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1 Introduction
Monotone variational inequalities recently have been investigated as an effective and pow-
erful tool for studying a wide class of real world problems which arise in economics,
finance, image reconstruction, ecology, transportation, and network; see [–] and the ref-
erences therein. Monotone variational inequalities, which include many important prob-
lems in nonlinear analysis and optimization, such as the Nash equilibrium problem, com-
plementarity problems, fixed point problems, saddle point problems, and game theory
recently have been extensively studied based on projection methods. Many well-known
problems can be studied by using methods which are iterative in their nature. As an ex-
ample, in computer tomography with limited data, each piece of information implies the
existence of a convex set in which the required solution lies. The problem of finding a
point in the intersection of these convex subsets is then of crucial interest, and it cannot
be usually solved directly. Therefore, an iterative algorithm must be used to approximate
such a point. Krasnoselskii-Mann iteration, which is also known as a one-step iteration, is
a classic algorithm to study fixed points of nonlinear operators. However, Krasnoselskii-
Mann iteration only enjoys weak convergence for nonexpansive mappings; see [] and
the references therein.
The purposes of this paper is to study common solutions of a generalized equilibrium

problem, a variational inequality, and fixed point problems of an asymptotically strict
pseudocontraction based on a hybrid algorithm. Weak convergence theorems are estab-
lished in the framework of real Hilbert spaces. The organization of this paper is as follows.
In Section , we provide some necessary preliminaries. In Section , a hybrid algorithm is
introduced and the convergence analysis is given. Weak convergence theorems are estab-
lished in a real Hilbert space.
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2 Preliminaries
From now on, we always assume thatH is a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖, C is a nonempty closed convex subset of H and PC denotes the metric
projection from H onto C.
Let A : C →H be a mapping. Recall that A is said to be monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, we also call it an α-inverse-strongly monotone mapping.
A set-valuedmappingT :H → H is said to bemonotone if for all x, y ∈ H , f ∈ Tx and g ∈

Ty imply 〈x– y, f – g〉 > . A monotone mapping T :H → H is maximal if the graph G(T)
of T is not properly contained in the graph of any other monotone mapping. It is known
that amonotonemappingT ismaximal if and only if, for any (x, f ) ∈H×H , 〈x–y, f –g〉 ≥ 
for all (y, g) ∈G(T) implies f ∈ Tx. Let A be a monotone mapping of C into H and NCv be
the normal cone to C at v ∈ C, i.e.,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}

and define a mapping T on C by

Tv =

⎧⎨
⎩
Av +NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if 〈Av,u– v〉 ≥  for all u ∈ C; see []
and the references therein.
Recall that the classical variational inequality problem is to find x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

It is known that x ∈ C is a solution to (.) if and only if x is a fixed point of the mapping
PC(I – λA), where λ >  is a constant and I is the identity mapping. Projection methods
recently have been studied for variational inequality (.); see [–] and the references
therein.
Let S : C → C be a nonlinear mapping. In this paper, we use F(S) to denote the fixed

point set of S. Recall that S is said to be nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

S is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with
limn→∞ kn =  such that

‖Sx – Sy‖ ≤ kn‖x – y‖, ∀x, y ∈ C.
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S is said to be κ-strictly pseudocontractive if there exists a constant k ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥∥(x – Sx) – (y – Sy)

∥∥, ∀x, y ∈ C.

The class of strict pseudocontractions was introduced by Browder and Petryshyn []. It
is clear that every nonexpansive mapping is a -strict pseudocontraction.
T is said to be an asymptotically κ-strict pseudocontraction if there exists a sequence

{kn} ⊂ [,∞) with limn→∞ kn =  and a constant κ ∈ [, ) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + κ

∥∥(
I – Tn)x – (

I – Tn)y∥∥, ∀x, y ∈ C,n≥ .

The class of asymptotically strict pseudocontractions was introduced by Qihou []. It is
clear that every asymptotically nonexpansive mapping is an asymptotically -strict pseu-
docontraction.
Let F be a bifunction of C ×C into R, where R denotes the set of real numbers and A :

C →H is an inverse-strongly monotonemapping. In this paper, we consider the following
generalized equilibrium problem:

Find x ∈ C such that F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, the set of such x ∈ C is denoted by EP(F ,A), i.e.,

EP(F ,A) =
{
x ∈ C : F(x, y) + 〈Ax, y – x〉 ≥ ,∀y ∈ C

}
.

To study the generalized equilibrium problem (.), we may assume that F satisfies the
following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.
If A ≡ , then the generalized equilibrium problem (.) is reduced to the following

equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

In this paper, the set of such x ∈ C is denoted by EP(F), i.e.,

EP(F) =
{
x ∈ C : F(x, y)≥ ,∀y ∈ C

}
.

If F ≡ , then the generalized equilibrium problem (.) is reduced to the classical vari-
ational inequality (.).
Recently, equilibrium problems (.) and (.) have been investigated by many authors;

see [–] and the references therein. Motivated by the research going on in this direc-
tion, we study a hybrid algorithm for solving common solutions of variational inequality
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(.), generalized equilibrium problem (.), and fixed points of an asymptotically strict
pseudocontraction. Possible computation errors are taken into account. Weak conver-
gence theorems are established in the framework of real Hilbert spaces.
In order to prove our main results, we also need the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of H , and let F : C × C → R

be a bifunction satisfying (A)-(A). Then, for any r >  and x ∈ H , there exists z ∈ C such
that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all r >  and x ∈H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H and S :
C → C be an asymptotically strict pseudocontraction. Then I – S is demi-closed, that is, if
{xn} is a sequence in C with xn ⇀ x and xn – Sxn → , then x ∈ F(S).

Lemma . [] Let H be a Hilbert space and  < p≤ tn ≤ q <  for all n ≥ . Suppose that
{xn} and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d

and

lim
n→∞

∥∥tnxn + ( – tn)yn
∥∥ = d

hold for some d ≥ . Then limn→∞ ‖xn – yn‖ = .

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer,
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞. Then the limit
limn→∞ an exists.

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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3 Main results
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction from C ×C to R which satisfies (A)-(A). Let A : C →H be an α-inverse-
stronglymonotonemapping, and let B : C →H be a β-inverse-stronglymonotonemapping.
Let S : C → C be an asymptotically κ-strict pseudocontraction with the sequence {kn} such
that

∑∞
n=(kn – ) < ∞. Assume that � = F(S)∩VI(C,B)∩ EP(F ,A) is not empty. Let {αn},

{α′
n}, {α′′

n}, and {βn} be real number sequences in (, ). Let {rn} and {sn} be two positive real
number sequences. Let {xn} be a sequence generated in the following process:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C,

F(zn, z) + 〈Axn, z – zn〉 + 
rn 〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

yn = PC(zn – snBzn),

xn+ = αnxn + α′
n(βnyn + ( – βn)Snyn) + α′′

nen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(a) αn + α′

n + α′′
n = ;

(b)  < p≤ αn ≤ q <  and
∑∞

n= α
′′
n < ∞;

(c)  < κ < βn ≤ b < ;
(d)  < s ≤ sn ≤ s′ < β and  < r ≤ rn ≤ r′ < α,

where p, q, b, s, s′, r, r′ are real constants. Then {xn} converges weakly to some point in �.

Proof First, we show that the sequences {xn}, {yn}, and {zn} are bounded. Let p ∈ � be
fixed arbitrarily. For any x, y ∈ C, we see that

∥∥(I – rnA)x – (I – rnA)y
∥∥

=
∥∥(x – y) – rn(Ax –Ay)

∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax –Ay‖. (.)

Using the restriction (d), we see that ‖(I – rnA)x – (I – rnA)y‖ ≤ ‖x – y‖. This implies that
I – rnA is nonexpansive. In the same way, we find that I – snB is also nonexpansive. Using
the restriction (c), we obtain that

∥∥βnyn + ( – βn)Snyn – p
∥∥

= βn‖yn – p‖ + ( – βn)
∥∥Snyn – Snp

∥∥

– βn( – βn)
∥∥(yn – p) –

(
Snyn – Snp

)∥∥

≤ βn‖yn – p‖ + ( – βn)
(
kn‖yn – p‖ + κ

∥∥(yn – p) –
(
Snyn – Snp

)∥∥)
– βn( – βn)

∥∥(yn – p) –
(
Snyn – Snp

)∥∥

= kn‖yn – p‖ – ( – βn)(βn – κ)
∥∥(yn – p) –

(
Snyn – Snp

)∥∥

≤ kn‖yn – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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It follows that

‖xn+ – p‖ ≤ αn‖xn – p‖ + α′
n
∥∥βnyn + ( – βn)Snyn – p

∥∥ + α′′
n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn‖yn – p‖ + α′′

n‖en – p‖

= αn‖xn – p‖ + α′
nkn

∥∥PC(I – snB)zn – p
∥∥ + α′′

n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn

∥∥Trn (I – rnA)xn – p
∥∥ + α′′

n‖en – p‖

≤ kn‖xn – p‖ + α′′
n‖en – p‖.

This implies fromLemma . that limn→∞ ‖xn–p‖ exists. This shows that {xn} is bounded,
so are {yn} and {zn}. From (.), we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + α′
nkn‖yn – p‖ + α′′

n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn

∥∥(I – snB)zn – p
∥∥ + α′′

n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn

(‖zn – p‖ – sn(β – sn)‖Bzn – Bp‖) + α′′
n‖en – p‖

≤ kn‖xn – p‖ – snknα′
n(β – sn)‖Bzn – Bp‖ + α′′

n‖en – p‖.

It follows that

snknα′
n(β – sn)‖Bzn – Bp‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖ + α′′

n‖en – p‖.

With the aid of the restrictions (b) and (d), we find that

lim
n→∞‖Bzn – Bp‖ = . (.)

Since PC is firmly nonexpansive, we have

‖yn – p‖ =
∥∥PC(I – snB)zn – PC(I – snB)p

∥∥

≤ 〈
(I – snB)zn – (I – snB)p, yn – p

〉

=


{∥∥(I – snB)zn – (I – snB)p

∥∥ + ‖yn – p‖

–
∥∥(I – snB)zn – (I – snB)p – (yn – p)

∥∥}

≤ 

{‖zn – p‖ + ‖yn – p‖ – ∥∥zn – yn – sn(Bzn – Bp)

∥∥}

=


{‖zn – p‖ + ‖yn – p‖ – ‖zn – yn‖

+ sn〈zn – yn,Bzn – Bp〉 – sn‖Bzn – Bp‖}

≤ 

{‖xn – p‖ + ‖yn – p‖ – ‖zn – yn‖

+ sn〈zn – yn,Bzn – Bp〉 – sn‖Bzn – Bp‖},
which implies that

‖yn – p‖ ≤ ‖xn – p‖ – ‖zn – yn‖ + sn‖zn – yn‖‖Bzn – Bp‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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Hence, we find from (.) that

‖xn+ – p‖ ≤ αn‖xn – p‖ + α′
nkn‖yn – p‖ + α′′

n‖en – p‖

≤ kn‖xn – p‖ – α′
nkn‖zn – yn‖ + α′

nsnkn‖zn – yn‖‖Bzn – Bp‖
+ α′′

n‖en – p‖.

Therefore, we obtain that

α′
nkn‖zn – yn‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖ + snkn‖zn – yn‖‖Bzn – Bp‖

+ α′′
n‖en – p‖.

From the restrictions (b) and (d), we find from (.) that

lim
n→∞‖zn – yn‖ = . (.)

It follows from (.) that

‖zn – p‖ = ∥∥Trn (I – rnA)xn – p
∥∥

≤ ‖xn – p‖ – rn(α – rn)‖Axn –Ap‖.

Hence, we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + α′
nkn‖yn – p‖ + α′′

n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn‖zn – p‖ + α′′

n‖en – p‖

≤ kn‖xn – p‖ – α′
nrn(α – rn)kn‖Axn –Ap‖ + α′′

n‖en – p‖.

This implies that

α′
nrn(α – rn)kn‖Axn –Ap‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖ + α′′

n‖en – p‖.

Using the restrictions (b) and (d), we obtain that

lim
n→∞‖Axn –Ap‖ = . (.)

Since Trn is firmly nonexpansive, we find that

‖zn – p‖ =
∥∥Trn (I – rnA)xn – Trn (I – rnA)p

∥∥

≤ 〈
(I – rnA)xn – (I – rnA)p, zn – p

〉

=


(∥∥(I – rnA)xn – (I – rnA)p

∥∥ + ‖zn – p‖

–
∥∥(I – rnA)xn – (I – rnA)p – (zn – p)

∥∥)

≤ 

(‖xn – p‖ + ‖zn – p‖ – ∥∥xn – zn – rn(Axn –Ap)

∥∥)

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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=


(‖xn – p‖ + ‖zn – p‖ – (‖xn – zn‖

– rn〈xn – zn,Axn –Ap〉 – rn‖Axn –Ap‖)),
which implies that

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖ + rn‖xn – zn‖‖Axn –Ap‖.

It follows that

‖xn+ – p‖ ≤ αn‖xn – p‖ + α′
nkn‖yn – p‖ + α′′

n‖en – p‖

≤ αn‖xn – p‖ + α′
nkn‖zn – p‖ + α′′

n‖en – p‖

≤ kn‖xn – p‖ – α′
nkn‖xn – zn‖ + rnα′

nkn‖xn – zn‖‖Axn –Ap‖
+ α′′

n‖en – p‖,

which yields that

α′
nkn‖xn – zn‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖ + rnα′

n‖xn – zn‖‖Axn –Ap‖
+ α′′

n‖en – p‖.

Using the restrictions (b) and (d), we find from (.) that

lim
n→∞‖xn – zn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xn – yn‖ = . (.)

Since {xn} is bounded, we see that there exists a subsequence {xni} of {xn}which converges
weakly to ξ . Let T be a maximal monotone mapping defined by

Tx =

⎧⎨
⎩
Bx +NCx, x ∈ C,

∅, x /∈ C.

For any given (x, y) ∈Graph(T), we have y–Bx ∈NCx. Since yn ∈ C, by the definition ofNC ,
we have 〈x–yn, y–Bx〉 ≥ . Since yn = PC(I– snB)zn, we see that 〈x–yn, yn–(I– snB)zn〉 ≥ 
and hence

〈
x – yn,

yn – zn
sn

+ Bzn
〉
≥ .

It follows that

〈x – yni , y〉 ≥ 〈x – yni ,Bx〉

≥ 〈x – yni ,Bx〉 –
〈
x – yni ,

yni – zni
sni

+ Bzni

〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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= 〈x – yni ,Bx – Byni〉 + 〈x – yni ,Byni – Bzni〉 –
〈
x – yni ,

yni – zni
sni

〉

≥ 〈x – yni ,Byni – Bzni〉 –
〈
x – yni ,

yni – zni
sni

〉
.

Since yni converges weakly to ξ and B is 
β
-Lipschitz continuous, we see that 〈x– ξ , y〉 ≥ .

Notice that T is maximalmonotone and hence  ∈ Tξ . This shows that ξ ∈VI(C,B). From
(.), we see that zni converges weakly to ξ . It follows that

F(zn, z) + 〈Axn, z – zn〉 + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C.

From condition (A), we see that

〈Axn, z – zn〉 + 
rn

〈z – zn, zn – xn〉 ≥ F(z, zn), ∀z ∈ C.

Replacing n by ni, we arrive at

〈Axni , z – zni〉 +
〈
z – zni ,

zni – xni
rni

〉
≥ F(z, zni ), ∀z ∈ C. (.)

For t with  < t ≤  and z ∈ C, let ut = tz + ( – t)ξ . Since z ∈ C and ξ ∈ C, we have ut ∈ C.
In view of (.), we find that

〈ut – zni ,Aut〉 ≥ 〈ut – zni ,Aut〉 – 〈Axni ,ut – zni〉 –
〈
ut – zni ,

zni – xni
rni

〉

+ F(ut , zni )

= 〈ut – zni ,Aut –Azni〉 + 〈ut – zni ,Azni –Axni〉

–
〈
ut – zni ,

zni – xni
rni

〉
+ F(ut , zni ).

Using (.), we have limi→∞ Azni – Axni = . Since A is monotone, we see that 〈ut –
zni ,Aut –Azni〉 ≥ . It follows from condition (A) that

〈ut – ξ ,Aut〉 ≥ F(ut , ξ ). (.)

Using conditions (A) and (A), we see from (.) that

 = F(ut ,ut) ≤ tF(ut , z) + ( – t)F(ut , ξ )

≤ tF(ut , z) + ( – t)〈ut – ξ ,Aut〉
= tF(ut ,u) + ( – t)t〈z – ξ ,Aut〉,

which yields that

F(ut , z) + ( – t)〈z – ξ ,Aut〉 ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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Letting t → , we find

F(ξ , z) + 〈z – ξ ,Aξ〉 ≥ ,

which implies that ξ ∈ EP(F ,A).
Now, we are in a position to show ξ ∈ F(S). Since limn→∞ ‖xn – p‖ exists, we may as-

sume that limn→∞ ‖xn – p‖ = d > . Put λn = βnyn + ( – βn)Snyn. It follows from (.) that
lim supn→∞ ‖xn – p + α′′

n(en – λn)‖ ≤ d and lim supn→∞ ‖λn – p + α′′
n(en – λn)‖ ≤ d. On the

other hand, we have

lim
n→∞‖xn+ – p‖ = lim

n→∞
∥∥αn

(
(xn – p) + α′′

n(en – λn)
)
+ ( – αn)

(
λn – p+ α′′

n(en – λn)
)∥∥ = d.

Using Lemma ., we obtain that limn→∞ ‖λn – xn‖ = . Note that

Snyn – xn =
λn – xn
 – βn

+
βn(xn – yn)

 – βn
.

Hence, we have limn→∞ ‖Snyn – xn‖ = . Note that ‖Snxn – xn‖ ≤ ‖Snxn – Snyn‖ + ‖Snyn –
xn‖. Since S is Lipschitz continuous, we have limn→∞ ‖Snxn –xn‖ = . Further, we find that
limn→∞ ‖Sxn – xn‖ = . Using Lemma ., we see that ξ ∈ F(S). This proves that η ∈ �.
Finally, we show that the sequence {xn} converges weakly to ξ . Assume that there exists

another subsequence {xnj} of {xn} such that {xnj} converges weakly to η. In the same way,
we find η ∈ �. If η �= ξ , we see from the Opial condition [] that

lim
n→∞‖xn – ξ‖ = lim inf

i→∞ ‖xni – ξ‖ < lim inf
i→∞ ‖xni – η‖

= lim inf
n→∞ ‖xn – η‖ = lim inf

j→∞ ‖xnj – η‖

< lim inf
j→∞ ‖xnj – ξ‖ = lim

n→∞‖xn – ξ‖.

This derives a contradiction. Hence, we have η = ξ . This implies that xn ⇀ ξ ∈ �. This
completes the proof. �

Remark . The key of the weak convergence of the algorithm is due to the fact that A is
inverse-strongly monotone, which yields that I – rnA is nonexpansive. The nonexpansivity
of the mapping I – rnA plays an important role in this theorem. Therefore, it is of interest
to relax the monotonicity of A such that the algorithm is still weakly convergent.

Next, we give some subresults of Theorem .. If S is asymptotically nonexpansive, we
find the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction from C ×C to R which satisfies (A)-(A). Let A : C →H be an α-inverse-
stronglymonotonemapping, and let B : C →H be a β-inverse-stronglymonotonemapping.
Let S : C → C be an asymptotically nonexpansivemapping with the sequence {kn} such that∑∞

n=(kn – ) <∞. Assume that � = F(S)∩VI(C,B)∩ EP(F ,A) is not empty. Let {αn}, {α′
n},

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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and {α′′
n} be real number sequences in (, ). Let {rn} and {sn} be two positive real number

sequences. Let {xn} be a sequence generated in the following process:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C,

F(zn, z) + 〈Axn, z – zn〉 + 
rn 〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

yn = PC(zn – snBzn),

xn+ = αnxn + α′
nSnyn + α′′

nen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(a) αn + α′

n + α′′
n = ;

(b)  < p≤ αn ≤ p <  and
∑∞

n= α
′′
n <∞;

(c)  < s≤ sn ≤ s′ < β and  < r ≤ rn ≤ r′ < α,
where p, q, s, s′, r, r′ are real constants. Then {xn} converges weakly to some point in �.

Further, if S is an identity mapping, we have the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction from C ×C to R which satisfies (A)-(A). Let A : C →H be an α-inverse-
stronglymonotonemapping, and let B : C →H be a β-inverse-stronglymonotonemapping.
Assume that � =VI(C,B)∩ EP(F ,A) is not empty. Let {αn}, {α′

n}, and {α′′
n} be real number

sequences in (, ). Let {rn} and {sn} be two positive real number sequences. Let {xn} be a
sequence generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

F(yn, z) + 〈Axn, z – yn〉 + 
rn 〈z – yn, yn – xn〉 ≥ ,

xn+ = αnxn + α′
nPC(yn – snByn) + α′′

nen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(a) αn + α′

n + α′′
n = ;

(b)  < p≤ αn ≤ q <  and
∑∞

n= α
′′
n < ∞;

(c)  < s≤ sn ≤ s′ < β and  < r ≤ rn ≤ r′ < α,
where p, q, s, s′, r, r′ are real constants. Then {xn} converges weakly to some point in �.

Next, we give a result on variational inequality (.).

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : C →H be an α-inverse-strongly monotone mapping, and let B : C →H be a β-inverse-
strongly monotone mapping. Assume that � = VI(C,B) ∩ VI(C,A) is not empty. Let {αn},
{α′

n}, and {α′′
n} be real number sequences in (, ). Let {rn} and {sn} be two positive real

number sequences. Let {xn} be a sequence generated in the following process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

zn = PC(xn – snAxn),

xn+ = αnxn + α′
nPC(zn – snBzn) + α′′

nen,

http://www.journalofinequalitiesandapplications.com/content/2014/1/378
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where {en} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(a) αn + α′

n + α′′
n = ;

(b)  < p≤ αn ≤ q <  and
∑∞

n= α
′′
n < ∞;

(c)  < s≤ sn ≤ s′ < β and  < r ≤ rn ≤ r′ < α,
where p, q, s, s′, r, r′ are real constants. Then {xn} converges weakly to some point in �.

Proof Putting F ≡ , we see that

〈Axn, z – zn〉 + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C

is equivalent to

〈xn – rnAxn – zn, zn – z〉 ≥ , ∀z ∈ C.

This implies that zn = PC(xn – rnAxn). Let βn =  and S be the identity. Then we can obtain
from Theorem . the desired results immediately. �

Finally, we consider solving common fixed points of a pair of strict pseudocontractions.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → C be an α-strict pseudocontraction, and let T : C → C be a β-strict pseudo-
contraction. Assume that � = F(T) ∩ F(T) is not empty. Let {αn}, {α′

n}, and {α′′
n} be real

number sequences in (, ). Let {rn} and {sn} be two positive real number sequences. Let {xn}
be a sequence generated in the following process:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ C,

zn = ( – rn)xn + rnTxn,

yn = ( – sn)xn + snTxn,

xn+ = αnxn + α′
nyn + α′′

nen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(a) αn + α′

n + α′′
n = ;

(b)  < p≤ αn ≤ q <  and
∑∞

n= α
′′
n < ∞;

(c)  < s≤ sn ≤ s′ <  – α and  < r ≤ rn ≤ r′ <  – β ,
where p, q, s, s′, r, r′ are real constants. Then {xn} converges weakly to some point in �.

Proof Put F ≡ , A = I – T and B = I – T. It follows that A is –α
 -inverse-strongly

monotone and B is –β

 -inverse-strongly monotone. We also have F(T) = VI(C,B) and
F(T) =VI(C,A). In view of Theorem ., we find the desired result immediately. �
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