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Abstract
In this paper, we study warped product submanifolds of nearly trans-Sasakian
manifolds. The non-existence of warped product semi-slant submanifolds of type
Nθ × f NT is shown, whereas some characterization and new geometric obstructions
are obtained for the warped products of type NT ×f Nθ . We establish two general
inequalities for the squared norm of the second fundamental form. The first inequality
generalizes derived inequalities for some contact metric manifolds (Kadri et al. in
J. Korean Math. Soc. 42:1101-1110, 2005; Munteanu in Publ. Math. (Debr.) 66:75-120,
2005; Mustafa et al. in Taiwan. J. Math. 17:1473-1486, 2013; Uddin and Khan in
J. Inequal. Appl. 2012:304, 2012), while by a new technique, the second inequality is
constructed to express the relation between extrinsic invariant (second fundamental
form) and intrinsic invariant (scalar curvatures). The equality cases are also discussed.
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1 Introduction
In a natural way, warped products appeared in differential geometry generalizing the class
of Riemannian product manifolds to a much larger one, called warped product manifolds,
which are applied in general relativity to model the standard space time, especially in the
neighborhood of massive stars and black holes [, ]. These manifolds were introduced by
Bishop and O’Neill []. They defined warped products as follows: Let N and N be two
Riemannian manifolds with Riemannian metrics g and g, respectively, and let f >  be a
differentiable function onN. Consider the product manifoldN ×N with its projections
π : N × N → N and π : N × N → N. Then their warped product manifold M =
N×f N is the RiemannianmanifoldN×N = (N×N, g) equippedwith theRiemannian
structure such that

‖X‖ = ∥∥π�(X)
∥∥ + (f ◦ π)

∥∥π�(X)
∥∥

for any vector field X tangent toM, where � is the symbol for the tangent maps. A warped
product manifold M = N × N is said to be trivial or simply Riemannian product if the
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warping function f is constant. For the survey on warped products as Riemannian sub-
manifolds, we refer to [, ].
A (m + )-dimensional C∞ manifold (M̄, g,φ, ξ ,η) is said to have an almost contact

structure if there exist on M̄ a tensor field φ of type (, ), a vector field ξ , a -form η and
a Riemannian metric g satisfying []

φ = –I + η ⊗ ξ , φξ = , η ◦ φ = , η(ξ ) = , (.)

η(X) = g(X, ξ ), g(φX,φY ) = g(X,Y ) – η(X)η(Y ), (.)

where X and Y are vector fields on M̄ []. We shall use the symbol �(TM̄) to denote the
Lie algebra of vector fields on the manifold M̄.
In the classification of almost contact structures, Chinea and Gonzalez [] divided these

structures into twelvewell-known classes; one of the class that appears in this classification
is denoted by C ⊕ C ⊕ C. According to their classification, an almost contact metric
manifold is a nearly trans-Sasakian manifold if it belongs to this class. Another line of
thought was developed by Gherghe [] who introduced nearly trans-Sasakian structure of
type (α,β), which generalizes trans-Sasakian structure in the same sense as nearly Sasakian
generalizes Sasakian one. In this sense an almost contact metric structure (φ, ξ ,η, g) on M̄
is called a nearly trans-Sasakian structure if

(∇̄Xφ)Y + (∇̄Yφ)X = α
(
g(X,Y )ξ – η(Y )X – η(X)Y

)
– β

(
η(Y )φX + η(X)φY

)
(.)

for any X,Y ∈ �(TM̄). Moreover, nearly trans-Sasakian of type (α,β) is nearly-Sasakian,
or nearly Kenmotsu, or nearly cosymplectic accordingly as β =  or α =  or α = β = .
Kim et al. [] initiated the study of semi-invariant submanifolds of nearly trans-

Sasakian manifolds and obtained many results on the extrinsic geometric aspects of these
submanifolds, whereas the slant submanifolds were studied in the setting of nearly trans-
Sasakian manifolds by Al-Solamy and Khan []. Recently, we have initiated the study of
CR-warped product in nearly trans-Sasakianmanifolds []. In the present paper, we con-
sider awarped product of proper slant and invariant submanifolds of nearly trans-Sasakian
manifolds, called warped product semi-slant submanifolds. The paper is organized as fol-
lows. Section  is devoted to providing the basic definitions and formulas which are use-
ful to the next section. In Section , general and special non-existence results are proved
for warped products. In the case of existence of warped products, the necessary lemmas
for the two inequalities and some geometric obstructions are obtained. In Section , a
general inequality which generalizes the obtained inequalities in [–] is established.
In Section , we develop a new technique to construct a general inequality for the sec-
ond fundamental form in terms of the scalar curvatures of submanifolds and the warping
function.

2 Preliminaries
LetM be an n-dimensional Riemannianmanifold isometrically immersed in a Riemannian
manifold M̄. Then the Gauss and Weingarten formulas are respectively given by

∇̄XY =∇XY + h(X,Y ) (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/346
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and

∇̄XN = –ANX +∇⊥
X N (.)

for all X,Y ∈ �(TM), where ∇ is the induced Riemannian connection onM, N is a vector
field normal to M̄, h is the second fundamental form of M, ∇⊥ is the normal connection
in the normal bundle T⊥M and AN is the shape operator of the second fundamental form.
They are related as

g(ANX,Y ) = g
(
h(X,Y ),N

)
, (.)

where g denotes the Riemannian metric on M̄ as well as the metric induced onM. For any
X ∈ �(TM), we decompose φX as follows:

φX = PX + FX, (.)

where PX and FX are the tangential and normal components of φX, respectively.
For a submanifoldM of an almost contact manifold M̄, if F is identically zero thenM is

invariant, and if P is identically zero thenM is anti-invariant.
For the orthonormal basis {e, . . . , en} of the tangent space TxM, the mean curvature

vector �H(x) is given by

�H(x) =

n

n∑
i=

h(ei, ei),

where n = dim(M). The submanifold M is totally geodesic in M̄ if h = , and minimal if
H = . If h(X,Y ) = g(X,Y )H for all X,Y ∈ �(TM), thenM is totally umbilical.
Let (M, g) be a submanifold of a Riemannian manifold M̄ equipped with a Riemannian

metric g . The equation of Gauss is given by

R(X,Y ,Z,W ) = R̄(X,Y ,Z,W ) + g
(
h(X,W ),h(Y ,Z)

)
– g

(
h(X,Z),h(Y ,W )

)
(.)

for all X,Y ,Z,W ∈ �(TM), where R̄ and R are the curvature tensors of M̄ andM, respec-
tively, and h is the second fundamental form.

Definition . [] An immersion ϕ : N ×f N → M̄ is called Ni-totally geodesic if the
partial second fundamental form hi vanishes identically. It is calledNi-minimal if the par-
tial mean curvature vector �Hi vanishes for i = , .

The scalar curvature τ (x) ofM is defined by

τ (x) =
∑

≤i<j≤n

K (ei ∧ ej), (.)

where K (ei ∧ ej) is the sectional curvature of the plane section spanned by ei and ej at
x ∈ M. Let k be a k-plane section of TxM, and let {e, . . . , ek} be any orthonormal basis
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of k . The scalar curvature τ (k) of k is given by []

τ (k) =
∑

≤i<j≤k

K (ei ∧ ej).

The scalar curvature of τ (x) ofM at x is identical with the scalar curvature of the tangent
space TxM of M at x, that is, τ (x) = τ (TxM). Geometrically, τ (k) is the scalar curvature
of the image expx(k) ofk at x under the exponential map at x. If is a -plane section,
τ () is simply the sectional curvature K () of , [, , ].
Now, let us put

hrij = g
(
h(ei, ej), er

)
, (.)

where i, j ∈ {, . . . ,n} and r ∈ {n+ , . . . , m+ }. Then, in view of the equation of Gauss, we
have

K (ei ∧ ej) = K̄ (ei ∧ ej) +
m+∑
r=n+

(
hriih

r
jj –

(
hrij

)), (.)

where K (ei ∧ ej) and K̄ (ei ∧ ej) denote the sectional curvature of the plane section spanned
by ei and ej at x in the submanifold M and in the ambient manifold M̄, respectively. Tak-
ing the summation over the orthonormal frame of the tangent space of M in the above
equation, we obtain

τ (x) = τ̄ (TxM) + n‖H‖ – ‖h‖, (.)

where τ̄ (TxM) =
∑

≤i<j≤n K̄ (ei ∧ ej) denotes the scalar curvature of the n-plane section
TxM for each x ∈M in the ambient manifold M̄.
There are different classes of submanifolds which we introduce briefly such as slant sub-

manifolds, CR-submanifolds and semi-slant submanifolds. We shall always consider ξ to
be tangent to the submanifold M. For a slant submanifold M, there is a non-zero vector
X tangent to M at x such that X is not proportional to ξx. We denote by  ≤ θ (X) ≤ π/
the angle between φX and TxM called the Wirtinger angle. If the Wirtinger angle θ (X) is
constant for all X ∈ TxM – 〈ξx〉 and x ∈ M, then M is said to be a slant submanifold and
the angle θ (X) is called the slant angle ofM []. Obviously, if θ = ,M is invariant and if
θ = π/,M is an anti-invariant submanifold. A slant submanifold is said to be proper slant
if it is neither invariant nor anti-invariant.
We recall the following result for a slant submanifold of an almost contact metric man-

ifold.

Theorem . [] Let M be a submanifold of an almost contact metric manifold M̄ such
that ξ ∈ �(TM). Then M is slant if and only if there exists a constant λ ∈ [, ] such that

P = λ(–I + η ⊗ ξ ). (.)

Furthermore, if θ is a slant angle, then λ = cos θ .
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The following relations are straightforward consequences of equation (.)

g(PX,PY ) = cos θ
(
g(X,Y ) – η(Y )η(X)

)
, (.)

g(FX,FY ) = sin θ
(
g(X,Y ) – η(Y )η(X)

)
(.)

for all X,Y ∈ �(TM).
The idea of semi-slant submanifolds of almost Hermitian manifolds was given by

Papaghuic []. In fact, semi-slant submanifolds were defined on the line of CR-
submanifolds. These submanifolds are defined and investigated by Cabrerizo et al. for
almost contact manifolds []. They defined these submanifolds as follows.

Definition . [, ] A submanifoldM of an almost contact manifold M̄ is said to be a
semi-slant submanifold if there exist two orthogonal distributions D and Dθ such that:

(i) TM =D⊕Dθ ⊕ 〈ξ〉.
(ii) D is invariant, i.e., φD⊆ D.
(iii) Dθ is a slant distribution with slant angle θ �= π

 .

In the above definition, if θ = π/ then M is contact CR-submanifold of M̄. If ν is the
invariant subspace of the normal bundle T⊥M, then in case of semi-slant submanifolds,
the normal bundle T⊥M can be decomposed as follows:

T⊥M = FDθ ⊕ ν. (.)

For the differential function ψ on M, the gradient gradψ and the Laplacian �ψ of ψ

are defined respectively by

g(gradψ ,X) = Xψ , (.)

�ψ =
n∑
i=

(
(∇ei ei)ψ – eieiψ

)
(.)

for any vector field X tangent toM, where ∇ denotes the Riemannian connection onM.

3 Warped product submanifolds
In this section, we studywarped product submanifolds of nearly trans-Sasakianmanifolds.
We recall the following results on warped products for later use.

Lemma . Let M =N ×f N be a warped product manifold with the warping function f .
Then

(i) ∇XY ∈ �(TN),
(ii) ∇XZ =∇ZX = (X ln f )Z,
(iii) ∇ZW =∇Z

NW – (g(Z,W )/f )grad f
for any X,Y ∈ �(TN) and Z,W ∈ �(TN), where ∇ and ∇N denote the Levi-Civita con-
nections on M and N, respectively, and grad f is the gradient of f .

Corollary . On a warped product manifold M =N ×f N, we have:
(i) N is totally geodesic inM,
(ii) N is totally umbilical inM.
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In the following, we prove the non-existence of warped products of the formM =N ×f

N in a nearly trans-Sasakian manifold such that ξ is tangent to N.

Theorem . Let M̄ be a nearly trans-Sasakian manifold which is not nearly Sasakian,
and let M =N ×f N be a warped product submanifold of M̄ such that ξ is tangent to N,
thenM is simply a Riemannian product of N andN,whereN andN are anyRiemannian
submanifolds of M̄.

Proof For any X ∈ �(TN), we have (∇̄Xφ)ξ + (∇̄ξφ)X = –αX – βφX. Since for a contact
metric manifold M̄, (∇̄ξφ)X =  [], hence we get

φ∇̄Xξ = αX + βφX. (.)

Taking the inner product with φX in (.) and using Lemma .(ii) and the fact that ξ is
tangent to N, we get β‖X‖ = . This means that the first factor of the warped product
vanishes, which proves the theorem completely. �

In view of the above theorem, we get a non-existence result about the warped product
semi-slant submanifolds in a nearly trans-Sasakianmanifold, i.e., there do not exist warped
product semi-slant submanifoldsNθ ×f NT andNT ×f Nθ of a nearly trans-Sasakian man-
ifold when the characteristic vector field ξ is a tangent to the second factor. Now, we show
that the warped products of type Nθ ×f NT are also Riemannian products if ξ is tangent
to the first factor.

Theorem . There do not exist warped product semi-slant submanifolds of type M =
Nθ ×f NT of a nearly trans-Sasakian manifold M̄ such that ξ is tangent to Nθ , unless M̄ is
nearly β-Kenmotsu.

Proof Consider an arbitrary vector X tangent to NT , then making use of (.) it follows
(∇̄Xφ)ξ + (∇̄ξφ)X = –αX – βφX. Since (∇̄ξφ)X = , for any X ∈ �(TM̄), thus this relation
can be simplified as

–φ∇̄Xξ = –αX – βφX. (.)

Taking the inner product with X in (.), we get

g(∇̄Xξ ,φX) = –α‖X‖. (.)

By orthogonality of the vector fields X and φX and by Lemma .(ii), the left-hand side
of (.) vanishes identically, hence we reach α‖X‖ = , this means that the first factor of
the warped product Nθ ×f NT vanishes, which proves the theorem. �

From the above discussion, we conclude that there do not exist warped product semi-
slant submanifolds of type Nθ ×f NT in a nearly trans-Sasakian manifold M̄ in both the
cases either ξ is tangent to the first factor or to the second. Also, the warped product
NT ×f Nθ is just a Riemannian product when the characteristic vector field ξ is tangent
to Nθ . Now, we discuss the warped product submanifolds NT ×f Nθ such that ξ is tangent
to NT .

http://www.journalofinequalitiesandapplications.com/content/2014/1/346
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First, we prove a key lemma characterizing geometric properties of the warped product
submanifolds NT ×f Nθ of a nearly trans-Sasakian manifold M̄.

Lemma . Let M = NT ×f Nθ be a warped product semi-slant submanifold of a nearly
trans-Sasakianmanifold M̄ such that ξ is tangent to NT .Then the following relations hold:

(i) ξ ln f = β ,
(ii) g(h(X,Y ),FZ) = ,
(iii) g(h(ξ ,Z),FW ) = –αg(Z,W ),
(iv) g(h(X,Z),FZ) = –{(φX ln f ) + αη(X)}‖Z‖,
(v) g(h(X,Z),FPZ) = –g(h(X,PZ),FZ) = 

 cos
 θ{(X ln f ) – βη(X)}‖Z‖,

(vi) g(h(X,X), ζ ) = –g(h(φX,φX), ζ )
for any X,Y ∈ �(TNT ) and for any Z,W ∈ �(TNθ ) and ζ ∈ �(ν).

Proof The first three parts can be proved by the same way as we have proved for contact
CR-warped products in []. Now, as we consider ξ is tangent to NT , then for any X ∈
�(TNT ) and Z ∈ �(TNθ ), we have

(∇̄Xφ)Z + (∇̄Zφ)X = –αη(X)Z – βη(X)φZ.

Taking the inner product with Z, we obtain

g
(
(∇̄Xφ)Z + (∇̄Zφ)X,Z

)
= –αη(X)‖Z‖. (.)

Also, we have

(∇̄Xφ)Z = ∇̄XφZ – φ∇̄XZ

= ∇XPZ + h(X,PZ) –AFZX +∇⊥
X FZ – φ∇XZ – φh(X,Z).

Taking the inner product with Z and using Lemma .(ii), we obtain

g
(
(∇̄Xφ)Z,Z

)
= . (.)

Similarly, we can obtain

g
(
(∇̄Zφ)X,Z

)
= (φX ln f )‖Z‖ + g

(
h(X,Z),FZ

)
. (.)

Then from (.), (.) and (.) we obtain part (iv) of the lemma. Now, from the structure
equation (.) and Lemma .(ii), we have

g
(
(∇̄Xφ)PZ + (∇̄PZφ)X,Z

)
= βη(X) cos θ‖Z‖ (.)

for any X ∈ �(TNT ) and Z ∈ �(TNθ ) such that ξ is tangent toNT . Again, by Lemma .(ii)
and the Gauss-Weingarten formulas, we obtain

g
(
(∇̄Xφ)PZ,Z

)
= g

(
h(X,PZ),FZ

)
– g

(
h(X,Z),FPZ

)
(.)

and

g
(
(∇̄PZφ)X,Z

)
= g

(
h(X,PZ),FZ

)
+ (X ln f ) cos θ‖Z‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/346


Mustafa et al. Journal of Inequalities and Applications 2014, 2014:346 Page 8 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/346

Thus from (.), (.) and (.) we derive

g
(
h(X,PZ),FZ

)
– g

(
h(X,Z),FPZ

)
=

{
βη(X) – (X ln f )

}
cos θ‖Z‖. (.)

Interchanging Z by PZ in (.), we obtain

–g
(
h(X,Z),FPZ

)
+ g

(
h(X,PZ),FZ

)
=

{
βη(X) – (X ln f )

}
cos θ‖Z‖. (.)

Then, by (.) and (.), we get

g
(
h(X,PZ),FZ

)
= –g

(
h(X,Z),FPZ

)
, (.)

which is the first equality of the fifth part of the lemma. The second equality of (v) follows
from (.) and (.). For the last part of the lemma, for anyX ∈ �(TNT ), we have ∇̄XφX–
φ∇̄XX = α‖X‖ξ – η(X)X – βη(X)φX. By means of (.), this relation reduces to

∇XφX + h(φX,X) – φ∇XX – φh(X,X) = α‖X‖ξ – αη(X)X – βη(X)φX.

Taking the inner product in the above equationwith φζ , for any vector ζ ∈ �(ν), we deduce
that

g
(
h(φX,X),φζ

)
– g

(
h(X,X), ζ

)
= . (.)

Interchanging X by φX in the above equation and making use of (.) and the fact that ν

is an invariant normal subbundle of T⊥M, we have

–g
(
h(X,φX),φζ

)
+ η(X)g

(
h(ξ ,φX),φζ

)
= g

(
h(φX,φX), ζ

)
. (.)

Now, by means of (.), we derive

h(φX, ξ ) – φh(X, ξ ) – φ∇Xξ = α
(
η(X)ξ –X

)
– βφX. (.)

Taking the inner product with φζ in (.), we obtain

g
(
h(φX, ξ ),φζ

)
– g

(
h(X, ξ ), ζ

)
= .

Interchanging ζ by φζ in the first step and X by φX in the second one, taking in consider-
ation that h(ξ , ξ ) = , we obtain the following couple of tensorial relations:

g
(
h(φX, ξ ), ζ

)
+ g

(
h(X, ξ ),φζ

)
=  (.)

and

g
(
h(X, ξ ),φζ

)
+ g

(
h(φX, ξ ), ζ

)
= . (.)

From (.) and (.) we deduce that

g
(
h(X, ξ ),φζ

)
= g

(
h(φX, ξ ), ζ

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/346
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In view of (.) and (.), we get g(h(X, ξ ),φζ ) = . Again, interchanging X by φX in this
relation yields

g
(
h(φX, ξ ),φζ

)
= . (.)

Then, by (.) and (.), we reach

–g
(
h(φX,X),φζ

)
– g

(
h(φX,φX), ζ

)
= . (.)

Thus from (.) and (.) we get the assertion. �

4 An inequality for warped product submanifolds NT ×f Nθ

In the setting of almost contact structures, many authors have proved general inequali-
ties in terms of the squared norm of the second fundamental form and the gradient of
the warping function in various structures [–]. In fact, all these inequalities are the
extension of the original inequality constructed by Chen in the almost Hermitian setting
[]. However, no one proved this relation for warped product semi-slant submanifolds.
For this reason, our inequality generalizes the inequalities obtained for CR-warped prod-
ucts in the almost contact setting. Another reason is that a nearly trans-Sasakian structure
includes all almost contact structures as a special case.
From now on, we shall follow the following orthonormal basis frame of the ambi-

ent manifold M̄ for the warped product semi-slant submanifold M = NT ×f Nθ such
that ξ is tangent to NT . We shall denote by D and Dθ the tangent spaces of NT and
Nθ , respectively, instead of TNT and TNθ . We set {e, . . . , es, es+ = φe, . . . , e(n–=s) =
φes, e(n=s+) = ξ , en+ = e�

 , . . . , en+q = e�
q, en+q+ = e�

q+ = sec θPe�
 , . . . , e(n=n+n) = e�

(n=q) =
sec θPe�

q, en+ = csc θFe�
 , . . . , en+n = csc θFe�

n , en+n+ = ē, . . . , em+ = ēl} as a basis frame
of TM̄, then {e, . . . , es, es+ = φe, . . . , en– = φes, en = ξ , en+ = e�

 , . . . , en+q = e�
q, en+q+ =

e�
q+ = sec θPe�

 , . . . , e(n=n+n) = e�
(n=q) = sec θPe�

q} are the basis of TM such that e, . . . , es,
es+ = φe, . . . , en– = φes, en = ξ are tangent to D and e�

 , . . . , e�
q, e�

q+ = sec θPe�
 , . . . ,

e�
(n=q) = sec θPe�

q are tangent to Dθ , hence {en+ = csc θFe�
 , . . . , en+n = csc θFe�

n , en+n+ =
ē, . . . , em+ = ēl} are the basis of the normal bundle T⊥M such that en+ = csc θFe�

 , . . . ,
en+n = csc θFe�

n are tangent to FDθ and en+n+ = ē, . . . , em+ = ēl are tangent to the in-
variant normal subbundle ν with dimension l. We use this frame in the following theo-
rem.

Theorem . Let M =NT ×f Nθ be a warped product semi-slant submanifold of a nearly
trans-Sasakian manifold M̄ such that ξ is tangent to NT , where NT and Nθ are invariant
and proper slant submanifolds of M̄ with real dimensions s+ and q, respectively. Then

(i) The second fundamental form h ofM satisfies the following inequality:

‖h‖ ≥ q
[{



cot θ +  csc θ

}(∥∥grad(ln f )∥∥ – β) + α
]
. (.)

(ii) If the equality sign in (i) holds identically, then NT and Nθ are totally geodesic and
totally umbilical submanifolds in M̄, respectively.

http://www.journalofinequalitiesandapplications.com/content/2014/1/346


Mustafa et al. Journal of Inequalities and Applications 2014, 2014:346 Page 10 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/346

Proof In view of the adopted frame and the definition of the second fundamental form, it
is straightforward to get the following expansion:

‖h‖ =
n∑

i,j=

g
(
h(ei, ej),h(ei, ej)

)
=

m+∑
r=n+

n∑
i,j=

g
(
h(ei, ej), er

)

=
n+n∑
r=n+

n∑
i,j=

g
(
h(ei, ej), er

) +
m+∑

r=n+n+

n∑
i,j=

g
(
h(ei, ej), er

)

≥
n+n∑
r=n+

n∑
i,j=

g
(
h(ei, ej), er

) =
n∑

l=s+

n∑
i,j=

g
(
h(ei, ej),φel

).

Using the orthonormal frame of D and Dθ gives

‖h‖ ≥
n∑

l=s+

s+∑
i,j=

g
(
h(ei, ej),φel

) + 
n∑

j,l=s+

s+∑
i=

g
(
h(ei, ej),φel

)

+
n∑

i,j,l=s+

g
(
h(ei, ej),φel

). (.)

By Lemma .(ii), the first term of the right-hand side in (.) is identically zero, so let us
compute the next term

‖h‖ ≥ 
n∑

j,l=s+

s∑
i=

g
(
h(ei, ej),φel

) + 
n∑

j,l=s+

g
(
h(ξ , ej),φel

). (.)

Making use of Lemma .(iii), the second term of the right-hand side in (.) can be eval-
uated, while by means of the orthonormal frame the first term is expanded to give four
terms; as a result (.) takes the following form:

‖h‖ ≥  csc θ

q∑
j=

s∑
i=

g
(
h(ei, ej),Fe�

j
)

+  csc θ sec θ

q∑
j=

s∑
i=

g
(
h
(
ei,Pe�

j
)
,Fe�

j
)

+  csc θ sec θ

q∑
j=

s∑
i=

g
(
h(ei, ej),FPe�

j
)

+  csc θ sec θ

q∑
j=

s∑
i=

g
(
h
(
ei,Pe�

j
)
,FPe�

j
) + 

n∑
j,l=s+

(
–αg(ej, el)

). (.)

Using Lemma .(iii)-(v), we derive

‖h‖ ≥  csc θ

q∑
j=

s∑
i=

(
(φei ln f ) + αη(ei)

)‖ej‖

+


cos θ csc θ

q∑
j=

s∑
i=

(
(ei ln f ) – βη(ei)

)‖ej‖
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+


cos θ csc θ

q∑
j=

s∑
i=

(
(ei ln f ) – βη(ei)

)‖ej‖

+  csc θ

q∑
j=

s∑
i=

(
(φei ln f ) + αη(ei)

)‖ej‖ + qα. (.)

In view of the assumed orthonormal frame, the -form η(ei) is identically zero for all i ∈
{, . . . , s}, hence we reach

‖h‖ ≥  csc θ

q∑
j=

s∑
i=

(φei ln f )‖ej‖

+


csc θ cos θ

q∑
j=

s∑
i=

(ei ln f )‖ej‖ + qα. (.)

Then from (.) and Lemma .(i) the above inequality takes the form

‖h‖ ≥ q
[{



cot θ +  csc θ

}(‖∇ ln f ‖ – β) + α
]
,

which is the inequality (i). Now, assume that the equality sign in (.) holds identically,
then from (.), (.) and Lemma .(ii) we deduce that

h(D,D) = , h(Dθ ,Dθ ) = , h(D,Dθ ) ⊂ FDθ . (.)

Hence, combining statement of Corollary .(i) with the first condition in (.) shows that
NT is totally geodesic in M̄. On the other hand, if we denote by hθ the second fundamental
form of Nθ inM, then we get

g
(
hθ (Z,W ),X

)
= g(∇ZW ,X) = –(X ln f )g(Z,W ) = –g(Z,W )g(∇ ln f ,X),

which is equivalent to

hθ (Z,W ) = –∇ ln fg(Z,W ). (.)

This means that Nθ is totally umbilical inM, thus the second condition of (.) with (.)
and Corollary .(ii) imply that Nθ is totally umbilical in M̄. Also, all three conditions of
(.) give the minimality ofM. �

Note In inequality (.), if α =  and β = , then it reduces to

‖h‖ ≥ q
[{



cot θ +  csc θ

}(‖∇ ln f ‖ – 
)]
,

which is the inequality for nearly Kenmotsu manifolds. Also, if α =  and β = , then the
inequality reduces for the nearly Sasakian manifolds. The equality cases can also be dis-
cussed.
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Remark  Theorem. in [], Theorem. in [] andTheorem. in [] are the special
cases of the above inequality.

Remark  The above inequality generalizes Theorem . in [].

5 Another inequality for warped products
Let ϕ :M = N ×f N −→ M̄ be an isometric immersion of the warped product N ×f N

into the Riemannianmanifold M̄ of constant sectional curvature c. Denote by n, n, n the
dimensions of N,N,N ×f N, respectively. Then for unit vector fields X, Z tangent to
N, N, respectively, we have

K (X ∧ Z) = g(∇Z∇XX –∇X∇ZX,Z) = (/f )
{
(∇XX)f –Xf

}
. (.)

If we choose the local orthonormal frame e, . . . , en such that e, . . . , en are tangent to N

and en+, . . . , en are tangent to N, then we have

�f
f

=
n∑
i=

K (ei ∧ ej) (.)

for each j = n + , . . . ,n.
In this section, our aim is to develop a new method which is giving a useful formula for

the squared norm of the mean curvature vector �H under ϕ. Geometrically, this formula
declares the NT -minimality of ϕ.
We know that

‖H‖ = 
n

m+∑
r=n+

(
hr + · · · + hrnn

).

Taking in consideration that (n = n + n), where n and n are the dimensions of NT

and Nθ , respectively, we obtain

‖H‖ = 
n

m+∑
r=n+

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

).

Moreover, for every r ∈ {n+, . . . , m+}, using the frame ofD and the fact that h(ξ , ξ ) = ,
then n coefficients of the right-hand side can be decomposed as follows:

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

)
=

(
hr + · · · + hrss + hrs+s+ + · · · + hrss + hrξξ + hrn+n+ + · · · + hrnn

)
=

(
hr + · · · + hrss + hrs+s+ + · · · + hrss + hrn+n+ + · · · + hrnn

). (.)

From (.) we know that er belongs to the normal bundle TM⊥ for every r ∈ {n + , . . . ,
m + }. Then in view of (.) we have two cases: either it belongs to FDθ or to ν .
Case (i). If er ∈ �(FDθ ), then from Lemma .(ii) we know that g(h(X,X),FZ) =  for any

X ∈ �(D) and Z ∈ �(Dθ ); consequently (.) reduces to

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

) = (
hrn+n+ + · · · + hrnn

). (.)
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Case (ii). If er ∈ �(ν), then by means of Lemma .(vi), we can make an expansion of
(.) as follows:

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

)
=

(
g
(
h(e, e), er

)
+ · · · + g

(
h(es, es), er

)
+ g

(
h(φe,φe), er

)
+ · · · + g

(
h(φes,φes), er

)
+ hrn+n+ + · · · + hrnn

) 

=
(
g
(
h(e, e), er

)
+ · · · + g

(
h(es, es), er

)
– g

(
h(e, e), er

)
– · · ·

– g
(
h(es, es), er

)
+ hrn+n+ + · · · + hrnn

) 

=
(
hrn+n+ + · · · + hrnn

). (.)

Then from (.) and (.) we can deduce that

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

) = (
hrn+n+ + · · · + hrnn

)

for every normal vector er belongs to the normal bundle T⊥M. In other words,

m+∑
r=n+

(
hr + · · · + hrnn + hrn+n+ + · · · + hrnn

) =
m+∑
r=n+

(
hrn+n+ + · · · + hrnn

).

By the end of this discussion, we can state the following lemma.

Lemma . Let ϕ :M =NT ×f Nθ −→ M̄ be an isometric immersion from a warped prod-
uct semi-slant submanifold into a nearly trans-Sasakian manifold M̄. Then we have

‖ �H‖ = 
n

m+∑
r=n+

(
hrn+n+ + · · · + hrnn

),

i.e., ϕ is an NT-minimal immersion, where �H is the mean curvature vector and n, n, n
and (m + ) are the dimensions of NT , Nθ ,M and M̄, respectively.

From the Gauss equation and the above key Lemma ., we are able to state and prove
the following general inequality.

Theorem . Let ϕ : M = NT ×f Nθ −→ M̄ be an isometric immersion from a warped
product semi-slant submanifold into a nearly trans-Sasakian manifold M̄ such that ξ is
tangent to NT . Then we have

(i) 
‖h‖ ≥ τ̄ (TM) – τ̄ (TNT ) – τ̄ (TNθ ) – n�f

f , where n is the dimension of Nθ .
(ii) If the equality sign in (i) holds identically, then NT and Nθ are totally geodesic and

totally umbilical submanifolds in M̄, respectively.

Proof We start by recalling (.) as a consequence of (.) as

‖h‖ = –τ + τ̄ (TM) + n‖H‖.
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Making use of (.) in the above equation, we deduce

‖h‖ = –
n∑
i=

n∑
j=n+

K (ei ∧ ej) – τ (TNT ) – τ (TNθ ) + τ̄ (TM) + n‖H‖.

Then from Lemma . and relation (.) it follows

‖h‖ = –
n�f

f
– τ̄ (TNT ) – 

m+∑
r=n+

∑
≤i<k≤n

(
hriih

r
kk –

(
hrik

)) – τ̄ (TNθ )

– 
m+∑
r=n+

∑
n+≤j<t≤n

(
hrjjh

r
tt –

(
hrjt

)) + τ̄ (TM) + n‖H‖.

The above equation is equivalent to the following form:

‖h‖ = –
n�f

f
– τ̄ (TNT ) –

m+∑
r=n+

∑
≤i�=k≤n

(
hriih

r
kk –

(
hrik

)) – τ̄ (TNθ )

+ τ̄ (TM) –
m+∑
r=n+

∑
n+≤j �=t≤n

(
hrjjh

r
tt –

(
hrjt

)) + n‖H‖.

The above equation takes the following form when we add and subtract the same term on
the right-hand side:

‖h‖ = –
n�f

f
– τ̄ (TNT ) –

m+∑
r=n+

((
hr

) + · · · + (
hrnn

))

–
m+∑
r=n+

∑
≤i�=k≤n

(
hriih

r
kk –

(
hrik

)) +
m+∑
r=n+

((
hr

) + · · · + (
hrnn

))

– τ̄ (TNθ ) –
m+∑
r=n+

∑
n+≤j �=t≤n

(
hrjjh

r
tt –

(
hrjt

)) + τ̄ (TM) + n‖H‖

= –
n�f

f
– τ̄ (TNT ) +

m+∑
r=n+

n∑
i,k=

(
hrik

) –
m+∑
r=n+

(
hr + · · · + hrnn

)

– τ̄ (TNθ ) –
m+∑
r=n+

∑
n+≤j �=t≤n

(
hrjjh

r
tt –

(
hrjt

)) + τ̄ (TM) + n‖H‖.

Similarly, we can add and subtract the same term for the sixth term in the above equation;
and finally, we derive

‖h‖ = –
n�f

f
+ τ̄ (TM) – τ̄ (TNT ) +

m+∑
r=n+

n∑
i,k=

(
hrik

)

+
m+∑
r=n+

n∑
j,t=n+

(
hrjt

) –
m+∑
r=n+

(
hr + · · · + hrnn

) – τ̄ (TNθ )

–
m+∑
r=n+

(
hrn+n+ + · · · + hrnn

) + n‖H‖.
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Taking account of Lemma ., we get the inequality (i). For the equality case, from the last
relation we get

m+∑
r=n+

n∑
i,k=

g
(
h(ei, ek), er

)
=  (.)

and

m+∑
r=n+

n∑
j,t=n+

g
(
h(ej, et), er

)
= . (.)

From (.) and (.) we obtain that the immersion ϕ :M → M̄ is totally geodesic. Also,
from Corollary . we know that the immersion NT → M is totally geodesic and the im-
mersion Nθ →M is totally umbilical, hence the result (ii). �
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