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Abstract
We prove several relations of the type |arg{zf ′′(z)/f ′(z)}| ≤ |arg{f ′(z)}| for functions
satisfying some geometric conditions.
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1 Introduction
Let p be positive integer and let A(p) be the class of functions

f (z) = zp +
∞∑

n=p+

anzn

which are analytic in the unit disk D = {z ∈C : |z| < } and denoteA =A().
The subclass ofA(p) consisting of p-valently starlike functions is denoted by S∗(p). An

analytic description of S∗(p) is given by

S∗(p) =
{
f ∈A(p) :

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ < π


, z ∈D

}
.

The subclass of A(p) consisting of p-valently and strongly starlike functions of order α,
 < α ≤  is denoted by S∗

α(p). An analytic description of S∗
α(p) is given by

S∗
α(p) =

{
f ∈A(p) :

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ < απ


, z ∈D

}
.

The subclass of A(p) consisting of p-valently convex functions and p-valently strongly
convex functions of order α,  < α ≤ , are denoted by C(p) and Cα(p), respectively. The
analytic descriptions of C(p) and Cα(p) are given by

C(p) =
{
f ∈A(p) :

∣∣∣∣arg
{
 +

zf ′′(z)
f ′(z)

}∣∣∣∣ < π


, z ∈D

}

and

Cα(p) =
{
f ∈A(p) :

∣∣∣∣arg
{
 +

zf ′′(z)
f ′(z)

}∣∣∣∣ < απ


, z ∈D

}
.
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For p =  the classes S∗
α(p) and Cα(p) become the well known classes S∗

α and C∗
α of strongly

starlike and strongly convex functions of order α, respectively. The concept of strongly
starlike and strongly convex functions of order α was introduced in [] and [] with their
geometric interpretation. For α =  the classes S∗

α and C∗
α become the classes S∗ and C∗

of starlike and convex functions; see for example []. In this paper, we need the following
lemma.

Lemma . Assume that f ∈A with f (z)/z �=  inD.Assume also that for all θ ,  ≤ θ < π ,
the function f satisfies the following condition:

(
Im

zf ′′(z)
f ′(z)

)
sin θ = ρ

(
d arg{f ′(ρeiθ )}

dρ

)
sin θ

=


Re

{
zf ′′(z)
f ′(z)

(z – z)
}

=


Re

{
f ′′(z)
f ′(z)

(|z| – z
)} ≥ , (.)

where z = ρeiθ ,  < ρ ≤ r < . Then we have

∣∣∣∣arg
{
zf ′(z)
f (z)

}∣∣∣∣ ≤ ∣∣arg{f ′(z)
}∣∣, z ∈D.

Proof First we note that from

 ≤ arg{z} ≤ arg{z} ≤ π ⇒ arg{z} ≤ arg{z + z} ≤ arg{z},

the implication

 ≤ arg{z} ≤ · · · ≤ arg{zn} ≤ π ⇒ arg{z} ≤ arg

{ n∑
k=

zk

}
≤ arg{zn} (.)

follows by mathematical induction.
For the case  ≤ θ < π , z = reiθ ∈D, we have

arg

{
f (z)
z

}
= arg

{


reiθ

∫ r


f ′(ρeiθ)eiθ dρ}

= arg

{∫ r


f ′(ρeiθ )dρ}

. (.)

Let  = ρ < ρ < · · · < ρn– < ρn = r, �ρk = ρk – ρk–, k = , . . . ,n. By (.) arg{f ′(ρeiθ )} is an
increasing function with respect to ρ , thus

 = arg
{
f ′(ρeiθ

)} ≤ arg
{
f ′(ρeiθ

)} ≤ · · · ≤ arg
{
f ′(ρneiθ

)}
= arg

{
f ′(reiθ )}. (.)

Therefore, by (.) and by (.), we have

arg

{ n∑
k=

f ′(ρkeiθ
)} ≤ arg

{
f ′(reiθ )}. (.)
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Using (.) in (.), we obtain

arg

{
f (z)
z

}
= arg

{∫ r


f ′(ρeiθ )dρ}

= arg

{
lim
n→∞

n∑
k=

f ′(ρkeiθ
)
�ρk

}

= lim
n→∞ arg

{ n∑
k=

f ′(ρkeiθ
)
�ρk

}

≤ arg
{
f ′(reiθ )} (.)

or we have

 ≤ arg

{
f (z)
z

}
≤ arg

{
f ′(z)

}
(.)

for z = reiθ and  ≤ θ ≤ π .
For the case π ≤ θ < π , from the hypothesis (.), we find that arg{f ′(ρeiθ )} is an de-

creasing function with respect to ρ , thus

 = arg
{
f ′(ρeiθ

)} ≥ arg
{
f ′(ρeiθ

)} ≥ · · · ≥ arg
{
f ′(ρneiθ

)}
= arg

{
f ′(reiθ )}

and

arg

{ n∑
k=

f ′(ρkeiθ
)} ≥ arg

{
f ′(reiθ )}.

Therefore, in a similar way to above, we obtain

arg

{
f (z)
z

}
= arg

{∫ r


f ′(ρeiθ )dρ}

≥ arg
{
f ′(reiθ )}

and we also have

 ≥ arg

{
f (z)
z

}
≥ arg

{
f ′(z)

}
(.)

for z = reiθ and π ≤ θ ≤ π . From (.) and (.), we have

∣∣∣∣arg
{
zf ′(z)
f (z)

}∣∣∣∣ =
∣∣∣∣arg{f ′(z)

}
– arg

{
f (z)
z

}∣∣∣∣
≤ ∣∣arg{f ′(z)

}∣∣.
It completes the proof of Lemma .. �
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Corollary . Assume that f ∈ A with f (z)/z �=  in D. Assume also that f (z) satisfies the
following condition:

(
Im

zf ′′(z)
f ′(z)

)
Im{z} ≥ , z ∈D, (.)

then we have

arg

{
zf ′(z)
f (z)

}
arg{z} ≥ , z ∈D. (.)

Proof The conditions (.) and (.) are equivalent. If arg{z} ≥ , then z = reiθ ∈ D with
 ≤ θ ≤ π . By (.), we have also

arg

{
zf ′(z)
f (z)

}
≥ , z ∈D.

If arg{z} ≤ , then z = reiθ ∈D with π < θ ≤ π . By (.), we have also

arg

{
zf ′(z)
f (z)

}
≤ , z ∈D.

In both cases, we have (.). �

The inequality (.) can be written in the equivalent form
(
Im

zf ′(z)
f (z)

)
Im{z} ≥ , z ∈D. (.)

Recall that if f (z) is analytic in D and (Im{f (z)})(Im{z}) ≥  in D, then f is called typi-
cally real function; see [, Chapter ]. Therefore, Corollary . says that if zf ′′(z)/f ′(z) is
a typically real function, then zf ′(z)/f (z) is a typically real function, too.

2 Main result
Theorem . Let f (z) ∈ A. Assume that for all θ ,  ≤ θ < π , f (z) satisfies the following
condition:(

Im
zf ′′(z)
f ′(z)

)
sin θ = ρ

(
d arg{f ′(ρeiθ )}

dρ

)
sin θ

≥ , (.)

where z = ρeiθ ,  ≤ ρ ≤ r < ,moves on the segment from z =  to z = reiθ and

∣∣arg{f ′(z)
}∣∣ ≤ π


, z ∈D. (.)

Then f (z) is starlike in D or f (z) ∈ S∗.

Proof From the hypothesis (.) and the hypothesis (.) and applying Lemma ., we have∣∣∣∣arg
{
zf ′(z)
f (z)

}∣∣∣∣ ≤ ∣∣arg{f ′(z)
}∣∣ ≤ π


, z ∈D.

This shows that f (z) is starlike in D. �
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Applying the same method as in the proof of Lemma ., we have the following lemma.

Lemma . Let f (z) ∈ A(). Assume that for all θ ,  ≤ θ < π , f (z) satisfies the following
condition:(

Im
zf ′′′(z)
f ′′(z)

)
sin θ = ρ

(
d arg{f ′′(ρeiθ )}

dρ

)
sin θ

≥ ,

where z = ρeiθ ,  ≤ ρ ≤ r < moves on the segment from z =  to z = reiθ . Then we have∣∣∣∣arg
{
zf ′′(z)
f ′(z)

}∣∣∣∣ ≤ ∣∣arg{f ′′(z)
}∣∣, z ∈D.

Applying Lemma ., we have the following theorem.

Theorem. Let f (z) ∈A(). Suppose that for all θ , ≤ θ < π , f (z) satisfies the following
condition:(

Im
zf ′′′(z)
f ′′(z)

)
sin θ = ρ

(
d arg{f ′′(ρeiθ )}

dρ

)
sin θ

≥ , (.)

where z = ρeiθ ,  ≤ ρ ≤ r < ,moves on the segment from z =  to z = reiθ and
∣∣arg{f ′′(z)

}∣∣ < π


, z ∈ D. (.)

Then we have f (z) ∈ C() = C() or f (z) is -valently convex in D.

Proof From the hypothesis (.) and (.) and applying Lemma ., we have∣∣∣∣arg
{
zf ′′(z)
f ′(z)

}∣∣∣∣ ≤ ∣∣arg{f ′′(z)
}∣∣ < π


, z ∈D.

Therefore, we have

 +Re
zf ′′(z)
f ′(z)

> , z ∈D.

It completes the proof. �

Applying the same method as in the proof of Lemma . and Lemma ., we can gener-
alize Theorem . and Theorem . as follows.

Lemma . Let f (z) ∈ A(p). Suppose that for all θ ,  ≤ θ < π , f (z) satisfies the following
condition:(

Im
zf ′′(z)
f ′(z)

)
sin θ = ρ

(
d(arg{f ′(ρeiθ )} – (p – )θ )

dρ

)
sin θ

= ρ

(
d arg{f ′(z)/zp–}

dρ

)
sin θ

≥ , (.)
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where z = ρeiθ ,  ≤ ρ ≤ r < moves on the segment from z =  to z = reiθ . Then we have
∣∣∣∣arg

{
zf ′(z)
f (z)

}∣∣∣∣ ≤
∣∣∣∣arg

{
f ′(z)
zp–

}∣∣∣∣, z ∈D.

Proof For the case  ≤ θ ≤ π , from the hypothesis (.), we have

arg

{
f (z)
zp

}
= arg

{


rpeipθ

∫ r


f ′(ρeiθ)eiθ dρ}

= arg

{∫ r



∣∣f ′(ρeiθ)∣∣ei(arg{f ′(ρeiθ )}–(p–)θ ) dρ}

≤ arg
{
f ′(reiθ )} – (p – )θ

= arg

{
f ′(z)
zp–

}

and therefore we have

 ≤ arg

{
f (z)
zp

}
≤ arg

{
f ′(z)
zp–

}
(.)

for z = reiθ and  ≤ θ ≤ π .
For the case π < θ < π , applying the same method as above and in the proof of

Lemma . and Lemma ., we have

 ≥ arg

{
f (z)
z

}
≥ arg

{
f ′(z)
zp–

}
(.)

for z = reiθ and π < θ < π . From (.) and (.), we have
∣∣∣∣arg

{
zf ′(z)
f (z)

}∣∣∣∣ =
∣∣∣∣arg

{
f ′(z)
zp

}
– arg

{
f (z)
zp

}∣∣∣∣ ≤
∣∣∣∣arg

{
f ′(z)
zp–

}∣∣∣∣.
It completes the proof of Lemma .. �

Thus, we have the following theorems.

Theorem . Let f (z) ∈A(p). Assume that for all θ ,  ≤ θ < π , f (z) satisfies the following
condition:

(
d(arg{f ′(ρeiθ )} – (p – )θ )

dρ

)
sin θ =

(
d arg{f ′(z)/zp–}

dρ

)
sin θ

≥ ,

where z = ρeiθ ,  ≤ θ < π ,  ≤ ρ ≤ r < , moves on the segment from z =  to z = reiθ and
suppose that

∣∣∣∣arg
{
f ′(z)
zp–

}∣∣∣∣ ≤ απ


, z ∈D,

where  < α ≤ . Then we have f (z) ∈ S∗
α(p) or f (z) is p-valently and strongly starlike of

order α in D.
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Theorem . Let f (z) ∈ A(p), p ≥ . Assume that for all θ ,  ≤ θ < π , f (z) satisfies the
following condition:

(
Im

zf ′′′z)
f ′′(z)

)
sin θ = ρ

(
d(arg{f ′′(ρeiθ )} – (p – )θ )

dρ

)
sin θ

= ρ

(
d arg{f ′′(z)/zp–}

dρ

)
sin θ

≥ ,

where z = ρeiθ ,  ≤ ρ ≤ r < moves on the segment from z =  to z = reiθ and suppose that

∣∣∣∣arg
{
f ′(z)
zp–

}∣∣∣∣ ≤ απ


, z ∈D,

where  < α ≤ . Then we have f (z) ∈ Cα(p) or f (z) is p-valently and strongly convex of
order α.

Lemma . Let f (z) = z +
∑∞

n= anzn be analytic in |z| ≤  and suppose that it satisfies the
following condition:

Re

{
zf ′′(z)
f ′(z)

(
ze–iα – ze–iα

)} ≥  in |z| ≤ , (.)

where  ≤ α ≤ π . Then for α ≤ θ ≤ α + π we have

ρ

(
d(arg{f ′(ρeiθ )})

dρ

)
= Im

{
zf ′z)
f (z)

}

≥ , (.)

while for α + π ≤ θ ≤ α + π we have

ρ

(
d(arg{f ′(ρeiθ )})

dρ

)
= Im

{
zf ′z)
f (z)

}

≤ , (.)

where z = ρeiθ ,  ≤ ρ ≤ |z| ≤ .

Proof Let z = ρeiθ ,  ≤ ρ ≤ |z| ≤ . Then it follows that

Re

{
zf ′′(z)
f ′(z)

(
ze–iα – ze–iα

)}

=Re

{
d log f ′(z)

dz
(
ρe–i(θ–α) – ρei(θ–α))}

=Re

{
ρ

(
d log |f ′(ρeiθ )|

dρ
+ i

d arg f ′(ρeiθ )
dρ

)
(–i)

}
sin(θ – α)

= ρ
d arg f ′(ρeiθ )

dρ
sin(θ – α)

≥ .
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This proves (.) and (.) and it shows that the function arg f ′(ρeiθ ) is an increasing
function with respect to ρ ,  ≤ ρ ≤ , and α ≤ θ ≤ α +π , and that the function arg f ′(ρeiθ )
is a decreasing function with respect to ρ ,  ≤ ρ ≤ , and α + π ≤ θ ≤ α + π . �

Theorem . Let f (z) = z +
∑∞

n= anzn be analytic in D and suppose that it satisfies the
following condition:

Re

{
zf ′′(z)
f ′(z)

(
ze–iα – ze–iα

)} ≥ , z ∈D, (.)

where  ≤ α ≤ π and

∣∣arg{f ′(z)
}∣∣ ≤ π


, z ∈D. (.)

Then f (z) is starlike in D.

Proof From Lemma . and (.), for the case ≤ θ ≤ π , we have

 =
(
arg

f (z)
z

)
z=

≤ arg

{


ρeiθ

∫ r


f ′(ρeiθ )eiθ dρ}

= arg
f (z)
z

= arg
∫ r


f ′(ρeiθ)dρ

= arg
∫ r



∣∣f ′(ρeiθ)∣∣ei arg{f ′(ρeiθ )} dρ
≤ arg

{
f ′(z)

}
.

This shows that

 ≤ arg

{
f (z)
z

}
≤ arg

{
f ′(z)

}
, (.)

where z = reiθ ,  ≤ r < , and α ≤ θ ≤ α + π .
For the case π ≤ θ ≤ π , applying the same method as above, we have

 ≥ arg

{
f (z)
z

}
≥ arg

{
f ′(z)

}
, (.)

where z = reiθ ,  ≤ r < , and π + α ≤ θ ≤ π + α. Applying (.), (.), and (.), we
have ∣∣∣∣arg

{
zf ′(z)
f (z)

}∣∣∣∣ =
∣∣∣∣arg{f ′(z)

}
– arg

{
f (z)
z

}∣∣∣∣ ≤ ∣∣arg{f ′(z)
}∣∣

<
π


, z ∈D.

This completes the proof. �
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Remark . The functions f (z) = z + αz/ satisfy the conditions of Theorem . when-
ever |α| ≤ /.
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