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Abstract
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1 Introduction

Monotone variational inequalities recently have been investigated as an effective and pow-
erful tool for studying a wide class of real world problems which arise in economics,
finance, image reconstruction, ecology, transportation, and network; see [1-9] and the ref-
erences therein. Monotone variational inequalities, which include many important prob-
lems in nonlinear analysis and optimization, such as the Nash equilibrium problem, com-
plementarity problems, fixed point problems, saddle point problems, and game theory
recently have been extensively studied based on projection methods. Many well-known
problems can be studied by using methods which are iterative in their nature. As an ex-
ample, in computer tomography with limited data, each piece of information implies the
existence of a convex set in which the required solution lies. The problem of finding a
point in the intersection of these convex subsets is then of crucial interest, and it cannot
be usually solved directly. Therefore, an iterative algorithm must be used to approximate
such a point. Krasnoselskii-Mann iteration, which is also known as a one-step iteration, is
a classic algorithm to study fixed points of nonlinear operators. However, Krasnoselskii-
Mann iteration only enjoys weak convergence for nonexpansive mappings; see [10] and
the references therein.

The purposes of this paper is to study common solutions of a generalized equilibrium
problem, a variational inequality, and fixed point problems of an asymptotically strict
pseudocontraction based on a hybrid algorithm. Weak convergence theorems are estab-
lished in the framework of real Hilbert spaces. The organization of this paper is as follows.
In Section 2, we provide some necessary preliminaries. In Section 3, a hybrid algorithm is
introduced and the convergence analysis is given. Weak convergence theorems are estab-
lished in a real Hilbert space.
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2 Preliminaries
From now on, we always assume that H is a real Hilbert space with the inner product (-, -)
and the norm || - ||, C is a nonempty closed convex subset of H and P¢ denotes the metric
projection from H onto C.

Let A: C — H be a mapping. Recall that A is said to be monotone if

(Ax—Ay,x—y) >0, Vx,yeC.
A is said to be inverse-strongly monotone if there exists a constant « > 0 such that
(Ax — Ay, x —y) > a||Ax — Ay|®>, Vx,y€C.

For such a case, we also call it an ¢-inverse-strongly monotone mapping.

A set-valued mapping T : H — 2/ is said to be monotone if forallx,y € H,f € Txand g €
Ty imply (x - y,f —g) > 0. A monotone mapping 7 : H — 2/ is maximal if the graph G(T')
of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping 7 is maximal ifand only if, forany (x,f) € H x H, (x-y,f —g) > 0
for all (y,2) € G(T) implies f € Tx. Let A be a monotone mapping of C into H and N¢v be
the normal coneto Catve C,ie.,

Ncv = {weH: (v—u,w)>0,Vu € C}
and define a mapping T on C by

Av+Ncv, ve(C,
0, veC.

V=

Then T is maximal monotone and 0 € 7v if and only if (Av,u — v) > 0 for all u € C; see [6]
and the references therein.
Recall that the classical variational inequality problem is to find x € C such that

(Ax,y—x) >0, VyeC. (2.1)

It is known that x € C is a solution to (2.1) if and only if « is a fixed point of the mapping
Pc(I — 1A), where A > 0 is a constant and [ is the identity mapping. Projection methods
recently have been studied for variational inequality (2.1); see [11-22] and the references
therein.

Let S: C — C be a nonlinear mapping. In this paper, we use F(S) to denote the fixed
point set of S. Recall that S is said to be nonexpansive if

ISz = Syll <llx-yl, VayeC.

S is said to be asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with
lim,,—, 5 k,, = 1 such that

ISx = Syll < kallx=yll, Vx,y€C.
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S is said to be « -strictly pseudocontractive if there exists a constant k € [0,1) such that

I1Sx = Syl? < llx = y11% + x| (x = Sx) — (7= )|,

Vx,y € C.

The class of strict pseudocontractions was introduced by Browder and Petryshyn [23]. It
is clear that every nonexpansive mapping is a 0-strict pseudocontraction.

T is said to be an asymptotically k-strict pseudocontraction if there exists a sequence
{k,} C [1,00) with lim,_, o, k,, = 1 and a constant « € [0,1) such that

|77 = T || < kullx = g1 + | (I = T")x = (1= T")y|, Va,ye Cn=>1.

The class of asymptotically strict pseudocontractions was introduced by Qihou [24]. It is
clear that every asymptotically nonexpansive mapping is an asymptotically 0-strict pseu-
docontraction.

Let F be a bifunction of C x C into R, where R denotes the set of real numbers and A :
C — H is an inverse-strongly monotone mapping. In this paper, we consider the following
generalized equilibrium problem:

Find x € C such that F(x,y) + (Ax,y—x) >0, VyeC. (2.2)
In this paper, the set of such x € C is denoted by EP(F, A), i.e.,
EP(F,A) = {x € C:F(x,y) + (Ax,y—x) > 0,Vy € C}.

To study the generalized equilibrium problem (2.2), we may assume that F satisfies the
following conditions:

(Al) F(x,x)=0forallx € C;

(A2) Fis monotone, i.e., F(x,y) + F(y,x) <0 forall x,y € C;

(A3) foreachw,y,z€C,

limsup F(éz + (1 - t)x,y) < F(x,);
£40

(A4) for eachx € C, y > F(x,y) is convex and lower semi-continuous.
If A = 0, then the generalized equilibrium problem (2.2) is reduced to the following
equilibrium problem:

Find x € C such that F(x,y) >0, VyeC. (2.3)
In this paper, the set of such x € C is denoted by EP(F), i.e.,
EP(F) = {x €C:F(x,y)>0,Vye C}.
If F = 0, then the generalized equilibrium problem (2.2) is reduced to the classical vari-
ational inequality (2.1).
Recently, equilibrium problems (2.2) and (2.3) have been investigated by many authors;

see [25-31] and the references therein. Motivated by the research going on in this direc-
tion, we study a hybrid algorithm for solving common solutions of variational inequality
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(2.1), generalized equilibrium problem (2.2), and fixed points of an asymptotically strict
pseudocontraction. Possible computation errors are taken into account. Weak conver-
gence theorems are established in the framework of real Hilbert spaces.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 [32] Let C be a nonempty closed convex subset of H, and let F: C x C — R
be a bifunction satisfying (Al)-(A4). Then, for any r > 0 and x € H, there exists z € C such
that

1
Fz,y)+-(y-zz-x) >0, VyeC.
r

Further, define

1
T.x= {zeC:F(z,y)+ -(y—-z,z—x) zO,VyGC}
r

forallr >0 and x € H. Then the following hold:
(@) T, is single-valued;
(b) T, is firmly nonexpansive, i.e., for any x,y € H,

I Trx - Try”2 < (Twx—-Tyy,x—-y);

(c) F(T,)=EP(F);
(d) EP(F) is closed and convex.

Lemma 2.2 [24] Let C be a nonempty closed convex subset of a Hilbert space H and S :
C — C be an asymptotically strict pseudocontraction. Then I — S is demi-closed, that is, if

{x,,} is a sequence in C with x,, — x and x,, — Sx,, — 0, then x € F(S).

Lemma 2.3 [33] Let H be a Hilbert spaceand 0 < p <t, <g<1foralln>1. Suppose that
{x,} and {y,} are sequences in H such that

limsup |lx,|| < d, limsup [|ly,|| <d
n—0oQ n—00

and
lim ||t,,xn + 1=ty || =d
Hn—>0Q
hold for some d > 0. Then lim,,_, o [|%, — ¥4| = 0.

Lemma 2.4 [34] Let {a,}, {b,}, and {c,} be three nonnegative sequences satisfying the fol-

lowing condition:
an1 < A+ by)ay +c,, Yn>ng,

where nq is some nonnegative integer, ¥ .o b, < 00 and Y o, ¢, < 0o. Then the limit

lim,,_, o a, exists.
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3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C to R which satisfies (A1)-(A4). Let A : C — H be an a-inverse-
strongly monotone mapping, and let B : C — H be a -inverse-strongly monotone mapping.
Let S : C — C be an asymptotically k-strict pseudocontraction with the sequence {k,} such
that )", (k, — 1) < 00. Assume that Q2 = F(S) N VI(C, B) N EP(F, A) is not empty. Let {a,,},
{a}, {a)}, and {B,} be real number sequences in (0,1). Let {r,} and {s,} be two positive real
number sequences. Let {x,} be a sequence generated in the following process:

X1 € C,
F(23,2) + (A%, 2 = 25) + ;- (2= 20,20 = %) = 0, ¥z €C,
Yn = PC(Zn - Snan):
X1 = U + 0 (Byyn + (L= Bu)S"yn) + s,
where {e,} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:
(@) ap+a,+a, =1
(b) O<p<a,<g<landy .’ a)<oo;
() O<k<B,<b<l;
(d) O<s<s,<s<2Band0<r<r,<r <2a,

where p, q, b, s, s, r, v’ are real constants. Then {x,} converges weakly to some point in Q2.

Proof First, we show that the sequences {x,}, {y,}, and {z,} are bounded. Let p € Q be
fixed arbitrarily. For any x,y € C, we see that
|t = ruA)x - (1 - Ay
2

= |[(x =) - ru(Ax - Ay) |

= 2 = ylI* = 2ru(x — y, Ax — Ay) + 1]l Ax - Ay

< llx = yI* = ru(a = 1) | Ax - Ay|1*. (31)
Using the restriction (d), we see that ||(I - r,A)x — (I — r,A)y|| < |lx—y||. This implies that

I - r,A is nonexpansive. In the same way, we find that I — s,,B is also nonexpansive. Using
the restriction (c), we obtain that

| Buyn + (1= B)S"y - |
= Ballyn = 2% + A= B S50 — S"p|”
= B2 =B | —p) = (S"y, - S"p)
< Bullyn =217 + A= B) (kallyn = pI* + 6| 0 = 2) = ("3~ 5"P) )
Bl = B)]| 0~ 1) - (S"yu = ") |
= Kallyn = P12 = (1= B)(Bu — )| 02a = 2) = ("3~ 5"P) |
< kullyn - pII*. (3.2)

I
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It follows that

2
941 =PI < @ullvn = pI* + )| Buyn + A = B)S™yu — |~ +ct)llen — plI?
< dllxn = plI* + afknllyn — pII* + o))l en — plI*

2
= oyll%y — plI* + ok | Pc = s,B)zy — p|” + o)) llen — pII?

2
< allxn —P||2 + a;,qkn ” Trn(]_ rnA)X, —P” + a;/q/”en —P||2
2 2
< kullxn = plI” + o llen = plI .

This implies from Lemma 2.4 that lim,,_, , ||x,, — p|| exists. This shows that {x,} is bounded,
so are {y,} and {z,}. From (3.2), we have

041 =PI < nllvn = pI* + ckullyn — plI* +a)lle, — plI?
2
< aulln = plI* + apka | = 54B)zu — p |~ + i) llen — pII?
< ulln = I + apka(l2n — pII* = $4(2B = 50)|1Bzn — Bpll*) + ) lle, — pII*

< kulltn = PII* = $uknct;, (28 — 5| Bz = BpI* + e — pI*.
It follows that
Suku0, (2B = )| Bzy — Bp||* < kullxn = pII* = %1 — pII* + o llen — plI>.
With the aid of the restrictions (b) and (d), we find that
lim [|Bz, - Bp|| = 0. (3.3)
Since Pc is firmly nonexpansive, we have

lyn = pI? = | P = $,B)zs ~ Pc(l - s,B)p|*
< (U = $xB)zy — (I = $,B)p, Yy — p)
= é{ll(f—s,qs)zn —(U=5:B)p|” + Iy —pI’
~ U = $uB)zs ~ U = $,B)p — (v~ )|’}

{120 = P12 + 19 = PI? = | 20 = Y — 5Bz — Bp) | *}

|
— N =

= {lla =pI? + yn =PI = 120 = yull?
+28,(2n — Y, B2y — Bp) — s, Bz, — Bp|*}

< %{nxn =pI? + 1yn = PI? = 1120 = yull?
+28,(2y — Yu» B2y — Bp) - 5,,|| Bz, — Bp||*},

which implies that

Ilyn =PI < 1% = pII* = 120 = yull* + 28,1120 — yull |1 Bz, — Bp.
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Hence, we find from (3.2) that

2 2 2 2
%01 = pII* < aull®n = pII* + o kullyn — plI* + oy llen = pl
2 2
< kullx, — pll* — o, knllzn — yull* + 20;,8,kn 20 — yu |l |1 Bz, — Bp|

+aley -pl*
Therefore, we obtain that

@ knllzn = yull® < nlltn = pI* = %1 =PI + 28,k 1120 = yull || B2y, — Bp|

+aplle, - pl*.
From the restrictions (b) and (d), we find from (3.3) that
lim iz, =yl = 0. (3.4)
It follows from (3.1) that

[z _p”Z = “ Trn(l_rnA)xn _p”2

< [l%n —P||2 - 7',,(20[ - rn)”Axn —AP”Z-
Hence, we have

2 2 2 2

%1 =PI < ctulln = pII” + e kullyn =PI + atyllen = pll
2 2 2

< oullxn = plI” + g kullzn = plI* + o llen — pl

< kull%n = I = pru(2e = 1)k | A% — Ap||* + ) llen — pl|*.
This implies that
aprn(2e = 1)kl A%y = AplI* < knllotn = pII* = ltna1 — pII* + ) llen — pII.
Using the restrictions (b) and (d), we obtain that
lim [[Ax, — Apl| = 0. (3.5)
n— o0
Since T, is firmly nonexpansive, we find that

Iz = plI? = | T, (I = ryA)x, — Ty, (I - 1, A)p |

= <(1_ ruA)xy — (I = r,A)p, 2, —P)

LT Lo

— |t = rA)x, — (I = 1, A)p — (20 - p)|)

IA
N =

(1% = p11% + 112 = pII> = || = 20 — 7l A%, — Ap)|?)
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1
= E(”xn =pI? + llzn = pII* = (Il — 2>

- 27n<xn - Zn’Axn —AP> - I"Z”Axn _APHZ))r

which implies that

2 2 2
2w = PII" < %0 = PII" = %0 = 2ull” + 271l — 2|l | Ax,, — Ap].

It follows that

2 2 2 2
%1 —pII° < onll®n — pli +0!,’1kn||yn—l9|| +OZZ||€n—P||

2 2 2
< aulln = plI” + aykallze = pII° + oty lles - pll

2
[

2
< kullon -pl~ - a;,/(n”xn —Zuyll” + 2rna;,kn”xn = zy|l[lAx, — Apl|

+aylle, - plI?,
which yields that

2 2 2
Aknlln = 2ull* < Knllxn =PI = %001 = pII* + 2700, [l = 2alll| A%, — Apl|

+ollles -l
Using the restrictions (b) and (d), we find from (3.5) that
lim ||x, —z,|| = 0. (3.6)
n—0oQ
It follows from (3.4) and (3.6) that
lim [, =y, = 0. (37)
n—00

Since {x,} is bounded, we see that there exists a subsequence {x,,} of {x,} which converges
weakly to &. Let T be a maximal monotone mapping defined by

Bx+Ncx, x€C,
Tx =

@, x ¢ C.

For any given (x, y) € Graph(T'), we have y— Bx € Ncx. Since y,, € C, by the definition of N¢,
we have (x—y,,y—Bx) > 0. Since y,, = Pc(I —s,B)z,, we see that (x—y,,y, — ([ —s,B)z,) > 0
and hence

-z
<x—yn,)% +an>20.

n

It follows that

(X = Yuppy) = (X — Yy, Bx)
yn,v - Zni

= (x _yanx) - <x —Vn;»
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Yn; _Z”i>

nj

= (X =Yy BX = By} + (% = Yn» BYn; = Bzy;) = <x—ym;
Z %= Y BYn; = Bzn,) — <x_ynir @>

Since y,, converges weakly to £ and B is %—Lipschitz continuous, we see that (x—£&,y) > 0.
Notice that 7 is maximal monotone and hence 0 € T&. This shows that £ € VI(C, B). From

(3.6), we see that z,, converges weakly to &. It follows that

1
F(zy,2) + (Axy, 2 —zy) + — (2= 2,2, — %) >0, VzeC.
Ty

From condition (A2), we see that

1
(Axp,z2 —2,) + — (2 — 20,20 — %) > Flz,2,), VYzeC.
n

Replacing n by n;, we arrive at

Zp; — X,

(AXy; 2 — 2Zu;) +<z—zni, >2F(z,z,,l.), vVzeC. (3.8)

FortwithO<t<landze C,letu, =tz+ (1-1¢)&.Sincez e C and & € C, we have u; € C.
In view of (3.8), we find that

Zn,

i

Xn

- l_>
T,

(s =z, Artg) > Uy — 2y, Atdg) — (Axy, Uy — Zi;) — <Mt = Znys

+ F(Mt,Zni)

= Uy — 2y, Aty — Azy) + (U — 2y Az, — AXyy)

Zy, — X,
—<ut—zni, ‘r l>+F(ut:Zni)'

nj

Using (3.6), we have lim,_, o Az,, — Ax,, = 0. Since A is monotone, we see that (u; —
Zp;, Ay — Azy,,) > 0. It follows from condition (A4) that

(ur —&,Auy) > F(uy, §). (3.9)
Using conditions (Al) and (A4), we see from (3.9) that

0 = F(uy, ur) < tF(ug,2) + (L — )F (1, §)
<tF(us,z) + (L—t)(u; — &, Auy)

= tF(us, u) + (1 - t)t{z — &, Auy),
which yields that

F(us,z) + 1-t)(z—&,Au;) > 0.

Page9of 13
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Letting ¢t — 0, we find
F(§,2) + (z-§,A8) > 0,
which implies that & € EP(F, A).
Now, we are in a position to show & € F(S). Since lim,_, « ||, — p|| exists, we may as-
sume that lim,_, o ||x, — p|| =d > 0. Put A, = 8,9, + (1 — B,,)S"y,. It follows from (3.2) that

limsup,_, o l%, —p + ) (e, — Ay)|l <d and limsup,_, o [|A, —p + o (€, — An)|| < d. On the

other hand, we have
nli)nolo %41 = pll = nlggo”an((xn -p)+ a;,/(en - )‘n)) +(1- an)()\n -pt Ol;/,,,(en - )"}’l)) || =d.

Using Lemma 2.3, we obtain that lim,_, » ||, — %, || = 0. Note that

)Vn_n n\Wn = Jn
X +ﬁ(x y)'

Sy = X =
I, T 1B,

Hence, we have lim,,_, » [|S"y, — %, || = 0. Note that ||S"x, — x,|| < |S"%, — "yl + |S"y, —
%y Since S is Lipschitz continuous, we have lim,,_, «, ||S"x;, — %, || = 0. Further, we find that
lim,,_, o [|Sx,;, — %, || = 0. Using Lemma 2.2, we see that & € F(S). This proves that n € Q.

Finally, we show that the sequence {x,} converges weakly to &. Assume that there exists
another subsequence {0} of {x,} such that {#} converges weakly to 7. In the same way,
we find n € Q. If n # &, we see from the Opial condition [35] that

lim [lx, —&|| = liminf [|x,, — & || < liminf |lx,, — 7|l
H—0Q 1—> 00 1—> 00
= liminf ||x, — || = liminf ||x,, — 7|
n—oo J—>00

< liminf [lx,, - €[] = lim [, - &[.
j—00 n—-oo

This derives a contradiction. Hence, we have n = &. This implies that x, — & € Q. This

completes the proof. d

Remark 3.2 The key of the weak convergence of the algorithm is due to the fact that A is
inverse-strongly monotone, which yields that / — r,A is nonexpansive. The nonexpansivity
of the mapping I — r,A plays an important role in this theorem. Therefore, it is of interest

to relax the monotonicity of A such that the algorithm is still weakly convergent.

Next, we give some subresults of Theorem 3.1. If S is asymptotically nonexpansive, we

find the following result.

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C to R which satisfies (A1)-(A4). Let A : C — H be an a-inverse-
strongly monotone mapping, and let B : C — H be a -inverse-strongly monotone mapping.
Let S: C — C be an asymptotically nonexpansive mapping with the sequence {k,} such that
Y o2 (ky — 1) < 00. Assume that Q = F(S) N VI(C, B) NEP(F, A) is not empty. Let {a,}, {c],},
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and {a])} be real number sequences in (0,1). Let {r,} and {s,} be two positive real number

sequences. Let {x,} be a sequence generated in the following process:

X1 € C,
F(z,,2) + (A% 2 — 2,,) + %(z—zn,z,, —x,)>0, VzeC,
Yn = Pc(zy — 5,Bz,),

I "
Xps1 = Oy + 0, Sy, + 0y ey,

where {e,} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:

(@ ap+a,+a) =1

(b) O<p<a,<p<land ;> o <oc;

() 0<s<s,<s<2Band0<r=<r,<r <2a,

where p, q, s, s, r, v’ are real constants. Then {x,} converges weakly to some point in Q.
Further, if S is an identity mapping, we have the following result.

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C to R which satisfies (A1)-(A4). Let A : C — H be an a-inverse-
strongly monotone mapping, and let B: C — H be a -inverse-strongly monotone mapping.
Assume that Q = VI(C,B) NEP(F, A) is not empty. Let {o,}, {«),}, and {«,} be real number
sequences in (0,1). Let {r,} and {s,} be two positive real number sequences. Let {x,} be a

sequence generated in the following process:

X1 € C,
F(Yn;z) + (A%, z — yn) + i(z_ynryn —xu) >0,

i 4
Xp+l = OpXy + anPC()/n - SnByn) + o, €y

where {e,} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:

(@ ap+a,+a, =1;

(b) O<p<a,<g<landy .’ al<oo;

() O0<s<s,<s<2Band0<r<r,<r <2a,

where p, q, s, s', r, v’ are real constants. Then {x,} converges weakly to some point in Q.
Next, we give a result on variational inequality (2.1).

Corollary 3.5 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A : C — H be an a-inverse-strongly monotone mapping, and let B: C — H be a B-inverse-
strongly monotone mapping. Assume that Q = VI(C,B) N VI(C, A) is not empty. Let {o,},
{a)}, and {o} be real number sequences in (0,1). Let {r,} and {s,} be two positive real
number sequences. Let {x,} be a sequence generated in the following process:

X1 € C,
Zn = PC(xn - SnAxn)7

Xps1 = Xy + o), Pz, — 8,Bzy,) + )€y,
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where {e,} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:

(@) ap+a,+a) =1;

(b) O<p<a,<g<landy .’ ol <oo;

() 0<s<s,<s<2Band0<r<r,<r <2a,

where p, q, s, s, r, ' are real constants. Then {x,} converges weakly to some point in Q.

Proof Putting F = 0, we see that

1
(Ax,z—2y) + —(2— 22, — %) =0, YzeC
T'n

is equivalent to
(% — rhAxy — 2,2, —2) >0, VzeC.

This implies that z,, = Pc(x,, — r,Ax,). Let B, = 0 and S be the identity. Then we can obtain
from Theorem 3.1 the desired results immediately. O

Finally, we consider solving common fixed points of a pair of strict pseudocontractions.

Corollary 3.6 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Ty : C — C be an a-strict pseudocontraction, and let T, : C — C be a S-strict pseudo-
contraction. Assume that Q = F(Ty) N F(T5) is not empty. Let {a,}, {a,,}, and {c,} be real
number sequences in (0,1). Let {r,,} and {s,,} be two positive real number sequences. Let {x,,}

be a sequence generated in the following process:

X1 € C,
Zy = (1 - Vn)xn + rnTan;
Vn = (1= 82)%n + $uT1%n,

I "
Xpal = Quip + 0 Y0 + O €y,

where {e,} is a bounded sequence in C. Assume that the control sequences satisfy the fol-
lowing restrictions:

(@) ap+a,+a,=1;

(b) O<p<a,<g<landy .’ ol <oo;

() O0<s<s,<s'<l-aandO<r<r,<r' <1-8,

where p, q, s, s, r, v’ are real constants. Then {x,} converges weakly to some point in Q.

Proof Put F=0, A=1-T, and B =1 — T;. It follows that A is 1‘TD‘-inverse-strongly
monotone and B is %—inverse—strongly monotone. We also have F(T;) = VI(C,B) and

F(T,) = VI(C,A). In view of Theorem 3.1, we find the desired result immediately. a
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