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1 Introduction
The graphs under consideration are finite, but may have loops and parallel edges. Let G =
(V (G),E(G)) be a graph. For a vertex v ∈ V (G), d(v) denotes the degree of the vertex v, that
is, the number of edges incident with v, where a loop incident with v is counted twice. We
say that |V (G)| and |E(G)| are the order and size of G, respectively.
Around the middle of the th century theoretical chemists recognized that useful in-

formation on the dependence of various properties of organic substances on molecular
structure can be obtained by examining pertinently constructed invariants of underlying
molecular graphs. Eventually, graph invariants that are useful for chemical purpose, were
named ‘topological indices’ or ‘molecular structure-descriptors’. A large number of various
‘topological indices’ was proposed and studied in chemical literature [].
In , Randić [] introduced the so-called ‘branching index’. The branching index of a

graph G is now widely known as the Randić index of G, defined as

R(G) =
∑

uv∈E(G)

√
d(u)d(v)

.

We refer to the monograph [] and the survey article [] for the various results on the
Randić index, and to [–] for some recent results concerning Randić index of graphs.
Bollobás and Erdős [] showed that for a graph of order n without isolated vertices,
R(G) ≥ √

n –  with equality if and only if G is the star K,n–. The sharp upper bound
for the Randić index of graphs of order n is due to Fajtlowicz [].

Theorem . (Fajtlowicz []) For a graph G of order n,

R(G) ≤ n

,

with equality if and only if every component of G is regular and G has no isolated vertices.
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The proof of Fajtlowicz is based on Cauchy’s inequality. Caporossi et al. [] gave an
alternative proof of Theorem . by using an equivalent formulation for the Randić index
of a graph:

R(G) =
n – n


–

∑
uv∈E(G)




(
√
d(u)

–
√
d(u)

)

,

where n is the number of isolated vertices in G. Using linear programming, Pavlović and
Gutman [] gave another proof of Theorem .. In the present note, we give a short proof
of Theorem ., based on the weighted version of the handshaking lemma, which reads as
follows.

Theorem . (The weighted version of the handshaking lemma) Let f be any complex
valued function defined on the vertex set of a graph G. Then

∑
uv∈E(G)

(
f (u) + f (v)

)
=

∑
v∈V (G)

d(v)f (v).

By letting f (v) =  for each vertex v ∈ V (G) in the above lemma, one can deduce the
handshaking lemma.

Corollary . (The handshaking lemma) For any graph G of size m,

∑
v∈V (G)

d(v) = m.

By taking the function f in Theorem . as

f (v) =

⎧⎨
⎩


d(v) , if d(v) > ,

, if d(v) = ,

one obtains

Corollary . For any graph G of order n,

∑
uv∈E(G)

(


d(u)
+


d(v)

)
= n – n,

where n is the number of isolated vertices in G.

LetV denote the set of isolated vertices in a graphG. Došlic et al. established an identity
similar to Theorem ., which reads as follows.

Lemma . (Došlic et al. []) The identity

∑
uv∈E(G)

[
f
(
d(u)

)
+ f

(
d(v)

)]
=

∑
u∈V (G)\V

d(u)f
(
d(u)

)

holds for any graph G and any function f .
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Note that Theorem . is an extension of Lemma .. Although both Corollary . and
the following identity for the first Zagreb indexM(G) (see [, ] for some recent results
on this parameter) of a graph G can also be deduced from Lemma .:

∑
uv∈E(G)

(
d(u) + d(v)

)
=

∑
u∈V (G)

d(u) =M(G),

there are some which cannot be deduced from Lemma . but can be deduced from The-
orem .. For instance,

∑
uv∈E(G)

(
ξG(u) + ξG(v)

)
=

∑
u∈V (G)

dG(u)ξG(u),

where ξG(u) is the eccentricity of u in G, i.e., the largest distance between u and any other
vertex v of G. We remark that

M∗
 (G) =

∑
uv∈E(G)

(
ξG(u) + ξG(v)

)

is defined by Ghorbani and Hosseinzadeh in [], while the eccentric connectivity index

ξ c(G) =
∑

u∈V (G)

dG(u)ξG(u)

is defined by Sharma et al. [].
Another application of Theorem . is a new expression of the connective eccentricity

index ξ ce(G) of a connected graph G, defined by Yu and Feng [] as

ξ ce(G) =
∑

v∈V (G)

dG(v)
eG(v)

.

By Theorem .,

∑
uv∈E(G)

(


ξG(u)
+


ξG(v))

)
=

∑
v∈V (G)

dG(v)
eG(v)

= ξ ce(G).

2 The proofs

Proof of Theorem . Every term f (v) occurs d(v) times in the left hand side summation,
as it occurs exactly the same times in the right hand side of the identity. �

Proof of Theorem . It is well known that for any two positive real numbers a and b, their
geometric mean is greater than or equal to their harmonic mean, that is,

√
ab≥ 


a +


b
,

with equality if and only if a = b. Therefore, together with Corollary .,

R(G) =
∑

uv∈E(G)

√
d(u)d(v)

≤
∑

uv∈E(G)




(


d(u)
+


d(v)

)
=
n – n


≤ n


,
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where n is the number of isolated vertices in G. If R(G) = n
 , we conclude from the above

inequalities that n =  and d(u) = d(v) for any two adjacent vertices u and v inG. It follows
that G has no isolated vertices and every component of G is regular.
Next assume that G has no isolated vertices, G, . . . ,Gk be all components of G, and Gi

be a ri-regular graph of order ni for any i ∈ {, . . . ,k}. Then

R(Gi) =
∑

uv∈E(Gi)

√
d(u)d(v)

=
∑

uv∈E(Gi)


ri
=

|E(Gi)|
ri

.

Thus,

R(Gi) =
niri



ri
=
ni


by the handshaking lemma (Corollary .), whence

R(G) =
k∑
i=

R(Gi) =
k∑
i=

ni

=
n

. �
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Chem. 72, 249-266 (2014)
9. Liang, M, Liu, B: On the Randić index and girth of graphs. Discrete Appl. Math. 161, 212-216 (2013)
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