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Abstract
This paper is motivated by several interesting problems in statistics. We first define the
concept of quasi-log concavity, and a conjecture involving quasi-log concavity is
proposed. By means of analysis and inequality theories, several interesting results
related to the conjecture are obtained; in particular, we prove that log concavity
implies quasi-log concavity under proper hypotheses. As applications, we first prove
that the probability density function of k-normal distribution is quasi-log concave.
Next, we point out the significance of quasi-log concavity in the analysis of variance.
Next, we prove that the generalized hierarchical teaching model is usually better than
the generalized traditional teaching model. Finally, we demonstrate the applications
of our results in the research of the allowance function in the generalized traditional
teaching model.
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1 Introduction
Convexity and concavity are essential attributes of functions, their research and applica-
tions are important topics in mathematics (see [–]).
There aremany types of convexity and concavity, one of them is log concavity which has

many applications in statistics (see [, , –]). In [], the authors apply the log concavity
to study the Roymodel, and some interesting results are obtained (see p. in []), which
include the following: If D is a log concave random variable, then

∂ Var[D|D > d]
∂d

≤  and
∂ Var[D|D≤ d]

∂d
≥ . (.)

Recall the definitions of log-concave function (see [–]) and β-log-concave function
(see []): If the function p : I → (,∞) satisfies the inequality

p
[
θu + ( – θ )v

] ≥ eβpθ (u)p–θ (v), ∃β ∈ [,∞),∀(u, v) ∈ I,∀θ ∈ [, ], (.)

then we say that the function p : I → (,∞) is a β-log-concave function. -log-concave
function is called a log-concave function. In other words, the function p : I → (,∞) is a
log-concave function if and only if the function logp is a concave function. If – logp is a
concave function, then we call the function p : I → (,∞) a log-convex function. Here I is
an interval (or high dimension interval).
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For the log-concave function, we have the following results (see []). Let the function
p : I → (,∞) be differentiable, where I is an interval. Then the function p is a log-concave
function if and only if the function (logp)′ is decreasing, i.e., if v, v ∈ I , v < v, then we
have

[
logp(v)

]′ ≥ [
logp(v)

]′. (.)

Let the function p → (,∞) be twice differentiable. Then the function p is a log-concave
function if and only if

p(x)p′′(x) –
[
p′(x)

] ≤ , ∀x ∈ I. (.)

Let for convenience that

p� p(x),
∫ b

a
p�

∫ b

a
p(x) dx, p′(x)� dp(x)

dx
, p′′(x)� dp(x)

dx
,

p′′′(x)� dp(x)
dx

, p(n)(x)� dnp(x)
dxn

, n≥ .

It is well known that there is a wide range of applications of log concavity in probability
and statistics theories (see [, , –]). However, quasi-log concavity also has fascinating
significance in probability and statistics theories, see Section  and Section . The main
object of this paper is to introduce the quasi-log concavity of a function and demonstrate
its applications in the analysis of variance.
Now we introduce the definition of quasi-log concavity and quasi-log convexity as fol-

lows.

Definition . A differentiable function p : I → (,∞) is said to be quasi-log concave if
the following inequality

Gp[a,b]�
(∫ b

a
p
)[

p′(b) – p′(a)
]
–

[
p(b) – p(a)

] ≤ , ∀a,b ∈ I (.)

holds, here I is an interval. If inequality (.) is reversed, then the function p : I → (,∞)
is said to be quasi-log convex.

We remark here if the function p : I → (,∞) is twice continuously differentiable, then
inequality (.) can be rewritten as follows:

Gp[a,b]�
∫ b

a
p
∫ b

a
p′′ –

(∫ b

a
p′

)

≤ , ∀a,b ∈ I. (.)

Nowwe show that for the twice continuously differentiable function, quasi-log concavity
implies log concavity, and quasi-log convexity implies log convexity.
Indeed, suppose that p : I → (,∞) is twice continuously differentiable and quasi-log

concave. Then (.) holds. Hence

p(x)p′′(x) –
[
p′(x)

] = lim
b→x


(b – x)

{∫ b

x
p(t) dt

∫ b

x
p′′(t) dt –

[∫ b

x
p′(t) dt

]}
≤ 
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for all x ∈ I so that

d logp(x)
dx

=
p(x)p′′(x) – [p′(x)]

p(x)
≤ , ∀x ∈ I.

Therefore, (.) holds and p is log concave on I . Similarly, we can prove that quasi-log
convexity implies log convexity.
On the other hand, we can prove that for the twice continuously differentiable function

log convexity implies quasi-log convexity.
Indeed, suppose that p : I → (,∞) is twice continuously differentiable and log convex.

Then (.) is reversed. Hence

p(x)p′′(x) –
[
p′(x)

] ≥ , ∀x ∈ I

⇒ p′′(x)≥ ,
∣∣p′(x)

∣∣ ≤ √
p(x)p′′(x), ∀x ∈ I

⇒
(∫ b

a
p′

)

≤
(∫ b

a

∣∣p′∣∣)

≤
(∫ b

a

√
pp′′

)

≤
∫ b

a
p

∫ b

a
p′′, ∀a,b ∈ I,

that is, inequality (.) is reversed, here we used the Cauchy inequality

(∫ b

a
fg

)

≤
∫ b

a
f 

∫ b

a
g.

Therefore, p is quasi-log convex on I .
Unfortunately, we have not found the connection between quasi-log concavity and β-log

concavity, where β > .
Based on the above analysis, we have reason to propose a conjecture (abbreviated as

quasi-log concavity conjecture) as follows.

Conjecture . (Quasi-log concavity conjecture) Suppose that the function p : I → (,∞)
is twice continuously differentiable. If p is log concave, then p is quasi-log concave. Here I
is an interval.

We have done a lot of experiments with mathematical software to verify the correctness
of Conjecture ., but did not find a counter-example.
We remark that similar conceptsmay be defined for sequences {xn}∞n= ⊆ (,∞).We first

define

x′
n � xn+ – xn, ∀n ∈N� {, , . . .},∫ b

a
xn �

∑
a≤n<b

xn, ∀a,b ∈ N,a < b,

Gxn [a,b]�
(∫ b

a
xn

)(
x′
b – x′

a
)
– (xb – xa), ∀a,b ∈N,a < b,

the sequence {xn}∞n= ⊆ (,∞) is called a log-concave sequence if

xaxa+ – xa+ ≤ , ∀a ∈N, (.)
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and is called quasi-log concave if

Gxn [a,b]≤ , ∀a,b ∈N,a < b. (.)

Set b = a+  in (.). Then (.) can be rewritten as (.). Hence for the sequence {xn}∞n= ⊆
(,∞), quasi-log concavity implies log concavity. Similarly, we can define a log-convex se-
quence and quasi-log convexity of a sequence. We expect inter-relations between these
concepts but they will be dealt with elsewhere.
In this paper, we are concerned with Conjecture . and demonstrate the applications

of our results in the analysis of variance and the generalized hierarchical teaching model
with generalized traditional teaching model. Ourmotivation is to study several interesting
problems in statistics.
In Section , we take up Conjecture .. In Section , we give several illustrative exam-

ples. In Section , we prove that the probability density function of the k-normal distribu-
tion is quasi-log concave. In Section , we demonstrate the applications of these results,
we show that the generalized hierarchical teaching model is normally better than the gen-
eralized traditional teaching model (see Remark .), and we point out the significance
of quasi-log concavity in the analysis of variance and the generalized traditional teaching
model.

2 Study of Conjecture 1.1
For Conjecture ., we have the following five theorems.

Theorem . Let the function p : I → (,∞) be twice continuously differentiable, log con-
cave and monotone. If

 < sup
t∈I

{∣∣∣∣(logp)′∣∣ –√
–(logp)′′

∣∣} ≤ inf
t∈I

{∣∣(logp)′∣∣ +√
–(logp)′′

}
, (.)

then p is quasi-log concave.

Proof Since the function p is log concave, we have

–(logp)′′ = –
[
logp(t)

]′′ ≥ , ∀t ∈ I,

so inequality (.) is well defined.
Without loss of generality, we may assume that

a,b ∈ I, a < b.

Note that for any positive real number λ and any real numbers x, y, we have the inequality

xy≤
(

λx + y
λ

)

, (.)

the equality holds if and only if λx = y.

http://www.journalofinequalitiesandapplications.com/content/2014/1/339
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According to inequality (.), there exists a positive real number λ such that

 < sup
t∈I

{∣∣∣∣(logp)′∣∣ –√
–(logp)′′

∣∣} ≤ λ ≤ inf
t∈I

{∣∣(logp)′∣∣ +√
–(logp)′′

}
. (.)

From (.) we know that for the positive real number λ, we have

λp(t) – λ
∣∣p′(t)

∣∣ + p′′(t) ≤ , ∀t ∈ I, (.)

and

λp(t) + λ
∣∣p′(t)

∣∣ + p′′(t)≥ , ∀t ∈ I. (.)

Indeed, since

(logp)′ =
p′

p
, (logp)′′ =

pp′′ – (p′)

p
,

p′′

p
=

[
(logp)′

] + (logp)′′, (.)

inequality (.) is equivalent to the inequalities

∣∣(logp)′∣∣ –√
–(logp)′′ ≤ λ ≤ ∣∣(logp)′∣∣ +√

–(logp)′′, ∀t ∈ I, (.)

and inequality (.) is equivalent to the inequalities

λ ≥ –
[∣∣(logp)′∣∣ –√

–(logp)′′
]
, ∀t ∈ I, (.)

or

λ ≤ –
[∣∣(logp)′∣∣ +√

–(logp)′′
]
, ∀t ∈ I. (.)

Hence if inequalities (.) hold, then both inequality (.) and inequality (.) hold. That
is to say, inequalities (.) and (.) are equivalent to inequalities (.).
Since p : I → (,∞) is monotonic, we obtain that

(∫ b

a
p′

)

=
(∫ b

a

∣∣p′∣∣)

. (.)

Combining with (.), (.), (.) and (.), we get

∫ b

a
p
∫ b

a
p′′ –

(∫ b

a
p′

)

≤
(

λ ∫ b
a p +

∫ b
a p′′

λ

)

–
(∫ b

a
p′

)

=
(∫ b

a

λp + p′′

λ

)

–
(∫ b

a

∣∣p′∣∣)

=
(∫ b

a

λp + p′′

λ
+

∫ b

a

∣∣p′∣∣)(∫ b

a

λp + p′′

λ
–

∫ b

a

∣∣p′∣∣)
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=


λ

[∫ b

a

(
λp + λ

∣∣p′∣∣ + p′′)][∫ b

a

(
λp – λ

∣∣p′∣∣ + p′′)]

≤ .

This means that inequality (.) holds.
The proof of Theorem . is completed. �

Corollary . Let the function p : [α,β]→ (,∞) be thrice continuously differentiable and
log concave. If

p′ ≥ , p′′ > , (logp)′′′ ≤ –
(√

–(logp)′′
), ∀x ∈ [α,β], (.)

then the function p : [α,β]→ (,∞) is quasi-log concave.

Proof Let

ϕ =
∣∣∣∣(logp)′∣∣ –√

–(logp)′′
∣∣, ψ =

∣∣(logp)′∣∣ +√
–(logp)′′.

From (.), we have

ϕ = (logp)′ –
√
–(logp)′′ =

p′ –
√
(p′) – pp′′

p
> ,

ψ = (logp)′ +
√
–(logp)′′ ≥ ϕ > ,

dϕ
dx

= (logp)′′ +
(logp)′′′


√
–(logp)′′

≤ ,

dψ
dx

= (logp)′′ –
(logp)′′′


√
–(logp)′′

≥ ,

and

 < ϕ(x)≤ ϕ(α)≤ ψ(α)≤ ψ(x), ∀x ∈ [α,β],

hence

 < sup
x∈[α,β]

{∣∣∣∣(logp)′∣∣ –√
–(logp)′′

∣∣} = ϕ(α)

≤ ψ(α) = inf
x∈[α,β]

{∣∣(logp)′∣∣ +√
–(logp)′′

}
.

By Theorem ., the function p : [α,β] → (,∞) is quasi-log concave. This ends the
proof. �

Theorem . Let the function p : [α,β]→ (,∞) be twice continuously differentiable and
log concave. If

(β – α) sup
x∈[α,β]

{∣∣(logp(x))′′∣∣} –  inf
x∈[α,β]

{∣∣(logp(x))′′∣∣} ≤ , (.)

then p : [α,β]→ (,∞) is quasi-log concave.
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Proof Now we prove that (.) holds as follows.
Without loss of generality, we assume that a,b ∈ [α,β] and a < b. Note that

Gp[a,b]�
∫ b

a
p
∫ b

a
p′′ –

(∫ b

a
p′

)

,

∂Gp[a,b]
∂b

= p(b)
∫ b

a
p′′ + p′′(b)

∫ b

a
p – p′(b)

∫ b

a
p′,

and

∂Gp[a,b]
∂b ∂a

= –p(b)p′′(a) – p′′(b)p(a) + p′(b)p′(a).

According to Lagrange mean value theorem, there are two real numbers a∗, b∗,

a∗,b∗ ∈ I and a < a∗ < b∗ < b,

such that

Gp[a,b]
b – a

=
Gp[a,b] –Gp[a,a]

b – a
=

∂Gp[a,b∗]
∂b∗

,

and

∂Gp[a,b∗]
∂b∗

a – b∗
=

∂Gp[a,b∗]
∂b∗ – ∂Gp[b∗ ,b∗]

∂b∗
a – b∗

=
∂Gp[a∗,b∗]

∂b∗ ∂a∗
,

hence

Gp[a,b] = (b – a)(b∗ – a)
[
p(b∗)p′′(a∗) + p′′(b∗)p(a∗) – p′(b∗)p′(a∗)

]
. (.)

From (.) and the Lagrange mean value theorem, we get

p(b∗)p′′(a∗) + p′′(b∗)p(a∗) – p′(b∗)p′(a∗)

= p(a∗)p(b∗)
{[(

logp(b∗)
)′ –

(
logp(a∗)

)′] + (
logp(a∗)

)′′ +
(
logp(b∗)

)′′}
= p(a∗)p(b∗)

{[
(b∗ – a∗)

(
logp(ξ )

)′′] + (
logp(a∗)

)′′ +
(
logp(b∗)

)′′}
≤ p(a∗)p(b∗)

{
(β – α)

[(
logp(ξ )

)′′] + (
logp(a∗)

)′′ +
(
logp(b∗)

)′′}
= p(a∗)p(b∗)

{
(β – α)

[(
logp(ξ )

)′′] – ∣∣(logp(a∗)
)′′∣∣ – ∣∣(logp(b∗)

)′′∣∣}
≤ p(a∗)p(b∗)

[
(β – α) sup

x∈[α,β]

{∣∣(logp(x))′′∣∣} –  inf
x∈[α,β]

{∣∣(logp(x))′′∣∣}]

≤ ,

i.e.,

p(b∗)p′′(a∗) + p′′(b∗)p(a∗) – p′(b∗)p′(a∗) ≤ , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/339
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where

α ≤ a < a∗ < ξ < b∗ < b≤ β . (.)

Combining with (.), (.) and (.), we get inequality (.).
This completes the proof of Theorem .. �

Theorem . Let the function ϕ : (α,β)→ (–∞,∞) be thrice continuously differentiable.
If

ϕ′′(x) > , ϕ′(x)ϕ′′(x) – ϕ′′′(x) ≥ , ∀x ∈ (α,β), (.)

then the function

p : (α,β)→ (,∞), p(x)� ce–ϕ(x), c > ,

is quasi-log concave.

Proof Let

Gp[a,b]�
∫ b

a
p
∫ b

a
p′′ –

(∫ b

a
p′

)

.

We just need to show that

Gp[a,b] ≤ , ∀a,b ∈ (α,β). (.)

Since

Gp[a,b] ≡Gp[b,a], Gp[a,a] = , ∀a,b ∈ (α,β),

without loss of generality, we can assume that

α < b < a < β , c = , (.)

and a is a fixed constant.
Note that

logp(x) = –ϕ,
d logp(x)

dx
=
p′

p
= –ϕ′,

and

d logp(x)
dx

=
pp′ – (p′)

p
= –ϕ′′.

Hence

p′(x) = –ϕ′p, ∀x ∈ (α,β), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/339
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and

p′′(x) =
[(

ϕ′) – ϕ′′]p, ∀x ∈ (α,β). (.)

From

∂Gp[a,b]
∂b

= p(b)
∫ b

a
p′′ + p′′(b)

∫ b

a
p – p′(b)

∫ b

a
p′,

(.) and (.), we may see that

∂Gp[a,b]
∂b

= p(b)
{∫ b

a
p′′ +

[(
ϕ′(b)

) – ϕ′′(b)
]∫ b

a
p + ϕ′(b)

∫ b

a
p′

}
. (.)

Let

F(a,b)� 
p(b)

∂Gp[a,b]
∂b

=
∫ b

a
p′′ +

[(
ϕ′(b)

) – ϕ′′(b)
]∫ b

a
p + ϕ′(b)

∫ b

a
p′. (.)

Then

∂F(a,b)
∂b

= p′′(b) +
[(

ϕ′(b)
) – ϕ′′(b)

]
p(b) +

[
ϕ′(b)ϕ′′(b) – ϕ′′′(b)

]∫ b

a
p

+ 
[
ϕ′′(b)

∫ b

a
p′ + ϕ′(b)p′

]

= 
[(

ϕ′(b)
) – ϕ′′(b)

]
p(b) +

[
ϕ′(b)ϕ′′(b) – ϕ′′′(b)

]∫ b

a
p

+ 
{
ϕ′′(b)

[
p(b) – p(a)

]
–

(
ϕ′(b)

)p(b)}
=

[
ϕ′(b)ϕ′′(b) – ϕ′′′(b)

] ∫ b

a
p – ϕ′′(b)p(a),

i.e.,

∂F(a,b)
∂b

=
[
ϕ′(b)ϕ′′(b) – ϕ′′′(b)

]∫ b

a
p – ϕ′′(b)p(a). (.)

Based on assumption (.),
∫ b
a p <  and (.), we have

∂F(a,b)
∂b

< , ∀b ∈ (α,a). (.)

From (.), (.) and (.), we have

F(a,b) > F(a,a) = ,
∂Gp[a,b]

∂b
> . (.)

By (.) and (.), we get

Gp[a,b] <Gp[a,a] = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/339
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That is to say, inequality (.) holds.
We remark that the equality in (.) holds if and only if a = b.
The proof of Theorem . is completed. �

Theorem . Let the function ϕ : (α,β) → (–∞,∞) be four times continuously differen-
tiable. If

ϕ′′(x) > , 
[
ϕ′′(x)

] – ϕ()(x)ϕ′′(x) +
[
ϕ′′′(x)

] ≥ , ∀x ∈ (α,β), (.)

and

–∞ ≤ Gp[α,β]�
∫ β

α

p
∫ β

α

p′′ –
(∫ β

α

p′
)

≤ , (.)

then the function

p : (α,β)→ (,∞), p(x)� ce–ϕ(x), c > ,

is quasi-log concave, where c is a constant.

In order to prove Theorem ., we need the following lemma.

Lemma . Under the assumptions of Theorem ., if

α < a < b < β∗ < β , (.)

then we have

Gp[a,b] ≤max
{
,Gp[a,β∗]

}
. (.)

Proof Without loss of generality, we can assume that c =  and a is a fixed constant.
We continue to use the proof of Theorem .. Note that equation (.) can be rewritten

as

∂F(a,b)
∂b

= ϕ′′(b)
(∫ b

a
p
)
F∗(a,b), (.)

where

F∗(a,b)� ϕ′(b) –
ϕ′′′(b)
ϕ′′(b)

–
p(a)∫ b

a p
. (.)

Based on assumption (.),
∫ b
a p >  and (.), we have

∂F∗(a,b)
∂b

=
[ϕ′′(b)] – ϕ()(b)ϕ′′(b) + [ϕ′′′(b)]

[ϕ′′(b)]

+
p(a)p(b)
(
∫ b
a p)

> , ∀b ∈ (a,β∗), (.)

which means that F∗(a,b) is strictly increasing for the variable b ∈ (a,β∗).

http://www.journalofinequalitiesandapplications.com/content/2014/1/339


Wen et al. Journal of Inequalities and Applications 2014, 2014:339 Page 11 of 30
http://www.journalofinequalitiesandapplications.com/content/2014/1/339

From (.), we may see that

lim
b→a+

F∗(a,b) = F∗(a,a+) = –∞. (.)

We prove inequality (.) in two cases (A) and (B).
(A) Assume that

F∗(a,β∗) > . (.)

By (.), (.) and the intermediate value theorem, there exists only one number b∗ ∈
(a,β∗) such that

F∗(a,b∗) = . (.)

From (.) and (.), we get

a < b < b∗ ⇒ F∗(a,b) < F∗(a,b∗) =  ⇒ ∂

∂b
F(a,b) < ,

and

b∗ < b < β∗ ⇒ F∗(a,b) > F∗(a,b∗) =  ⇒ ∂

∂b
F(a,b) > ,

hence F(a,b) is strictly decreasing if b ∈ (a,b∗] and strictly increasing if b ∈ [b∗,β∗).
If F(a,β∗) ≤ , since F(a,a) = , we have

a < b ≤ b∗ ⇒ F(a,b) < F(a,a) = ,

b∗ ≤ b < β∗ ⇒ F(a,b)≤ F(a,β∗) ≤ ,

F(a,b) =


p(b)
∂Gp[a,b]

∂b
≤ , ∀b ∈ (a,β∗),

∂Gp[a,b]
∂b

≤ , ∀b ∈ (a,β∗),

and

Gp[a,b] ≤Gp[a,a] = , ∀b ∈ (a,β∗).

This means that inequality (.) holds.
Now we assume that

F(a,β∗) > . (.)

Note that F(a,b) is strictly decreasing if b ∈ (a,b∗], we have

b∗ ∈ (a,b∗] ⇒ F(a,b∗) < F(a,a) = . (.)
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By (.), (.), F(a,b) is strictly increasing if b ∈ [b∗,β∗) and the continuity, we know
that there exists a unique real number b∗ ∈ (b∗,β∗) such that

F
(
a,b∗) = . (.)

Since

a < b ≤ b∗ ⇒ F(a,b) < F(a,a) =  ⇒ ∂

∂b
Gp[a,b] = p(b)F(a,b) < ,

b∗ < b < b∗ ⇒ F(a,b) < F
(
a,b∗) =  ⇒ ∂

∂b
Gp[a,b] = p(b)F(a,b) < ,

a < b < b∗ ⇒ ∂

∂b
Gp[a,b] < ,

and

b∗ < b < β ⇒ F(a,b) > F
(
a,b∗) =  ⇒ ∂

∂b
Gp[a,b] = p(b)F(a,b) > ,

we know that Gp[a,b] is strictly decreasing if b ∈ (a,b∗] and strictly increasing if b ∈
[b∗,β∗), so that

Gp[a,b] ≤max
{
Gp[a,a],Gp[a,β∗]

}
=max

{
,Gp[a,β∗]

}
. (.)

This means that inequality (.) also holds.
(B) Assume that

F∗(a,β∗) ≤ . (.)

Since F∗(a,b) is strictly increasing for the variable b ∈ (a,β∗), we have

F∗(a,b) < F∗(a,β∗) ≤ , ∀b ∈ (α,β∗),

∂F(a,b)
∂b

= ϕ′′(b)
(∫ b

a
p
)
F∗(a,b)≤ , ∀b ∈ (α,β∗),

F(a,b)≤ F(a,a) = , ∀b ∈ (α,β∗),

∂Gp[a,b]
∂b

= p(b)F(a,b)≤ , ∀b ∈ (α,β∗),

and

Gp[a,b] ≤Gp[a,a] =  ≤ max
{
,Gp[a,β∗]

}
, ∀b ∈ (α,β∗).

That is to say, inequality (.) still holds.
The proof of Lemma . is completed. �
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The proof of Theorem . is now relatively easy.

Proof of Theorem . We just need to show that (.) holds. Without loss of generality,
we assume that

α < a < b < β , c = . (.)

Let α∗,β∗ ∈ (α,β) such that

α < α∗ < a < b < β∗ < β . (.)

By Lemma ., inequality (.) holds.
We define the auxiliary function p∗ as follows:

p∗ : (–β , –α)→ (,∞), p∗(x)� ce–ϕ(–x), c > .

Then, by (.), we have

[
ϕ(–x)

]′′ = ϕ′′(–x) > , ∀x ∈ (–β , –α),[
ϕ(–x)

]′′′ = –ϕ′′′(–x),
[
ϕ(–x)

]() = ϕ()(–x), ∀x ∈ (–β , –α),

and


{[

ϕ(–x)
]′′} – [

ϕ(–x)
]()[

ϕ(–x)
]′′ +

{[
ϕ(–x)

]′′′}
= 

[
ϕ′′(–x)

] – ϕ()(–x)ϕ′′(–x) +
[
ϕ′′′(–x)

]
≥ , ∀x ∈ (–β , –α).

According to Lemma . and

–β < –β∗ < –a < –α∗ < –α,

we get

Gp∗ [–β∗, –a] ≤max
{
,Gp∗ [–β∗, –α∗]

}
. (.)

Since

Gp∗ [–b, –a] =
∫ –a

–b
p(–x) dx

∫ –a

–b
p′′(–x) dx –

[∫ –a

–b
p′(–x) dx

]

≡Gp[a,b],

we have

Gp∗ [–β∗, –a] =Gp[a,β∗], Gp∗ [–β∗, –α∗] =Gp[α∗,β∗],

and inequality (.) can be rewritten as

Gp[a,β∗] ≤max
{
,Gp[α∗,β∗]

}
. (.)
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Combining with inequalities (.) and (.), we get

Gp[a,b] ≤max
{
,Gp[a,β∗]

} ≤max
{
,Gp[α∗,β∗]

}
. (.)

In (.), set α∗ → α, β∗ → β , we get

Gp[a,b] ≤max
{
,Gp[α,β]

}
. (.)

According to conditions (.) and (.), inequality (.) holds.
This completes the proof of Theorem .. �

Theorem . Let the function ϕ : (α,β) → (–∞,∞) be four times continuously differen-
tiable. If

lim
x→β

ϕ(x) =∞, lim
x→β

ϕ′(x)
eϕ(x) = , lim

x→β

[ϕ′(x)]

ϕ′′(x)eϕ(x) = ,
∫ β

α

p < ∞, (.)

and (.) holds, then the function

p : (α,β)→ (,∞), p(x)� ce–ϕ(x), c > ,

is quasi-log concave.

Proof We just need to show that (.) holds. Without loss of generality, we assume that

α < a < b < β , c = . (.)

Set β∗ → β in Lemma ., we have

Gp[a,b] ≤max
{
,Gp[a,β]

}
. (.)

To complete the proof of inequality (.), by (.), we just need to show that

Gp[a,β]≤ , ∀a ∈ (α,β). (.)

Now, we believe that the real number a is variable. By condition (.), we have

p′(β)� lim
x→β

p′(x) = , p(β)� lim
x→β

p(x) = 

and

Gp[a,β] =
(∫ β

a
p
)[

p′(β) – p′(a)
]
–

[
p(β) – p(a)

]

= –p′(a)
∫ β

a
p –

[
p(a)

]

= p(a)
[
ϕ′(a)

∫ β

a
p – p(a)

]
,
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i.e.,

Gp[a,β] = p(a)φ(a), (.)

where

φ(a)� ϕ′(a)
∫ β

a
p – p(a), a ∈ (α,β). (.)

If ϕ′(a)≤ , then φ(a) < , (.) holds by (.). Here we assume that ϕ′(a) > .
Note that

dφ(a)
da

= ϕ′′(a)
∫ β

a
p – ϕ′(a)p(a) – p′(a)

= ϕ′′(a)
∫ β

a
p

> .

Since

ϕ′′(x) > , ∀x ∈ (α,β),

the limit

lim
a→β

ϕ′(a)

exists.
If

 < ϕ′(a)≤ lim
a→β

ϕ′(a) <∞,

from
∫ β

α
p < ∞, we have

lim
a→β

∫ β

a
p = lim

a→β

(∫ β

α

p –
∫ a

α

p
)
=  (.)

and

lim
a→β

ϕ′(a)
∫ β

a
p = . (.)

If

lim
a→β

ϕ′(a) = ∞,
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then, by (.), (.) and L’Hospital’s rule, we have

lim
a→β

ϕ′(a)
∫ β

a
p = lim

a→β

∫ β

a p
[ϕ′(a)]–

= lim
a→β

(d
∫ β

a p)/da
(d[ϕ′(a)]–)/da

= lim
a→β

–p(a)
–[ϕ′(a)]–ϕ′′(a)

= lim
x→β

[ϕ′(x)]

ϕ′′(x)eϕ(x)

= ,

that is to say, (.) also holds. Hence

φ(a) < φ(β) = lim
a→β

[
ϕ′(a)

∫ β

a
p – p(a)

]
= lim

a→β
ϕ′(a)

∫ β

a
p = .

By (.), inequality (.) holds.
The proof of Theorem . is completed. �

3 Four illustrative examples
In order to illustrate the connotation of quasi-log concavity, we give four examples as fol-
lows.

Example . The function

p : [,π ] → (,∞), p(x)� exp(sinx)

is quasi-log concave.

Proof Indeed, if

x ∈ I∗ �
[
,

π



]
or

[
π


,π

]
,

then p(x) is twice continuous differentiable and log concave with monotonous function,
and

∣∣∣∣(logp)′∣∣ –√
–(logp)′′

∣∣ = ∣∣| cosx| –√
sinx

∣∣ ≤max
{| cosx|,√sinx

} ≤ ,∣∣(logp)′∣∣ +√
–(logp)′′ = | cosx| +√

sinx ≥ | cosx| + sinx =
√
 + | sinx| ≥ ,

hence

 < sup
x∈I∗

{∣∣∣∣(logp)′∣∣ –√
–(logp)′′

∣∣} =  = inf
x∈I∗

{∣∣(logp)′∣∣ +√
–(logp)′′

}
.

By Theorem ., the function p(x) is quasi-log concave. That is to say, for any a,b ∈ I∗,
inequality (.) holds.
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Let

 ≤ a <
π


< b ≤ π .

Since

p′(b) <  < p′(a),

inequality (.) still holds. The proof is completed. �

Example . The function

p : (,∞)→ (,β), p(x)� exp(arctanx)

is quasi-log concave, where

β =


(
 +  √ + √

)
= . . . .

is the root of the equation

x

( + x)
–
x[ x

(+x) –
x

(+x) ]


( + x)
+

[
–

x

( + x)
+


( + x)

]

= . (.)

Proof Indeed, in Theorem ., set ϕ(x) = – arctanx, then

p(x) = exp
[
–ϕ(x)

]
, ∀x ∈ (,β).

By means of Mathematica software, we get

ϕ′′(x) =
x

( + x)
≥ , ∀x ∈ (,β),


[
ϕ′′(x)

] – ϕ()(x)ϕ′′(x) +
[
ϕ′′′(x)

]
=

x

( + x)
–
x[ x

(+x) –
x

(+x) ]


( + x)
+

[
–

x

( + x)
+


( + x)

]

≥ , ∀x ∈ (,β],

the equation holds if and only if x = β .
Since

 <
∫ β


p <∞,

and

–∞ ≤ Gp[,β]�
∫ β


p
∫ β


p′′ –

(∫ β


p′

)

= –. . . . < ,
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so (.) and (.) hold. By Theorem ., the function p(x) is quasi-log concave. This
ends the proof. �

Example . The function

p : (,∞)→ (,∞), p(x)� xα ,

is quasi-log concave, where α > .

Proof Note that inequality (.) can be rewritten as

α

α + 
(
bα+ – aα+)(bα– – aα–) – (

bα – aα
) ≤ , ∀a,b ∈ I. (.)

If  < α ≤ , then

α

α + 
(
bα+ – aα+)(bα– – aα–) ≤ ,

inequality (.) holds. Let α > . Then

(
bα+ – aα+)(bα– – aα–) ≥ .

Since

 <
α

α + 
< ,

and

(
bα+ – aα+)(bα– – aα–) – (

bα – aα
) = –aα–bα–(a – b) ≤ ,

we have

α

α + 
(
bα+ – aα+)(bα– – aα–) – (

bα – aα
)

≤ (
bα+ – aα+)(bα– – aα–) – (

bα – aα
)

≤ ,

that is to say, inequality (.) still holds. The proof is completed. �

Example . The function

p : (,∞)→ (,∞), p(x)� exp
(
–ex

)
is quasi-log concave.

Proof Indeed,

 <
∫ ∞


p = . . . . < ∞,

ϕ(x) = ex, lim
x→∞ϕ(x) = lim

x→∞ ex =∞,
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and

lim
x→∞

ϕ′(x)
eϕ(x) = lim

x→∞
[ϕ′(x)]

ϕ′′(x)eϕ(x) = lim
x→∞

ex

exp(ex)
= ,

hence equations in (.) hold. Since

ϕ′′(x) = ex > , ∀x ∈ (,∞),

and


[
ϕ′′(x)

] – ϕ()(x)ϕ′′(x) +
[
ϕ′′′(x)

] = ex > , ∀x ∈ (,∞),

inequalities in (.) hold. By Theorem ., the function p is quasi-log concave. This ends
the proof. �

In the next section, we demonstrate the applications of Theorem . and Theorem .
in the theory of k-normal distribution.

4 Quasi-log concavity of pdf of k-normal distribution
The normal distribution (see [–]) is considered as the most prominent probability
distribution in statistics. Besides the important central limit theorem that says the mean
of a large number of random variables drawn from a common distribution, under mild
conditions, is distributed approximately normally, the normal distribution is also tractable
in the sense that a large number of related results can be derived explicitly and that many
qualitative properties may be stated in terms of various inequalities.
But perhaps one of the main practical uses of the normal distribution is to model em-

pirical distributions of many different random variables encountered in practice. In such
a case, a possible generalization would be families of distributions having more than two
parameters (namely the mean and the standard variation) which may be used to fit em-
pirical distributions more accurately. Examples of such generalizations are the normal-
exponential-gamma distribution which contains three parameters and the Pearson dis-
tribution which contains four parameters for simulating different skewness and kurtosis
values.
In this section, we first introduce another generalization of the normal distribution as

follows: If the probability density function of the random variable X is

p(x;μ,σ ,k)� k–k–

(k–)σ
exp

(
–

|x –μ|k
kσ k

)
, (.)

then we say that the random variable X follows the k-normal distribution or generalized
normal distribution (see [] or []), denoted by X ∼Nk(μ,σ ), where

x ∈ (–∞,∞), μ ∈ (–∞,∞), σ ∈ (,∞), k ∈ (,∞),

and (s) is the well-known gamma function.
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Figure 1 The graphs of the functions
p(x; 0, 1, 3/2), p(x; 0, 1, 2) and p(x; 0, 1, 5/2), where
–4 ≤ x ≤ 4.

Figure 2 The graph of the function p(x; 0, 1,k),
where –4 ≤ x ≤ 4, 1 < k ≤ 3.

For the probability density function p(x;μ,σ ,k) of k-normal distribution, the graphs
of the functions p(x; , , /), p(x; , , ) and p(x; , , /) are depicted in Figure  and
p(x; , ,k) is depicted in Figure .
Clearly, when k = , p(x;μ,σ ,k) is just the standard normal distribution N(μ,σ ) with

mean μ and standard deviation σ , and it is easily checked that p(x; , ,k) is symmetric
about  and that

p(x; , ,k) = σp(σx +μ;μ,σ ,k), ∀x ∈ (–∞,∞). (.)

According to (.), we get (see () in [])

p
(
x;μ,

σ

s/s
, s

)
=

s
σ(/s)

exp

(
–
∣∣∣∣x –μ

σ

∣∣∣∣
s)
. (.)

According to the results of [], we may easily show that (see [], p.)

p(x;μ,σ ,k) > ,
∫ ∞

–∞
p(x;μ,σ ,k) dt = , (.)

EX = μ, (.)

E|X – EX|k = σ k , (.)
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and

E(X – EX) =
kk–(k–)

(k–)
σ 

⎧⎪⎪⎨
⎪⎪⎩
> σ ,  < k < ,

= σ , k = ,

< σ , k > .

(.)

Here μ, σ k and σ are themathematical expectation, k-order absolute central moment and
k-order mean absolute central moment of the random variable X, respectively.
We remark here if

p(x) = exp

[
–
(x –μ)k

kσ k

]
, x ∈ (μ,∞),

then

w(x)� –p′
(x) =

(x –μ)k–

σ k exp

[
–
(x –μ)k

kσ k

]
> ,

and ∫ ∞

μ

w(x) dx = ,

where w(x) is the probability density function of a Weibull distribution. Therefore, there
are close relationships between the k-normal distribution and the Weibull distribution.
Next, we study the quasi-log concavity of the probability density function of k-normal

distribution.

Theorem . The probability density function p(x;μ,σ ,k) of the k-normal distribution is
quasi-log concave on (–∞,∞) for all μ ∈ (–∞,∞), σ ∈ (,∞) and k ∈ (,∞).

Proof In view of (.), we may assume that

(μ,σ ) = (, ).

Let for convenience that

p(x)� p(x; , ,k) = c exp
[
–ϕ(x)

]
,

where

c =
k–k–

(k–)
> , ϕ(x) =

|x|k
k

.

Then

Gp[a,a] =  =Gp[b,b],

Gp[a,b] =Gp[b,a] and Gp[a,b] =Gp[–b, –a],
(.)

where the last equality holds because p is even.
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Now we show that

Gp[a,b] ≤ , ∀a,b ∈ (–∞,∞) (.)

in two steps (A) and (B).
(A) We first consider the case where k ≥ .
By (.) and continuity, without loss of generality, we may assume that either

(i):  < a < b, or (ii): a <  < b.

We first consider the case (i):  < a < b.
By (.), we have

∫ ∞


p =



< ∞.

Since

lim
x→∞ϕ(x) = lim

x→∞xk– =∞, lim
x→∞

ϕ′(x)
eϕ(x) = lim

x→∞
xk–

exp( xkk )
= ,

and

lim
x→∞

[ϕ′(x)]

ϕ′′(x)eϕ(x) = lim
x→∞

xk–

(k – )xk– exp( xkk )
= ,

equations in (.) hold. Since

ϕ′′(x) = (k – )xk– > , ∀x ∈ (,∞),

and


[
ϕ′′(x)

] – ϕ()(x)ϕ′′(x) +
[
ϕ′′′(x)

]
= (k – )xk– – (k – )(k – )(k – )xk– + (k – )(k – )xk–

= (k – )xk– + (k – )(k – )xk–

> , ∀x ∈ (,∞),

inequalities in (.) hold. By Theorem ., inequality (.) holds.
Next, we consider the case (ii): a <  < b.
Since

p′(b) <  < p′(a),

we have

Gp[a,b] =
(∫ b

a
p
)[

p′(b) – p′(a)
]
–

(∫ b

a
p′

)

≤
(∫ b

a
p
)[

p′(b) – p′(a)
]
< ,

that is, inequality (.) still holds.
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(B) Next we assume that  < k < .
Since

ϕ′′(x) = (k – )xk– > , ∀x ∈ (,∞),

and

ϕ′(x)ϕ′′(x) – ϕ′′′(x) = (k – )xk– + (k – )( – k)xk– ≥ , ∀x ∈ (,∞),

inequalities in (.) hold. By Theorem ., inequality (.) holds.
Based on the above analysis, inequality (.) is proved.
The proof of Theorem . is completed. �

In the next section, we demonstrate the applications of Theorem . in the generalized
hierarchical teaching model and the generalized traditional teaching model.

5 Applications in statistics
5.1 Hierarchical teaching model and truncated random variable
We first introduce the hierarchical teaching model as follows.
The usual teaching model assumes that the math scores of each student in a class are

treated as a continuous random variable, written as ξI , which takes on some value in the
real interval I = [a,am], and its probability density function pI : I → (,∞) is continuous.
Suppose we now divide the students intom classes, written as

Class[a,a],Class[a,a], . . . ,Class[am–,am],

where

 ≤ a ≤ a ≤ · · · ≤ am, m ≥ ,

and

ai,ai+, i = , , . . . ,m – ,

are the lowest and the highest allowable scores of the students of Class[ai,ai+], respec-
tively. We introduce a set

HTM{a, . . . ,am,pI} �
{
Class[a,a],Class[a,a], . . . ,Class[am–,am],pI

}
called a hierarchical teachingmodel (see [–]) such that the traditional teachingmodel,
denoted by HTM{a,am,pI}, is just a special HTM{a, . . . ,am,pI}, wherem = .
If a = –∞ and am =∞, thenHTM{–∞, . . . ,∞,pI} andHTM{–∞,∞,pI} are called gen-

eralized hierarchical teaching model and generalized traditional teaching model, respec-
tively.
In order to study the hierarchical teaching model and the traditional teaching model

from the angle of the analysis of variance, we need to recall the definition of truncated
random variable.
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Definition . Let ξI ∈ I be a continuous random variable with continuous probability
density function pI : I → (,∞). If ξJ ∈ J ⊆ I is also a continuous random variable and its
probability density function is

pJ : J → (,∞), pJ (t)�
pI(t)∫
J pI

,

then we call the random variable ξJ a truncated random variable of the random variable
ξI , written as ξJ ⊆ ξI . If ξJ ⊆ ξI and J ⊂ I , then we call the random variable ξJ a proper
truncated random variable of the random variable ξI , written as ξJ ⊂ ξI . Here I and J are
high dimensional intervals.

We point out that a basic property of the truncated random variable is as follows: Let
ξI ∈ I be a continuous random variable with continuous probability density function pI :
I → (,∞). If

ξI∗ ⊆ ξI , ξI∗ ⊆ ξI and I∗ ⊆ I∗,

then ξI∗ ⊆ ξI∗ . If

ξI∗ ⊆ ξI , ξI∗ ⊆ ξI and I∗ ⊂ I∗,

then ξI∗ ⊂ ξI∗ .
Indeed, byDefinition ., the probability density functions of the truncated randomvari-

ables ξI∗ , ξI∗ are

pI∗ : I∗ → (,∞), pI∗ (t) =
pI(t)∫
I∗ pI

,

pI∗ : I∗ → (,∞), pI∗ (t) =
pI(t)∫
I∗ pI

,

respectively. Thus, the probability density function of ξI∗ can be rewritten as

pI∗ : I∗ → (,∞), pI∗ (t) =
pI(t)/

∫
I∗ pI∫

I∗ (pI/
∫
I∗ pI)

=
pI∗ (t)∫
I∗ pI∗

.

Hence

I∗ ⊆ I∗ ⇒ ξI∗ ⊆ ξI∗ and I∗ ⊂ I∗ ⇒ ξI∗ ⊂ ξI∗ .

According to the definitions of the mathematical expectation Eϕ(ξJ ) and the variance
Varϕ(ξJ ) with Definition ., we easily get

Eϕ(ξJ )�
∫
J
pJϕ =

∫
J pIϕ∫
J pI

, (.)

and

Varϕ(ξJ )� E
[
ϕ(ξJ ) – Eϕ(ξJ )

] =
∫
J pIϕ

∫
J pI

–
(∫

J pIϕ∫
J pI

)

, (.)
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where ξJ ⊆ ξI , and the function ϕ : J → (–∞,∞) of the random variable ξJ is continu-
ous.
In the generalized hierarchical teaching model HTM{–∞, . . . ,∞,pI}, the math scores of

each student in Class[ai,ai+] is also a random variable, written as ξ[ai ,ai+]. Since

[ai,ai+]⊆ I, i = , , . . . ,m – ,

so ξ[ai ,ai+] is a truncated random variable of the random variable ξI . Assume that the j – i
classes, i.e.,

Class[ai,ai+],Class[ai+,ai+], . . . ,Class[aj–,aj]

are merged into one, written as Class[ai,aj]. Since [ai,aj] ⊆ I , we know that ξ[ai ,aj] is a
truncated random variable of the random variable ξI , where  ≤ i < j ≤ m. In general, we
have

ξ[ai ,aj] ⊆ ξ[ai′ ,aj′ ] ⊆ ξI , ∀i′, i, j, j′ : ≤ i′ ≤ i < j ≤ j′ ≤m. (.)

In the generalized hierarchical teaching model HTM{–∞, . . . ,∞,pI}, we are concerned
with the relationship between the varianceVar ξ[ai ,aj] and the varianceVar ξI , where  ≤ i <
j ≤m, so as to decide the superiority and inferiority of the hierarchical and the traditional
teaching models.
If

Var ξ[ai ,aj] ≤Var ξI , ∀i, j : ≤ i < j ≤m, (.)

then in view of the usual meaning of the variance, we tend to think that this general-
ized hierarchical teachingmodel is better than the generalized traditional teachingmodel.
Otherwise, this generalized hierarchical teachingmodel is probably not worth promoting,
where I = (–∞,∞).
In this section, one of our purposes is to study the generalized hierarchical teaching

model and the generalized traditional teaching model from the angle of the analysis of
variance so as to decide the superiority and inferiority of the generalized hierarchical and
the generalized traditional teaching models. In particular, we will study the conditions
such that inequality (.) holds (see Theorem .).
In the generalized hierarchical teaching model HTM{–∞, . . . ,∞,pI}, we can choose the

parameters a,a, . . . ,am– ∈ (–∞,∞) such that the ‘variance’

Var(Var ξ[a,a], . . . ,Var ξ[am–,am])

� 
m

m–∑
j=

(
Var ξ[aj ,aj+] –


m

m–∑
i=

Var ξ[ai ,ai+]

)

(.)

of

Var ξ[a,a],Var ξ[a,a], . . . ,Var ξ[am–,am]
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is the minimal by means of mathematical software, its purpose is to make the scores of the
classes

Class[a,a],Class[a,a], . . . ,Class[am–,am]

stable, where a = –∞ and am =∞.

Remark . We remark here if ξI ∈ I is a continuous random variable with continuous
probability density function pI : I → (,∞), then the integration

∫
I pI converges (see []),

and it satisfies the following conditions:

∫
I
pI = , PI(x)� P(ξI < x) =

∫
(–∞,x)∩I

pI , ∀x ∈ I. (.)

We call the function PI : I → [, ] a probability distribution function of the random vari-
able ξI , where PI(x) is the probability of the random event ‘ξI < x’, and I is an interval.

5.2 Applications in the analysis of variance
The analysis of variance is one of the central topics in statistics. Recently, the authors
[] have expanded the connotation of analysis of variance and obtained some interesting
results.
In this section, we point out the significance of quasi-log concavity in the analysis of

variance as follows.

Theorem . Let ξI be a continuous random variable and its probability density function
pI : I → (,∞) be twice continuously differentiable. Then the function pI : I → (,∞) is
quasi-log concave if and only if

 ≤Var
[
(logpI)′(ξ[a,b])

] ≤ –E
[
(logpI)′′(ξ[a,b])

]
, ∀a,b ∈ I,a < b, (.)

where ξ[a,b] ∈ [a,b] is a truncated random variable of the random variable ξI .

Proof By identities (.) and (.) with (.), we get

Var
[
(logpI)′(ξ[a,b])

]
+ E

[
(logpI)′′(ξ[a,b])

]
=Var

(
p′
I

pI

)
+ E

[
pIp′′

I – (p′
I)

pI

]

=

∫ b
a (

p′
I

pI
)pI∫ b

a pI
–

(∫ b
a

p′
I

pI
pI∫ b

a pI

)

+

∫ b
a

pIp′′
I –(p

′
I )


pI
pI∫ b

a pI

=
∫ b
a p′′

I∫ b
a pI

–
(∫ b

a pI ′∫ b
a pI

)

=
∫ b
a pI

∫ b
a p′′

I – (
∫ b
a p′

I)

(
∫ b
a pI)

,
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i.e.,

Var
[
(logpI)′(ξ[a,b])

]
+ E

[
(logpI)′′(ξ[a,b])

]
=

∫ b
a pI

∫ b
a p′′

I – (
∫ b
a p′

I)

(
∫ b
a pI)

. (.)

According to identity (.), we know that inequality (.) can be rewritten as (.).
This completes the proof of Theorem .. �

Remark . According to Theorem ., quasi-log concavity is of great significance in the
analysis of variance.

5.3 Applications in the generalized hierarchical teachingmodel
Nowwe demonstrate the application of Theorem. in the generalized hierarchical teach-
ing model.
In the generalized hierarchical teaching model HTM{–∞, . . . ,∞,pI}, the math scores

of each student are treated as a random variable ξI , where ξI ∈ I = (–∞,∞). By using the
central limit theorem (see []), wemay think that the random variable ξI follows a normal
distribution, that is, ξI ∼ N(μ,σ ), where μ is the average score of the students and σ is
the mean square deviation of the score. Hence

pI(x) =
√
πσ

exp

[
–
(x –μ)

σ 

]
, ∀x ∈ I. (.)

We remark here that if the math scores ξI of each student satisfies

ξI ∈ [, ] and μ ∈ [, ],

then, by (.), we have

P(ξI < ) ≈ , P(ξI > ) ≈ .

Hence we can use the generalized hierarchical teaching model instead of the hierarchical
teaching model, approximately.
Based on the above analysis and Theorem ., we have the following theorem.

Theorem . In the generalized hierarchical teaching model HTM{–∞, . . . ,∞,pI}, as-
sume that ξI ∼N(μ,σ ). Then we have the following inequality:

Var ξ[ai ,aj] ≤Var ξI = σ , ∀i, j : ≤ i < j ≤m. (.)

Proof Note that

pI(t) = p(t;μ,σ , )

is quasi-log concave by Theorem ., hence inequality (.) holds by Theorem ., so we
obtain that

Var
[
(logpI)′(ξ[ai ,aj])

] ≤ –E
[
(logpI)′′(ξ[ai ,aj])

]
. (.)
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Note that

Var(ϕ +C) ≡Var(ϕ), Var(Cϕ) ≡ CVar(ϕ), E(Cϕ) ≡ CE(ϕ),

(logpI)′(ξ[ai ,aj]) = –
ξ[ai ,aj] –μ

σ  , (logpI)′′(ξ[ai ,aj]) = –

σ  , E() = ,

where C is a constant. By (.), we have

Var

(
–

ξ[ai ,aj] –μ

σ 

)
≤ –E

(
–


σ 

)

⇔ 
σ  Var ξ[ai ,aj] ≤


σ  E() ⇔ Var ξ[ai ,aj] ≤Var ξI = σ ,

that is to say, inequality (.) holds.
This completes the proof of Theorem .. �

Remark . According to Theorem ., we may conclude that the generalized hierarchi-
cal teaching model is normally better than the generalized traditional teaching model.

5.4 Applications in the generalized traditional teachingmodel
Next, we demonstrate the applications of Theorem. in the generalized traditional teach-
ing model as follows.
In the generalized traditional teaching modelHTM{–∞,∞,pI}, the math scores of each

student are treated as a random variable ξI , where ξI ∈ I = (–∞,∞). By using the central
limit theorem (see []), we may think that the random variable ξ follows a normal dis-
tribution, that is, ξI ∼ N(μ,σ ), where μ is the average score of the students and σ is the
mean square deviation of the score. If the top and bottom students are insignificant, that
is to say, the variance Var ξI of the random variable ξI is close to , according to Figure 
and Figure  with formula (.), we may think that there is a real number k ∈ (,∞) such
that ξI ∼Nk(μ,σ ). Otherwise, we may think that there is a real number k ∈ (, ) such that
ξI ∼Nk(μ,σ ). We can estimate the number k by means of a sampling procedure.
In the generalized traditional teaching model HTM{–∞,∞,pI}, we may assume that

ξJ ⊂ ξI , ξI ∼Nk(μ,σ ), k > ,

where J = (μ,∞), and μ ∈ (,∞) is the average math score of the students and σ is the k-
order mean absolute central moment of the score. Then the probability density function
of ξJ is that

pJ (t) =
p(x;μ,σ ,k)∫
J p(x;μ,σ ,k)

, ∀x ∈ J .

In the generalized traditional teaching model HTM{–∞,∞,pI}, suppose that the math
score of the student is ξJ . In order to stimulate the learning enthusiasm of students, we
may want to give each student a bonus payment A(ξJ ). The function

A : J → (,∞)

may be regarded as an allowance function.
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In the generalized traditional teachingmodelHTM{–∞,∞,pI}, we define the allowance
function as follows:

A : J → (,∞), A(x)� c(x –μ)k–, c > ,k > . (.)

For the above allowance function (.), we have the following theorem.

Theorem . In the generalized traditional teaching model HTM{–∞,∞,pI}, assume
that

ξJ ⊂ ξI , ξI ∼Nk(μ,σ ), k > .

Then we have the following inequalities:

 ≤Var
[
A(ξ[a,b])

] ≤ cσ kE
[
A′(ξ[a,b])

]
, ∀a,b ∈ J ,a < b. (.)

Here the allowance function A is defined by (.).

Proof By Theorem ., the function p� pJ (t) is quasi-log concave on J . Hence inequalities
(.) hold by Theorem .. Note that

Var(CA) ≡ CVar(A), E(CA) ≡ CE(A),

(logpI)′(ξ[a,b]) = –
(ξ[a,b] –μ)k–

σ k = –


cσ k A(ξ[a,b]),

and

(logpI)′′(ξ[a,b]) = –


cσ k A′(ξ[a,b]),

where C is a constant. By inequalities (.), we get

Var
[
(logpI)′(ξ[a,b])

] ≤ –E
[
(logpI)′′(ξ[a,b])

]
,

Var

[
–


cσ k A(ξ[a,b])

]
≤ –E

[
–


cσ k A′(ξ[a,b])

]
,

and


(cσ k)

Var
[
A(ξ[a,b])

] ≤ 
cσ k E

[
A′(ξ[a,b])

]
.

That is to say, inequalities (.) hold.
This completes the proof of Theorem .. �

Remark . A large number of inequality analysis and statistical theories are used in this
paper. Some theories in the proofs of our results are used in the references [, , ,
–].
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