)I – αnB

)
(Tun – p),xn+ – p

〉
≤ αnσ

〈
f (xn) – f (p),xn+ – p

〉
+ αn

〈
σ f (p) – Bp,xn+ – p

〉
+ βn‖xn – p‖‖xn+ – p‖ + ( – βn – αnγ )‖Tun – p‖‖xn+ – p‖

≤ [
 – (γ – σρ)αn

]‖xn – p‖‖xn+ – p‖ + αn
〈
σ f (p) – Bp,xn+ – p

〉
≤  – (γ – σρ)αn


‖xn – p‖ + 


‖xn+ – p‖ + αn

〈
σ f (p) – Bp,xn+ – p

〉
. (.)
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It follows that

‖xn+ – p‖ ≤ [
 – (γ – σρ)αn

]‖xn – p‖ + αn
〈
σ f (p) – Bp,xn+ – p

〉
. (.)

Applying Lemma . and (.) to (.), we deduce xn → p. The proof is completed. �

Algorithm . Taking x ∈H arbitrarily, we define a sequence {xn} by the following:

xn+ = αnσ f (xn) + βnxn +
(
( – βn)I – αnB

)
T

(
xn + δA∗(S – I)Axn

)
(.)

for all n ∈ N, where δ ∈ (, 
‖A‖ ) and σ >  are two constants and {αn} and {βn} are two

real number sequences in (, ).

Corollary . Suppose � = {x ∈ Fix(T) : Ax ∈ Fix(S)} �= ∅ and suppose the following con-
ditions hold:
(C): limn→∞ αn =  and

∑∞
n= αn =∞;

(C):  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(C): σρ < γ .
Then the sequence {xn} generated by algorithm (.) converges strongly to p = Proj� (σ f +

I – B)p, which solves the following VI:

〈
(σ f – B)x, y – x

〉 ≤ , ∀y ∈ �.

Algorithm . Taking x ∈H arbitrarily, we define a sequence {xn} by the following:

xn+ = αnσ f (xn) + βnxn +
(
( – βn)I – αnB

)
UF

λn

(
xn + δA∗(UG

γn – I
)
Axn

)
(.)

for all n ∈ N, where {λn} and {γn} are two real number sequences in (,∞), δ ∈ (, 
‖A‖ )

and σ >  are two constants and {αn} and {βn} are two real number sequences in (, ).

Corollary . Suppose � = {x ∈ EP(F) : Ax ∈ EP(G)} �= ∅ and suppose the following con-
ditions hold:
(C): limn→∞ αn =  and

∑∞
n= αn =∞;

(C):  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(C): lim infn→∞ λn >  and limn→∞ λn+

λn
= ;

(C): lim infn→∞ γn >  and limn→∞ γn+
γn

= ;
(C): σρ < γ .
Then the sequence {xn} generated by algorithm (.) converges strongly to p = Proj� (σ f +

I – B)p, which solves the following VI:

〈
(σ f – B)x, y – x

〉 ≤ , ∀y ∈ �.

Algorithm . Taking x ∈H arbitrarily, we define a sequence {xn} by the following:

xn+ = αnσ f (xn) + βnxn +
(
( – βn)I – αnB

)
PC

(
xn + δA∗(PQ – I)Axn

)
(.)

for all n ∈ N, where δ ∈ (, 
‖A‖ ) and σ >  are two constants and {αn} and {βn} are two

real number sequences in (, ).
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Corollary . Suppose � = {x ∈ C : Ax ∈ Q} �= ∅ and suppose the following conditions
hold:
(C): limn→∞ αn =  and

∑∞
n= αn =∞;

(C):  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(C): σρ < γ .
Then the sequence {xn} generated by algorithm (.) converges strongly to p = Proj� (σ f +

I – B)p, which solves the following VI:

〈
(σ f – B)x, y – x

〉 ≤ , ∀y ∈ �.
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