On the multivalency of certain analytic functions

Mamoru Nunokawa ${ }^{1}$ and Janusz Sokół ${ }^{*}$

Correspondence: jsokol@prz.edu.pl ${ }^{2}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, Rzeszów, 35-959, Poland Full list of author information is available at the end of the article

Abstract

We prove several relations of the type $\left|\arg \left\{z f^{\prime \prime}(z) / f^{\prime}(z)\right\}\right| \leq\left|\arg \left\{f^{\prime}(z)\right\}\right|$ for functions satisfying some geometric conditions.
MSC: Primary 30C45; secondary 30C80
Keywords: analytic; univalent; multivalent; convex; starlike; strongly starlike; differential subordination

1 Introduction

Let p be positive integer and let $\mathcal{A}(p)$ be the class of functions

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}
$$

which are analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and denote $\mathcal{A}=\mathcal{A}(1)$.
The subclass of $\mathcal{A}(p)$ consisting of p-valently starlike functions is denoted by $\mathcal{S}^{*}(p)$. An analytic description of $\mathcal{S}^{*}(p)$ is given by

$$
\mathcal{S}^{*}(p)=\left\{f \in \mathcal{A}(p):\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2}, z \in \mathbb{D}\right\} .
$$

The subclass of $\mathcal{A}(p)$ consisting of p-valently and strongly starlike functions of order α, $0<\alpha \leq 1$ is denoted by $\mathcal{S}_{\alpha}^{*}(p)$. An analytic description of $\mathcal{S}_{\alpha}^{*}(p)$ is given by

$$
\mathcal{S}_{\alpha}^{*}(p)=\left\{f \in \mathcal{A}(p):\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, z \in \mathbb{D}\right\} .
$$

The subclass of $\mathcal{A}(p)$ consisting of p-valently convex functions and p-valently strongly convex functions of order $\alpha, 0<\alpha \leq 1$, are denoted by $\mathcal{C}(p)$ and $\mathcal{C}_{\alpha}(p)$, respectively. The analytic descriptions of $\mathcal{C}(p)$ and $\mathcal{C}_{\alpha}(p)$ are given by

$$
\mathcal{C}(p)=\left\{f \in \mathcal{A}(p):\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\pi}{2}, z \in \mathbb{D}\right\}
$$

and

$$
\mathcal{C}_{\alpha}(p)=\left\{f \in \mathcal{A}(p):\left|\arg \left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right|<\frac{\alpha \pi}{2}, z \in \mathbb{D}\right\} .
$$

For $p=1$ the classes $\mathcal{S}_{\alpha}^{*}(p)$ and $\mathcal{C}_{\alpha}(p)$ become the well known classes \mathcal{S}_{α}^{*} and \mathcal{C}_{α}^{*} of strongly starlike and strongly convex functions of order α, respectively. The concept of strongly starlike and strongly convex functions of order α was introduced in [1] and [2] with their geometric interpretation. For $\alpha=1$ the classes \mathcal{S}_{α}^{*} and \mathcal{C}_{α}^{*} become the classes \mathcal{S}^{*} and \mathcal{C}^{*} of starlike and convex functions; see for example [3]. In this paper, we need the following lemma.

Lemma 1.1 Assume that $f \in \mathcal{A}$ with $f(z) / z \neq 0$ in \mathbb{D}. Assume also that for all $\theta, 0 \leq \theta<2 \pi$, the function f satisfies the following condition:

$$
\begin{align*}
\left(\mathfrak{I m} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& =\frac{1}{2} \Re \mathfrak{R e}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}(\bar{z}-z)\right\} \\
& =\frac{1}{2} \Re \mathfrak{R e}\left\{\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\left(|z|^{2}-z^{2}\right)\right\} \geq 0 \tag{1.1}
\end{align*}
$$

where $z=\rho e^{i \theta}, 0<\rho \leq r<1$. Then we have

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \leq\left|\arg \left\{f^{\prime}(z)\right\}\right|, \quad z \in \mathbb{D} .
$$

Proof First we note that from

$$
0 \leq \arg \left\{z_{1}\right\} \leq \arg \left\{z_{2}\right\} \leq \pi \quad \Rightarrow \quad \arg \left\{z_{1}\right\} \leq \arg \left\{z_{1}+z_{2}\right\} \leq \arg \left\{z_{2}\right\}
$$

the implication

$$
\begin{equation*}
0 \leq \arg \left\{z_{1}\right\} \leq \cdots \leq \arg \left\{z_{n}\right\} \leq \pi \quad \Rightarrow \quad \arg \left\{z_{1}\right\} \leq \arg \left\{\sum_{k=1}^{n} z_{k}\right\} \leq \arg \left\{z_{n}\right\} \tag{1.2}
\end{equation*}
$$

follows by mathematical induction.
For the case $0 \leq \theta<\pi, z=r e^{i \theta} \in \mathbb{D}$, we have

$$
\begin{align*}
\arg \left\{\frac{f(z)}{z}\right\} & =\arg \left\{\frac{1}{r e^{i \theta}} \int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} \mathrm{~d} \rho\right\} \\
& =\arg \left\{\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho\right\} \tag{1.3}
\end{align*}
$$

Let $0=\rho_{0}<\rho_{1}<\cdots<\rho_{n-1}<\rho_{n}=r, \Delta \rho_{k}=\rho_{k}-\rho_{k-1}, k=1, \ldots, n$. By (1.1) $\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}$ is an increasing function with respect to ρ, thus

$$
\begin{equation*}
0=\arg \left\{f^{\prime}\left(\rho_{0} e^{i \theta}\right)\right\} \leq \arg \left\{f^{\prime}\left(\rho_{1} e^{i \theta}\right)\right\} \leq \cdots \leq \arg \left\{f^{\prime}\left(\rho_{n} e^{i \theta}\right)\right\}=\arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\} . \tag{1.4}
\end{equation*}
$$

Therefore, by (1.2) and by (1.4), we have

$$
\begin{equation*}
\arg \left\{\sum_{k=1}^{n} f^{\prime}\left(\rho_{k} e^{i \theta}\right)\right\} \leq \arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\} . \tag{1.5}
\end{equation*}
$$

Using (1.5) in (1.3), we obtain

$$
\begin{align*}
\arg \left\{\frac{f(z)}{z}\right\} & =\arg \left\{\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho\right\} \\
& =\arg \left\{\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f^{\prime}\left(\rho_{k} e^{i \theta}\right) \Delta \rho_{k}\right\} \\
& =\lim _{n \rightarrow \infty} \arg \left\{\sum_{k=1}^{n} f^{\prime}\left(\rho_{k} e^{i \theta}\right) \Delta \rho_{k}\right\} \\
& \leq \arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\} \tag{1.6}
\end{align*}
$$

or we have

$$
\begin{equation*}
0 \leq \arg \left\{\frac{f(z)}{z}\right\} \leq \arg \left\{f^{\prime}(z)\right\} \tag{1.7}
\end{equation*}
$$

for $z=r e^{i \theta}$ and $0 \leq \theta \leq \pi$.
For the case $\pi \leq \theta<2 \pi$, from the hypothesis (1.1), we find that $\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}$ is an decreasing function with respect to ρ, thus

$$
0=\arg \left\{f^{\prime}\left(\rho_{0} e^{i \theta}\right)\right\} \geq \arg \left\{f^{\prime}\left(\rho_{1} e^{i \theta}\right)\right\} \geq \cdots \geq \arg \left\{f^{\prime}\left(\rho_{n} e^{i \theta}\right)\right\}=\arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\}
$$

and

$$
\arg \left\{\sum_{k=1}^{n} f^{\prime}\left(\rho_{k} e^{i \theta}\right)\right\} \geq \arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\}
$$

Therefore, in a similar way to above, we obtain

$$
\begin{aligned}
\arg \left\{\frac{f(z)}{z}\right\} & =\arg \left\{\int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho\right\} \\
& \geq \arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\}
\end{aligned}
$$

and we also have

$$
\begin{equation*}
0 \geq \arg \left\{\frac{f(z)}{z}\right\} \geq \arg \left\{f^{\prime}(z)\right\} \tag{1.8}
\end{equation*}
$$

for $z=r e^{i \theta}$ and $\pi \leq \theta \leq 2 \pi$. From (1.7) and (1.8), we have

$$
\begin{aligned}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| & =\left|\arg \left\{f^{\prime}(z)\right\}-\arg \left\{\frac{f(z)}{z}\right\}\right| \\
& \leq\left|\arg \left\{f^{\prime}(z)\right\}\right|
\end{aligned}
$$

It completes the proof of Lemma 1.1.

Corollary 1.2 Assume that $f \in \mathcal{A}$ with $f(z) / z \neq 0$ in \mathbb{D}. Assume also that $f(z)$ satisfies the following condition:

$$
\begin{equation*}
\left(\mathfrak{I m} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \mathfrak{I m}\{z\} \geq 0, \quad z \in \mathbb{D} \tag{1.9}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \arg \{z\} \geq 0, \quad z \in \mathbb{D} \tag{1.10}
\end{equation*}
$$

Proof The conditions (1.1) and (1.9) are equivalent. If $\arg \{z\} \geq 0$, then $z=r e^{i \theta} \in \mathbb{D}$ with $0 \leq \theta \leq \pi$. By (1.7), we have also

$$
\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq 0, \quad z \in \mathbb{D}
$$

If $\arg \{z\} \leq 0$, then $z=r e^{i \theta} \in \mathbb{D}$ with $\pi<\theta \leq 2 \pi$. By (1.8), we have also

$$
\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \leq 0, \quad z \in \mathbb{D}
$$

In both cases, we have (1.10).

The inequality (1.10) can be written in the equivalent form

$$
\begin{equation*}
\left(\mathfrak{I m} \frac{z f^{\prime}(z)}{f(z)}\right) \mathfrak{I m}\{z\} \geq 0, \quad z \in \mathbb{D} \tag{1.11}
\end{equation*}
$$

Recall that if $f(z)$ is analytic in \mathbb{D} and $(\mathfrak{I m}\{f(z)\})(\mathfrak{I m}\{z\}) \geq 0$ in \mathbb{D}, then f is called typically real function; see [4, Chapter 10]. Therefore, Corollary 1.2 says that if $z f^{\prime \prime}(z) / f^{\prime}(z)$ is a typically real function, then $z f^{\prime}(z) / f(z)$ is a typically real function, too.

2 Main result

Theorem 2.1 Let $f(z) \in \mathcal{A}$. Assume that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\begin{align*}
\left(\mathfrak{I m} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& \geq 0, \tag{2.1}
\end{align*}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq r<1$, moves on the segment from $z=0$ to $z=r e^{i \theta}$ and

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right| \leq \frac{\pi}{2}, \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

Then $f(z)$ is starlike in \mathbb{D} or $f(z) \in \mathcal{S}^{*}$.
Proof From the hypothesis (2.1) and the hypothesis (2.2) and applying Lemma 1.1, we have

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \leq\left|\arg \left\{f^{\prime}(z)\right\}\right| \leq \frac{\pi}{2}, \quad z \in \mathbb{D} .
$$

This shows that $f(z)$ is starlike in \mathbb{D}.

Applying the same method as in the proof of Lemma 1.1, we have the following lemma.

Lemma 2.2 Let $f(z) \in \mathcal{A}(2)$. Assume that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\begin{aligned}
\left(\mathfrak{I m} \frac{z f^{\prime \prime \prime}(z)}{f^{\prime \prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime \prime}\left(\rho e^{i \theta}\right)\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& \geq 0
\end{aligned}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq r<1$ moves on the segment from $z=0$ to $z=r e^{i \theta}$. Then we have

$$
\left|\arg \left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| \leq\left|\arg \left\{f^{\prime \prime}(z)\right\}\right|, \quad z \in \mathbb{D}
$$

Applying Lemma 2.2, we have the following theorem.

Theorem 2.3 Let $f(z) \in \mathcal{A}(2)$. Suppose that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\begin{align*}
\left(\mathfrak{I m} \frac{z f^{\prime \prime \prime}(z)}{f^{\prime \prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime \prime}\left(\rho e^{i \theta}\right)\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& \geq 0 \tag{2.3}
\end{align*}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq r<1$, moves on the segment from $z=0$ to $z=r e^{i \theta}$ and

$$
\begin{equation*}
\left|\arg \left\{f^{\prime \prime}(z)\right\}\right|<\frac{\pi}{2}, \quad z \in \mathbb{D} \tag{2.4}
\end{equation*}
$$

Then we have $f(z) \in \mathcal{C}(2)=\mathcal{C}_{1}(2)$ or $f(z)$ is 2-valently convex in \mathbb{D}.
Proof From the hypothesis (2.3) and (2.4) and applying Lemma 2.2, we have

$$
\left|\arg \left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| \leq\left|\arg \left\{f^{\prime \prime}(z)\right\}\right|<\frac{\pi}{2}, \quad z \in \mathbb{D}
$$

Therefore, we have

$$
1+\mathfrak{R e} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0, \quad z \in \mathbb{D} .
$$

It completes the proof.

Applying the same method as in the proof of Lemma 1.1 and Lemma 2.2, we can generalize Theorem 2.1 and Theorem 2.3 as follows.

Lemma 2.4 Let $f(z) \in \mathcal{A}(p)$. Suppose that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\begin{align*}
\left(\mathfrak{I m} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d}\left(\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}-(p-1) \theta\right)}{\mathrm{d} \rho}\right) \sin \theta \\
& =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime}(z) / z^{p-1}\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& \geq 0 \tag{2.5}
\end{align*}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq r<1$ moves on the segment from $z=0$ to $z=r e^{i \theta}$. Then we have

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \leq\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}\right|, \quad z \in \mathbb{D} .
$$

Proof For the case $0 \leq \theta \leq \pi$, from the hypothesis (2.5), we have

$$
\begin{aligned}
\arg \left\{\frac{f(z)}{z^{p}}\right\} & =\arg \left\{\frac{1}{r^{p} e^{i p \theta}} \int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} \mathrm{~d} \rho\right\} \\
& =\arg \left\{\int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right| e^{i\left(\arg \left(f^{\prime}\left(\rho e^{i \theta}\right)\right\}-(p-1) \theta\right)} \mathrm{d} \rho\right\} \\
& \leq \arg \left\{f^{\prime}\left(r e^{i \theta}\right)\right\}-(p-1) \theta \\
& =\arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}
\end{aligned}
$$

and therefore we have

$$
\begin{equation*}
0 \leq \arg \left\{\frac{f(z)}{z^{p}}\right\} \leq \arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\} \tag{2.6}
\end{equation*}
$$

for $z=r e^{i \theta}$ and $0 \leq \theta \leq \pi$.
For the case $\pi<\theta<2 \pi$, applying the same method as above and in the proof of Lemma 1.1 and Lemma 2.2, we have

$$
\begin{equation*}
0 \geq \arg \left\{\frac{f(z)}{z}\right\} \geq \arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\} \tag{2.7}
\end{equation*}
$$

for $z=r e^{i \theta}$ and $\pi<\theta<2 \pi$. From (2.6) and (2.7), we have

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|=\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p}}\right\}-\arg \left\{\frac{f(z)}{z^{p}}\right\}\right| \leq\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}\right| .
$$

It completes the proof of Lemma 2.4.

Thus, we have the following theorems.

Theorem 2.5 $\operatorname{Let} f(z) \in \mathcal{A}(p)$. Assume that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\left(\frac{\mathrm{d}\left(\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}-(p-1) \theta\right)}{\mathrm{d} \rho}\right) \sin \theta=\left(\frac{\mathrm{d} \arg \left\{f^{\prime}(z) / z^{p-1}\right\}}{\mathrm{d} \rho}\right) \sin \theta
$$

$$
\geq 0
$$

where $z=\rho e^{i \theta}, 0 \leq \theta<2 \pi, 0 \leq \rho \leq r<1$, moves on the segment from $z=0$ to $z=r e^{i \theta}$ and suppose that

$$
\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}\right| \leq \frac{\alpha \pi}{2}, \quad z \in \mathbb{D},
$$

where $0<\alpha \leq 1$. Then we have $f(z) \in \mathcal{S}_{\alpha}^{*}(p)$ or $f(z)$ is p-valently and strongly starlike of order α in \mathbb{D}.

Theorem 2.6 Let $f(z) \in \mathcal{A}(p), p \geq 2$. Assume that for all $\theta, 0 \leq \theta<2 \pi, f(z)$ satisfies the following condition:

$$
\begin{aligned}
\left(\mathfrak{I m} \frac{\left.z f^{\prime \prime \prime} z\right)}{f^{\prime \prime}(z)}\right) \sin \theta & =\rho\left(\frac{\mathrm{d}\left(\arg \left\{f^{\prime \prime}\left(\rho e^{i \theta}\right)\right\}-(p-2) \theta\right)}{\mathrm{d} \rho}\right) \sin \theta \\
& =\rho\left(\frac{\mathrm{d} \arg \left\{f^{\prime \prime}(z) / z^{p-2}\right\}}{\mathrm{d} \rho}\right) \sin \theta \\
& \geq 0,
\end{aligned}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq r<1$ moves on the segment from $z=0$ to $z=r e^{i \theta}$ and suppose that

$$
\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p-2}}\right\}\right| \leq \frac{\alpha \pi}{2}, \quad z \in \mathbb{D},
$$

where $0<\alpha \leq 1$. Then we have $f(z) \in \mathcal{C}_{\alpha}(p)$ or $f(z)$ is p-valently and strongly convex of order α.

Lemma 2.7 Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in $|z| \leq 1$ and suppose that it satisfies the following condition:

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\overline{z e^{-i \alpha}}-z e^{-i \alpha}\right)\right\} \geq 0 \quad \text { in }|z| \leq 0 \tag{2.8}
\end{equation*}
$$

where $0 \leq \alpha \leq \pi$. Then for $\alpha \leq \theta \leq \alpha+\pi$ we have

$$
\begin{align*}
\rho\left(\frac{\mathrm{d}\left(\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}\right)}{\mathrm{d} \rho}\right) & =\mathfrak{I m}\left\{\frac{\left.z f^{\prime} z\right)}{f(z)}\right\} \\
& \geq 0, \tag{2.9}
\end{align*}
$$

while for $\alpha+\pi \leq \theta \leq \alpha+2 \pi$ we have

$$
\begin{align*}
\rho\left(\frac{\mathrm{d}\left(\arg \left\{f^{\prime}\left(\rho e^{i \theta}\right)\right\}\right)}{\mathrm{d} \rho}\right) & =\mathfrak{I m}\left\{\frac{\left.z f^{\prime} z\right)}{f(z)}\right\} \\
& \leq 0 \tag{2.10}
\end{align*}
$$

where $z=\rho e^{i \theta}, 0 \leq \rho \leq|z| \leq 1$.
Proof Let $z=\rho e^{i \theta}, 0 \leq \rho \leq|z| \leq 1$. Then it follows that

$$
\begin{aligned}
& \mathfrak{R e}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\overline{z e^{-i \alpha}}-z e^{-i \alpha}\right)\right\} \\
& \quad=\mathfrak{R e}\left\{\frac{\mathrm{d} \log f^{\prime}(z)}{\mathrm{d} z}\left(\rho e^{-i(\theta-\alpha)}-\rho e^{i(\theta-\alpha)}\right)\right\} \\
& \quad=\mathfrak{R e}\left\{\rho\left(\frac{\mathrm{d} \log \left|f^{\prime}\left(\rho e^{i \theta}\right)\right|}{\mathrm{d} \rho}+i \frac{\mathrm{~d} \arg f^{\prime}\left(\rho e^{i \theta}\right)}{\mathrm{d} \rho}\right)(-2 i)\right\} \sin (\theta-\alpha) \\
& \quad=2 \rho \frac{\mathrm{~d} \arg f^{\prime}\left(\rho e^{i \theta}\right)}{\mathrm{d} \rho} \sin (\theta-\alpha)
\end{aligned}
$$

$$
\geq 0
$$

This proves (2.9) and (2.10) and it shows that the function $\arg f^{\prime}\left(\rho e^{i \theta}\right)$ is an increasing function with respect to $\rho, 0 \leq \rho \leq 1$, and $\alpha \leq \theta \leq \alpha+\pi$, and that the function $\arg f^{\prime}\left(\rho e^{i \theta}\right)$ is a decreasing function with respect to $\rho, 0 \leq \rho \leq 1$, and $\alpha+\pi \leq \theta \leq \alpha+2 \pi$.

Theorem 2.8 Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D} and suppose that it satisfies the following condition:

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\left(\overline{z e^{-i \alpha}}-z e^{-i \alpha}\right)\right\} \geq 0, \quad z \in \mathbb{D}, \tag{2.11}
\end{equation*}
$$

where $0 \leq \alpha \leq \pi$ and

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right| \leq \frac{\pi}{2}, \quad z \in \mathbb{D} \tag{2.12}
\end{equation*}
$$

Then $f(z)$ is starlike in \mathbb{D}.

Proof From Lemma 2.7 and (2.12), for the case $0 \leq \theta \leq \pi$, we have

$$
\begin{aligned}
0 & =\left(\arg \frac{f(z)}{z}\right)_{z=0} \\
& \leq \arg \left\{\frac{1}{\rho e^{i \theta}} \int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) e^{i \theta} \mathrm{~d} \rho\right\} \\
& =\arg \frac{f(z)}{z} \\
& =\arg \int_{0}^{r} f^{\prime}\left(\rho e^{i \theta}\right) \mathrm{d} \rho \\
& =\arg \int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right| e^{\left.i \arg g f^{\prime}\left(\rho e^{i \theta}\right)\right\}} \mathrm{d} \rho \\
& \leq \arg \left\{f^{\prime}(z)\right\} .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
0 \leq \arg \left\{\frac{f(z)}{z}\right\} \leq \arg \left\{f^{\prime}(z)\right\} \tag{2.13}
\end{equation*}
$$

where $z=r e^{i \theta}, 0 \leq r<1$, and $\alpha \leq \theta \leq \alpha+\pi$.
For the case $\pi \leq \theta \leq 2 \pi$, applying the same method as above, we have

$$
\begin{equation*}
0 \geq \arg \left\{\frac{f(z)}{z}\right\} \geq \arg \left\{f^{\prime}(z)\right\} \tag{2.14}
\end{equation*}
$$

where $z=r e^{i \theta}, 0 \leq r<1$, and $\pi+\alpha \leq \theta \leq 2 \pi+\alpha$. Applying (2.12), (2.13), and (2.14), we have

$$
\begin{aligned}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| & =\left|\arg \left\{f^{\prime}(z)\right\}-\arg \left\{\frac{f(z)}{z}\right\}\right| \leq\left|\arg \left\{f^{\prime}(z)\right\}\right| \\
& <\frac{\pi}{2}, \quad z \in \mathbb{D}
\end{aligned}
$$

This completes the proof.

Remark 2.9 The functions $f(z)=z+\alpha z^{2} / 2$ satisfy the conditions of Theorem 2.8 whenever $|\alpha| \leq 1 / 2$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba, 260-0808, Japan. ${ }^{2}$ Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, Rzeszów, 35-959, Poland.

Received: 7 August 2014 Accepted: 3 September 2014 Published: 24 September 2014

References

1. Stankiewicz, J: Quelques problèmes extrêmaux dans les classes des fonctions α-angulairement étoilées. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20, 59-75 (1966)
2. Brannan, DA, Kirwan, WE: On some classes of bounded univalent functions. J. Lond. Math. Soc. 1(2), 431-443 (1969)
3. Duren, PL: Univalent Functions. Springer, New York (1983)
4. Goodman, AW: Univalent Functions. Vols. I and II. Mariner Publishing Co., Tampa (1983)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1029-242X-2014-357
 Cite this article as: Nunokawa and Sokół: On the multivalency of certain analytic functions. Journal of Inequalities and Applications 2014 2014:357.

