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1 Introduction and definitions
In geometry, the lemniscate of Bernoulli is a plane curve defined by two given points F
and F, known as foci, at distance a from each other as the locus of points P so that
PF · PF = a. This gives the equation (x + y) = a(x – y). In polar coordinates (r, θ ),
the equation becomes r = a cos(θ ). The arc length from the origin to a point on the
Bernoulli lemniscate r = cos(θ ) is given by the function

arcslx =
∫ x



dt√
 – t

, |x| ≤ , (.)

where arcslx is called the arc lemniscate sine function studied by CF Gauss in -.
Another lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine
function, defined as

arcslhx =
∫ x



dt√
 + t

, x ∈R. (.)

The functions (.) and (.) can be found in [, p.], [, (.)-(.)], [–] and [, Ch. ].
Following Neuman [], Gauss’ arc lemniscate tangent and the hyperbolic arc lemniscate

tangent functions are defined by

arctlx = arcsl

(
x

√ + x

)
, x ∈R (.)

and

arctlhx = arcslh

(
x

√ – x

)
, |x| < , (.)

respectively.
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For  ≤ x≤ , it is known in the literature that

x
 +

√
 – x

≤ (
√
 + x –

√
 – x)

 +
√
 + x +

√
 – x

≤ arcsinx ≤ πx
 +

√
 – x

. (.)

The first and second inequalities in equation (.) were established by Shafer (see, e.g.,
[, p.]), while the third inequality was proved by Fink []. In recent years, Shafer-
Fink’s inequalities have attractedmuch attention of themathematical community. By using
the λ-method of Mitrinović and Vasić [], Malešević [] improved the upper bound for
arcsinx and established the following inequality: For ≤ x ≤ ,

x
 +

√
 – x

≤ arcsinx≤ (π/(π – ))x
(/(π – )) +

√
 – x

≤ πx
 +

√
 – x

. (.)

In [–], other upper bounds for arcsinx were established: For  ≤ x≤ ,

x
 +

√
 – x

≤ (
√
 + x –

√
 – x)

 +
√
 + x +

√
 – x

≤ arcsinx

≤ (π ( –
√
)/(π – 

√
))(

√
 + x –

√
 – x)

(
√
( – π )/(π – 

√
)) +

√
 + x +

√
 – x

≤ π (
√
 + /)(

√
 + x –

√
 – x)

 +
√
 + x +

√
 – x

≤ πx
 +

√
 – x

. (.)

In [], Pan and Zhu gave some further generalizations of these results and obtained two
newShafer-Fink type double inequalities. In [], Zhu provided a solution to an open prob-
lem posed by Oppenheim in []. At the same time, some Shafer-Fink inequalities were
deduced from the solution of Oppenheim’s problem. Chen and Cheung [] provided a
laconic proof to Oppenheim’s problem. Recently, Qi and Guo [, ] presented a sharp-
ening and generalizations of Shafer-Fink’s inequality.
Related to the inverse sine inequality, the inverse tangent inequality is also of much in-

terest. In the literature, we have

x
 + 

√
 + x

< arctanx <
x

 +
√
 + x

for x > . (.)

The first inequality in equation (.) was presented without proof by Shafer []. Three
proofs of it were later given in []. The second inequality in equation (.) can be found
in, e.g., [, p.]. Shafer’s inequality (.) was recently sharpened and generalized by Qi
et al. in []. For each θ > , Chen et al. [] determined the largest number θ and the
smallest number θ such that the inequalities

θx
 + θ

√
 + x

≤ arctanx≤ θx
 + θ

√
 + x

(.)

are valid for all x ≥ . Zhu [, Theorems . and .] established Shafer-Fink type in-
equalities for the inverse hyperbolic sine function.
Recently, numerous inequalities have been given for the lemniscate functions. For ex-

ample, Neuman [] proved the following inequalities:

(


 + ( – x)/

)/

<
arcslx

x
<

(
 – x

)–/ (.)
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and

(


 + ( + x)/

)/

<
arcslhx

x
<

(
 + x

)–/ (.)

for  < |x| < .
Chen [, ] established Wilker and Huygens type inequalities for Gauss lemniscate

functions. For example, Chen [] proved that for  < |x| < ,

 +



x arctlx <
(
arcslx

x

)

+
arctlx
x

(.)

with the best possible constant 
 . Chen [] proved that for  < |x| < ,

(arcslx/x) + arctlx/x


>
(arcslx/x) + (arctlx/x)


> . (.)

In this paper, we establish sharp Shafer-Fink type inequalities for Gauss lemniscate func-
tions.
The following lemma is required in our present investigation.

Lemma . ([–]) Let –∞ < a < b < ∞, and let f , g : [a,b]→ R be continuous on [a,b],
differentiable on (a,b).Let g ′(x) 	=  on (a,b). If f ′(x)/g ′(x) is increasing (decreasing) on (a,b),
then so are

[
f (x) – f (a)

]
/
[
g(x) – g(a)

]
and

[
f (x) – f (b)

]
/
[
g(x) – g(b)

]
.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Remark . A generalization of the familiar trigonometric and hyperbolic functions was
described by Lindqvist []. The generalized p-trigonometric functions occur as an eigen-
function of the Dirichlet problem for the one-dimensional p-Laplacian. Recently, the p-
trigonometric functions have been studied extensively, see for example [–] and their
references. Very recently, Takeuchi [] (see also []) introduced the (p,q)-trigonometric
functions that coincide with the p-trigonometric functions for p = q and are connected
with the Dirichlet problem for the p,q-Laplacian. These (p,q)-trigonometric functions
have been the subject of intense investigations (see, for example, [, –]). For p,q > 
the function arcsinp,q is defined in [, ] by

arcsinp,q(x) =
∫ x



dt
( – tq)/p

, |x| ≤ . (.)

Similarly, for p,q >  the function arcsinhp,q is defined by []

arcsinhp,q(x) =
∫ x



dt
( + tq)/p

, x ≥ . (.)

Clearly,

arcslx = arcsin,(x) and arcslhx = arcsinh,(x).
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2 Main results
Theorem . For  < x < ,

α(
√
 + x –

√
 – x)

 –
√
 + x –

√
 – x

< arcslx <
β(

√
 + x –

√
 – x)

 –
√
 + x –

√
 – x

(.)

with the best possible constants

α =  and β =

√
 – 


B
(


,



)
= . . . . . (.)

Here

B(x, y) =
∫ 


tx–( – t)y– dt

is the beta function.

Proof For  < x < , let

f (x) =
f(x)
f(x)

,

where

f(x) = arcslx and f(x) =
√
 + x –

√
 – x

 –
√
 + x –

√
 – x

.

Then,

f ′
 (x)

f ′
(x)

=
( –

√
 + x –

√
 – x)

√
 + x

√
 – x√

 – x(– +
√
 – x +

√
 + x)

=: f(x).

Differentiation yields

f ′
(x) =

 –
√
 + x –

√
 – x√

 – x
√
 – x(x + )(– +

√
 – x +

√
 + x)

f(x),

where

f(x) =
(
x + x – x + 

)√
 – x +

(
x – x – x – 

)√
 + x

–
(
x – x

)√
 – x – x + x.

Motivated by the investigations in [], we are in a position to prove f(x) >  for x ∈ (, ).
Let

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

μ, x = ,
f(x)
x ,  < x < ,

, x = ,
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where μ is constant determined with limit:

μ = lim
x→

f(x)
x

=


.

Using Maple we determine Taylor approximation for the function A(x) by the polynomial
of the fourth order:

P(x) =



–



x –

,

x,

which has a bound of absolute error

ε =
,
,

for values x ∈ [, ]. It is true that

A(x) –
(
P(x) – ε

) ≥ ,  ≤ x ≤ 

and

P(x) – ε =
,
,

–



x –

,

x > ,  < x < .

Hence, for x ∈ (, ) it is true thatA(x) >  and therefore f(x) >  and f ′
(x) >  for x ∈ (, ).

Therefore, the function f ′ (x)
f ′(x)

is strictly increasing on (, ). By Lemma ., the function

f (x) =
f(x)
f(x)

=
f(x) – f()
f(x) – f()

is strictly increasing on (, ). And hence,

 = lim
x→

f (x) < f (x) =
arcslx

√
+x–

√
–x

–
√
+x–

√
–x

< lim
x→

f (x) =

√
 – 


B
(


,



)

for  < x < . By rearranging terms in the last expression, Theorem . follows. �

Theorem . For  < x < ,

α(
√
 + x –

√
 – x)

 –
√
 + x –

√
 – x

< arctlhx <
β(

√
 + x –

√
 – x)

 –
√
 + x –

√
 – x

(.)

with the best possible constants

α =  and β =

√
 – 


B
(


,



)
= . . . . . (.)

Here B(x, y) denotes the beta function.

Proof For  < x < , let

F(x) =
F(x)
F(x)

,
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where

F(x) = arctlhx and F(x) =
√
 + x –

√
 – x

 –
√
 + x –

√
 – x

.

Then,

F ′
(x)

F ′
(x)

=
( –

√
 + x –

√
 – x)

√
 + x

√
 – x

( – x)/(– +
√
 + x +

√
 – x)

=: F(x).

Differentiation yields

F ′
(x) =

 –
√
 + x –

√
 – x√

 – x
√
 + x(– +

√
 – x +

√
 + x)( – x)/(x + )

F(x),

where

F(x) =
(
x – x – x – 

)√
 + x +

(
x + x – x + 

)√
 – x

– x
(
x – 

)√
 – x – x + x.

Motivated by the investigations in [], we are in a position to prove F(x) >  for x ∈ (, ).
Let

B(x) =

⎧⎪⎪⎨
⎪⎪⎩

λ, x = ,
F(x)
x ,  < x < ,


√
 – , x = ,

where λ is a constant determined by the limit

λ = lim
x→

F(x)
x

=


.

UsingMaplewe determine aTaylor approximation for the functionB(x) by the polynomial
of fourth order:

P(x) =



–



x –

,

x,

which has a bound of the absolute error of

ε =
,
,

– 
√


for values x ∈ [, ]. It is true that

B(x) –
(
P(x) – ε

) ≥ ,  ≤ x ≤ 

and

P(x) – ε = –
,
,

+ 
√
 –




x –

,

x > ,  ≤ x ≤ .
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Hence, for x ∈ (, ) it is true that B(x) >  and therefore F(x) >  and F ′
(x) >  for

x ∈ (, ). Therefore, the function F ′
(x)

F ′
(x)

is strictly increasing on (, ). By Lemma ., the
function

F(x) =
F(x)
F(x)

=
F(x) – F()
F(x) – F()

is strictly increasing on (, ). And hence,

 = lim
x→

F(x) < F(x) =
arctlhx

√
+x–

√
–x

–
√
+x–

√
–x

< lim
x→

F(x) =

√
 – 


B
(


,



)

for  < x < . By rearranging terms in the last expression, Theorem . follows. �

Theorem . For  < |x| < ,

a
 +

√
 – x

<
arcslx

x
<

b
 +

√
 – x

(.)

and

a

 + ( – x)/

<
arcslx

x
<

b

 + ( – x)/

(.)

with the best possible constants

a = , b = B
(


,



)
= . . . . (.)

and

a =



B
(


,



)
= . . . . , b =




= . . . . . (.)

Here B(x, y) denotes the beta function.

Proof For  < x < , let

L(x) =
 +

√
 – x

x
arcslx.

Differentiation yields

L′
(x) =

x + 
√
 – x + 

x
√
 – x

L(x),

where

L(x) = – arcslx +
( +

√
 – x)x

x + 
√
 – x + 

.

Elementary calculation shows that

L′
(x) =

x( –
√
 – x)

(x + 
√
 – x + )

√
 – x

> ,  < x < .
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Deng and Chen Journal of Inequalities and Applications 2014, 2014:35 Page 8 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/35

Hence, L(x) > L() =  and L′
(x) >  for  < x < . Therefore, the function L(x) is strictly

increasing on (, ). And hence,

 = lim
x→

L(x) < L(x) =
 +

√
 – x

x
arcslx < lim

x→
L(x) = B

(


,



)

for  < x < . Hence, inequality (.) holds with the best possible constants given in equa-
tion (.).
For  < x < , let

M(x) =

 + ( – x)/

x
arcslx.

Differentiation yields

M′
(x) =

x + ( – x)/ + 
x( – x)/

M(x),

where

M(x) = – arcslx +
x( – x)/( + ( – x)/)

x + ( – x)/ + 
.

Elementary calculation shows that

M′
(x) = –

x

( – x)/(x + ( – x)/ + )
M(x),

where

M(x) = x – x +  +
(
 – x

)(
 – x

)/ – 
(
 – x

)/.
We claim thatM(x) >  for  < x < . By an elementary change of variable

x =
(
 – t

)/,  < t < , (.)

we find that

M(x) >  for  < x <  ⇐⇒ M(t) >  for  < t < ,

where

M(t) = t + t + t + t – t = t( – t)
(
–t – t + t + 

)
.

Obviously,M(t) >  for  < t < . This proves the claim.
Hence, M′

(x) <  for  < x < . This implies that M(x) < M() =  and M′
(x) <  for

 < x < . Therefore, the functionM(x) is strictly decreasing on (, ). And hence,




B
(


,



)
= lim

x→
M(x) <M(x) =


 + ( – x)/

x
arcslx < lim

x→
M(x) =
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for  < x < . Hence, inequality (.) holds with the best possible constants given in equa-
tion (.). �

Remark . (i) There is no strict comparison between the two lower bounds in equa-
tions (.) and (.). Also, there is no strict comparison between the two upper bounds in
equations (.) and (.).
(ii) The lower bound in equation (.) is sharper than the one in equation (.), since


 + ( – x)/

–
(


 +

√
 – x

)

=
( –

√
 – x)

( +
√
 – x)( + 

√
 – x)

> ,  < |x| < .

There is no strict comparison between the two upper bounds in equations (.) and (.).
(iii) By two elementary changes of variable,

t =  – x,  < x <  and t = u,  < u < ,

we find that





 + ( – x)/

–


( – x)/

=
t/ –  – t/

( + t/)t/
=
u –  – u

( + u)u

= –
(u + u + u + u + u + u + u + u + )( – u)

( + u)u
< .

Hence, the upper bound in equation (.) is sharper than the one in equation (.). There
is no strict comparison between the two lower bounds in equations (.) and (.).

Theorem . For x 	= ,

a

 + ( + x)/

<
arcslhx

x
<

b

 + ( + x)/

(.)

with the best possible constants

a =


B
(


,



)
= . . . . and b =




= . . . . . (.)

Here B(x, y) denotes the beta function.

Proof The inequality (.) is obtained by considering the function p(x) defined by

p(x) =
(  + ( + x)/)

x
arcslhx, x > .

Differentiation yields

p′(x) = –
( + x)/ + 
x( + x)/

arcslhx +
(  + ( + x)/)

x
√

 + x
=
( + x)/ + 
x( + x)/

q(x),
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where

q(x) = – arcslhx +
x( + x)/( + ( + x)/)

( + x)/ + 
.

Elementary calculation shows that

q′(x) = –
x

( + x)/(( + x)/ + )
r(x),

where

r(x) = – – x – 
(
 + x

)/ + 
(
 + x

)/.
We claim that r(x) >  for x > . By an elementary change of variable

t =
(
 + x

)/, x > , (.)

we find that

r(x) >  for x >  ⇐⇒ s(t) >  for t > ,

where

s(t) = t
(
– – t + t

)
, t > .

Obviously, s(t) >  for t > . This proves the claim.
Hence, q′(x) <  and q(x) < q() =  for x > . Therefore, p′(x) <  for x > , and we have



B
(


,



)
= lim

x→∞p(x) < p(x) =
(  + ( + x)/) arcslhx

x
< lim

x→
p(x) =



.

Hence, the inequality (.) holds with the best possible constants given in equation
(.). �

Remark . Inequality (.) is sharper than inequality (.).

Theorem . For x 	= ,

α

 + ( + x)/

<
arctlx
x

<
β


 + ( + x)/

(.)

with the best possible constants

α =


B
(


,



)
= . . . . and β =



= . . . . . (.)

Here B(x, y) denotes the beta function.
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Proof The inequality (.) is obtained by considering the function P(x) defined by

P(x) =
(  + ( + x)/)

x
arctlx, x > .

Differentiation yields

P′(x) = –
( + x)/ + 
x( + x)/

arctlx +
( + ( + x)/)

x


( + x)/
=
( + x)/ + 
x( + x)/

Q(x),

where

Q(x) = – arctlx +
( + ( + x)/x
( + x)/ + 

.

Elementary calculation shows that

Q′(x) = –
x(

√
 + x + ( + x)/ – )

( + x)/(( + x)/ + )
< , x > .

Hence, Q(x) <Q() =  for x > . Therefore, P′(x) <  for x > , and we have



B
(


,



)
= lim

x→∞P(x) < P(x) =
(  + ( + x)/)

x
arctlx < lim

x→
P(x) =



.

Hence, the inequality (.) holds with the best possible constants given in equation
(.). �

Theorem . For  < |x| < ,

a

 +

√
 – x

<
arctlhx

x
<

b

 +

√
 – x

(.)

and

a

 + ( – x)/

<
arctlhx

x
<

b

 + ( – x)/

(.)

with the best possible constants

a =



= . . . . , b =



B
(


,



)
= . . . . (.)

and

a =


B
(


,



)
= . . . . , b =



= . . . . . (.)

Proof For  < x < , let

J(x) =

 +

√
 – x

x
arctlhx.
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Deng and Chen Journal of Inequalities and Applications 2014, 2014:35 Page 12 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/35

Differentiation yields

J ′(x) =
x + 

√
 – x + 

x
√
 – x

J(x),

where

J(x) = – arctlhx +
( + 

√
 – x)x

( – x)/(x + 
√
 – x + )

.

Elementary calculation shows that

J ′(x) =
x

( – x)/(x + 
√
 – x + )

J(x),

where

J(x) = –x – x +  +
(
x – 

)√
 – x.

We claim that J(x) >  for  < x < . By an elementary change of variable

x =
(
 – t

)/,  < t < , (.)

we find that

J(x) >  for  < x <  ⇐⇒ J(t) >  for  < t < ,

where

J(t) = t + t – t – t = t( – t)
(
t + t + 

)
.

Obviously, J(t) >  for  < t < . This proves the claim.
Hence, J ′(x) >  for  < x < . This implies that J(x) > J() =  and J ′(x) >  for  < x < .

Therefore, the function J(x) is strictly increasing on (, ). And hence,




= lim
x→

J(x) < J(x) =

 +

√
 – x

x
arctlhx < lim

x→
J(x) =




B
(


,



)

for  < x < . Hence, inequality (.) holds with the best possible constants given in equa-
tion (.).
For  < x < , let

T(x) =

 + ( – x)/

x
arctlhx.

Differentiation yields

T ′
(x) =

( – x)/ + 
x( – x)/

T(x),

http://www.journalofinequalitiesandapplications.com/content/2014/1/35
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where

T(x) = – arctlhx +
x( + ( – x)/)
( – x)/ + 

.

Elementary calculation shows that

T ′
(x) = –

x( – 
√
 – x – ( – x)/)

( – x)/(( – x)/ + )
< ,  < x < ,

which implies that T(x) < T() =  and T ′
(x) <  for  < x < . Therefore, the function

T(x) is strictly decreasing on (, ). And hence,



B
(


,



)
= lim

x→
T(x) < T(x) =


 + ( – x)/

x
arctlhx < lim

x→
T(x) =




for  < x < . Hence, inequality (.) holds with the best possible constants given in equa-
tion (.). �

Remark . There is no strict comparison between the two lower bounds in equations
(.) and (.). Also, there is no strict comparison between the two upper bounds in
equations (.) and (.).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referees for their careful reading of the manuscript and insightful comments.

Received: 7 July 2013 Accepted: 19 December 2013 Published: 24 Jan 2014

References
1. Borwein, JM, Borwein, PB: Pi and the AGM: A Study in the Analytic Number Theory and Computational Complexity.

Wiley, New York (1987)
2. Carlson, BC: Algorithms involving arithmetic and geometric means. Am. Math. Mon. 78, 496-505 (1971)
3. Neuman, E: On Gauss lemniscate functions and lemniscatic mean. Math. Pannon. 18, 77-94 (2007)
4. Neuman, E: Two-sided inequalities for the lemniscate functions. J. Inequal. Spec. Funct. 1, 1-7 (2010)
5. Neuman, E: On Gauss lemniscate functions and lemniscatic mean II. Math. Pannon. 23, 65-73 (2012)
6. Neuman, E: Inequalities for Jacobian elliptic functions and Gauss lemniscate functions. Appl. Math. Comput. 218,

7774-7782 (2012)
7. Neuman, E: On lemniscate functions. Integral Transforms Spec. Funct. 24, 164-171 (2013)
8. Siegel, CL: Topics in Complex Function Theory, vol. 1. Wiley, New York (1969)
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