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Abstract
Zimmermann (Int. J. Gen. Syst. 2:209-215, 1976) first introduced the concept of fuzzy
inequality in the field of linear programming problem (LPP). But this concept is hardly
used in any real life applications of LPP. So, in this paper, a multi-objective multi-item
solid transportation problem (MMSTP) with fuzzy inequality constraints is modeled.
Representing different preferences of the decision maker for transportation, three
different types of models are formulated and analyzed. Fuzzy inequality solid
transportation problem is converted to parameter solid transportation problem by an
appropriate choice of flexible index, and then the crisp solid transportation problem is
solved by the algorithm (Cao in Optimal Models and Methods with Fuzzy Quantities,
2010) for decision values. Fuzzy interactive satisfied method (FISM), global criterion
method (GCM) and convex combination method (CCM) are applied to derive optimal
compromise solutions for MMSTP by using MatLab and Lingo-11.0. The models are
illustrated with numerical examples and some sensitivity analysis is also presented.

Keywords: solid transportation problem; fuzzy inequality; global criterion method;
fuzzy interactive satisfied method; convex combination method

1 Introduction
The solid transportation problem (STP) is a generalization of the traditional transporta-
tion problem in which three-dimensional properties (supply, demand, convenience) are
taken into account in the objective and constraint set instead of source and destination.
The necessity of considering this special type of transportation problem arises when het-
erogeneous conveyances are available for shipment of products. The STP is used in public
distribution systems. In many industrial problems, a homogeneous product is delivered
from its origin to a destination by means of different modes of transport called con-
veyances, such as trucks, cargo flights, goods trains, ships, etc. These conveyances are
taken as the third dimension. A solid transportation problem can be converted to a clas-
sical transportation problem by considering only a single type of conveyance.
The STP was first introduced by Haley [] in . In recent years, there have been

numerous papers in this area. Some papers only minimize the total transportation cost.
For example, Ojha et al. [], Pramanik et al. [] considered an STP for an item with fixed
charge, vehicle cost and price discounted varying charge. However, in practical program-
ming problems, the decision maker (DM) usually needs to optimize several objectives.
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Thus, the DM cannot obtain the optimal values of all the objectives simultaneously. The
growing literature of STP focuses on multiple objective problems, that is, multiple objec-
tive solid transportation problems (MOSTPs). For example, Bit et al. [] used a fuzzy pro-
gramming approach to solve a MOSTP; Ida et al. [] presented a neural network method
to solve a MOSTP; Gao and Liu [] developed two-phase fuzzy algorithms to solve multi-
objective STP; Tao and Xu [] developed a class of roughmultiple objective programming
and its application to a solid transportation problem.
If more than one objective is to be optimized in an STP, then the problem is calledmulti-

objective solid transportation problem (MOSTP). If we considermore than one item, then
it is called multi-item solid transportation problem. If we consider more than one item
and more than one objective at a time in an STP, then it is called a multi-objective multi-
item solid transportation problem (MMSTP). The MMSTP model was given by Kundu
et al. []. Recently, Pramanik et al. [] have developed a multi-objective STP in a fuzzy
random environment.
Nowadays, in a very often changing market, the business of a single item does not pay

much profit to a retailer. For this reason, almost all businessmen in the fields of transporta-
tion (Sancak and Salman []) do the business of several items. Generally, in all the cases
of STP (multi-objective, multi-item and multi-objective multi-item ones), the inequality
has been considered as a general inequality. But we can consider this inequality in the
fuzzy environment named fuzzy inequality [, ]. Fuzzy inequality means it will essen-
tially satisfy that inequality condition. Flexible index is used (Cao []) to convert it into
the general inequality, so that it will give you a chance to choose the appropriate decision
value. Two algorithms were given by Cao [] to find the decision value. We have taken
one of them to find the decision value. That decision value will give us a more general
optimal solution and an optimal value to minimize the objectives.
The following developments aremade in the formulation and solution ofMMSTPmod-

els:
• Various types of examples have been used to illustrate the single-objective fuzzy
inequality constraints.

• MMSTP has been solved in a fuzzy inequality constraint environment.
• Three different soft computing techniques FISM, GCM and CCM have been used to
make the comparison between optimal solutions in multi-objective problems.

• Two different soft-computing tools (MATLAB and LINGO-.) have been used to
solve the examples.

The rest of this paper is organized as follows. In Section , we recall some preliminary
knowledge about fuzzy inequality constraint linear programming. Section  provides the
notation and assumption used throughout this paper. In Section , we formulate multi-
objective multi-item LPP with fuzzy inequality constraint and also provides general infor-
mation about the fuzzy interactive satisfied method, global criterion method and convex
combination method. MMSTP with fuzzy inequality constraints and its two special cases
are developed in Section . In Section we discuss the solution procedure to thosemodels
using the fuzzy interactive satisfied method. A numerical example is solved, and results
obtained using the mentioned techniques are compared in Section . Section  summa-
rizes the paper and also discusses the scope of future work.

http://www.journalofinequalitiesandapplications.com/content/2014/1/338


Chakraborty et al. Journal of Inequalities and Applications 2014, 2014:338 Page 3 of 21
http://www.journalofinequalitiesandapplications.com/content/2014/1/338

2 Preliminaries about fuzzy inequality constraint linear programming
Let us consider the fuzzy inequality constraint linear programming (FICP)

max z = cx

L̃P s.t. Ax� b, ()

x≥ ,

its corresponding parameter linear programming is given by (Cao [])

max z = cx

LPα s.t. Ax ≤ b + ( – α)d, ()

x ≥ ,

where α ∈ [, ] and d ≥ . In the given discussion, we will use xα as an optimal solution,
Bα denotes an optimal basis and zα denotes an optimal value of linear programming (LPα).

Definition . [] Let B be one of the optimal basis matrices of (LPα). If an interval
[α,α] exists, satisfying that B is an optimal basis matrix of (LPα) (∀α ∈ [α,α]) while
B is not an optimal basis matrix for each α /∈ [α,α], we call α and α critical values of
(LPα) and [α,α] a characteristic interval.

Theorem  (LPα) has a finite characteristic interval on the interval [, ].

Theorem  Let B be an optimal basis matrix of (LPα) on a characteristic interval [α,α].
If (B–b)i �=  (≤ i≤m), then

α =max

[
[B–(b + d)]i

[B–b]i
, 

∣∣∣(B–d
)
i <  ( ≤ i≤m)

]
,

α =min

[
[B–(b + d)]i

[B–b]i
, 

∣∣∣(B–d
)
i >  ( ≤ i≤m)

]

are derived, where (B–(b + d))i and (B–d)i are the ith components of B–(b + d) and B–d,
respectively.

Property . Let B be an optimal matrix of (LPα) on the characteristic interval [αi,αj].
Then xα = B–(b + ( – α)d) (αi ≤ α ≤ αj) is a linear vector function about variable α. The
optimal value function zα = CBB–(b + ( – α)d) is a linear function about variable α and
decreases with the increase of variable α.

Property . The optimal value of function zα of (LPα) continues on the interval [, ].

2.1 Algorithm for fuzzy inequality constraint linear programming
Let z be an optimal value of (LP) and z be an optimal value of (LP), d = z – z > .
Based on the above conclusion, the algorithm (Cao []) of fuzzy linear programming is
given as follows.
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Step : Let the optimal solutions of (LP) and (LP) be x and x, the optimal values of
(LP) and (LP) be z and z, and the optimal basis matrix of (LP) be B.

Step : Solve [B–
 (b + ( – α)d)]i = .

Assume the solution as

α,α, . . . ,αn– ( < α < α < · · · < αn– < ).

Let α = , αn = , α = α, k = .
Step : Solve (LPα).

Let the optimal value be Zα . If Zα ≤ Z +dα, turn to Step , otherwise let k = k +,
α = αk , turn to Step .

Step : Solve the optimal decision

α∗ =
Zαk – Zαk– – Zαk–αk + Zαkαk–

Zαk – Zαk– – αkd + αk–d
.

Step : Solve linear programming (LPα∗ ), and we can obtain an optimal solution xα∗ and
an optimal value zα∗ .

Example . Calculate

maxx + x + x

subject to

x + x + x � ,

x + x + x � ,

L̃P x + x � ,

x � ,

x + x � ,

x,x,x ≥ ,

()

where d = (, , , , ).

The corresponding parametric linear programming problem of the above L̃P is pre-
sented as follows:

maxx + x + x

subject to

x + x + x ≤ ,

x + x + x ≤ ,

LPα x + x ≤ ,

x ≤ ,

x + x ≤  + ( – α),

 ≤ α ≤ , x,x,x ≥ .

()
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Now, using algorithm given in Section ., we obtain Z = ., Z =  and d = .
by calculating (LP) and (LP). The inverse of the optimal matrix in (LP) is

B–
 =

⎛⎜⎜⎜⎜⎜⎜⎝
. –.   .
.    –.
–. .   –.

–.    .
–. .   –.

⎞⎟⎟⎟⎟⎟⎟⎠ .

Now, calculating the equations [B–
 (, , , , –α)]i =  (i = , , . . . , ), respectively,

we obtain α = ., α = ., assume α =  and α = .
Now solving (LPα ) we get the optimal solution as x = ., x = . and x = 

and the optimal value as Zα = Z. = ..
Since Z. = . > Z + . ∗ . = ., we must continue to solve the

linear programming (LPα ). By solving (LPα ), we obtain the optimal solution as x = .,
x =  and x =  and the optimal value as Zα = Z. = .
Now Z. =  < Z +.∗ . = ., so we stop here and calculate optimal

decision α∗.
Now

α∗ =
Zα – Zα – Zαα + Zαα

Zα – Zα – αd + αd
= ..

Now calculating (LP.), we obtain the optimal solution as x = ., x = .
and x =  and the optimal value as Z∗

. = ..

3 Notations and assumptions
3.1 Notations
In this solid transportation problem, the following notations are used:

(i) M = number of sources of the transportation problem.
(ii) N = number of destinations of the transportation problem.
(iii) K = number of conveyances, i.e., different modes of transportation.
(iv) api = amount of product available at ith origin for pth item.
(v) bpj = demand at jth destination of pth item.
(vi) ek = conveyances of the transportation problem.
(vii) T = number of items.
(viii) xpijk = the amount to be transported from ith origin to jth destination by means of

kth conveyance of pth item (decision variables).
(ix) Ctp

ijk = per unit transportation cost from ith origin to jth destination by kth
conveyance of pth item and tth objective.

3.2 Assumptions
In this solid transportation problem, the following assumptions are made.

(i) Homogeneous product should be transported from sources to destinations.
(ii) During transportation no items are damaged, i.e., the amount of received items in

destination is the same as the one sent from sources.
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4 Multi-objective multi-item LPP with fuzzy inequality constraint
Consider the following multi-objective linear programming problems with fuzzy con-
straint:⎧⎪⎨⎪⎩

minx C
(p)
l x(p), l = , , . . . ,k and p = , , . . . ,T

s.t.

{
A(p)
i (x(p))� B(p)

i , i = , , . . . , r and ∀p,
x(p) ≥  ∀p,

()

where x is an n-dimensional decision variable column vector.
Its corresponding parametric linear programming is given by

⎧⎪⎨⎪⎩
minx C

(p)
l x(p), l = , , . . . ,k and p = , , . . . ,T

s.t.

{
A(p)
i (x(p)) ≤ B(p)

i +Vi, i = , , . . . , r and ∀p,
x(p) ≥  ∀p,

()

where Vi (≤ i ≤ r) is a flexible index by an appropriate choice.
Now the solution methodology of a multi-objective decision making problem by con-

verting into a single-objective problem is discussed as follows.

4.1 Fuzzy interactive satisfiedmethod
We introduce the interactive fuzzy satisfied method (FISM) proposed by Sakawa [], Xu
and Zhou []. We consider the following multi-objective decision-making model:

{
max[Gi(x), i = , , . . . ,M]
s.t. x ∈ X.

()

The objective function of equation () is tomaximizeGi(x), so for each objective we intro-
duce the fuzzy objective ‘Gi(x) approximately more than some value’, and the membership
function is

μi
(
Gi(x)

)
=

⎧⎪⎪⎨⎪⎪⎩
 for Gi(x) >G

i ,

 – Gi(x)–G
i

G
i –G


i

for G
i ≤Gi(x)≤G

i ,

 for Gi(x) <G
i .

()

In equation (), the membership is  and  when the values ofGi(x) areG
i andG

i , respec-
tively,

G
i =max

x∈X
Gi(x), G

i =min
x∈X Gi(x), i = , , . . . ,M. ()

For model minx∈X Gi(x), its optimal solution should be gotten at the boundary of the con-
vex set X. If there exists no solution ofmaxx∈X Gi(x) orminx∈X Gi(x), orG

i =∞,G
i = –∞,

the decision maker may set the value of G
i , G

i subjectively. Hence, equation () could be
transformed into the following form:

{
min[μ(G(x)),μ(G(x)), . . . ,μm(GM(x))]
s.t. x ∈ X.

()
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Chakraborty et al. Journal of Inequalities and Applications 2014, 2014:338 Page 7 of 21
http://www.journalofinequalitiesandapplications.com/content/2014/1/338

For each objective function μ(Gi(x)), let the decision maker give the reference value of
membership function μ̄i to reflect the ideal value of membership function. Through solv-
ing the minmax problem (), we obtain an efficient solution of equation () as follows:{

minmaxi=,,...,M[μ̄i –μi(Gi(x))]
s.t. x ∈ X.

()

Equation () is equivalent to⎧⎪⎨⎪⎩
minλ

s.t.

{
μ̄i –μi(Gi(x))≤ λ, j = , , . . . ,p,
 ≤ λ ≤ , x ∈ X.

()

4.2 Global criteria method
The global criteriamethod gives a compromise solution for amulti-objective problem.Ac-
tually this method is a way of achieving compromise in minimizing the sum in derivations
of the ideal solutions from the respective objective functions. The solution procedure is
as follows.

Step-I: Solve the multi-objective problem using each time only one objective ft (t =
, , . . . ,R) ignoring all the other objectives.

Step-II: From the results of Step-I, determine the ideal objective vector, say (f min
 , f min

 ,
. . . , f min

R ) and the corresponding values of (f max
 , f max

 , . . . , f max
R ).

Step-III: Formulate the following auxiliary problem:

minG(x)

subject to gj(x)≤ , j = , , . . . ,M,

x≥ ,

where G(x) = min{∑R
t=(

ft (x)–fmin
t

fmin
t

)q} 
q or G(x) = min{∑R

t=(
ft (x)–fmin

t
fmax
t –fmin

t
)q} 

q , where
 ≤ q < ∞. A usual value of q is . This method is then called global criteria
method in L norms.

4.3 Convex combination method
We consider the following multi-objective model:⎧⎪⎨⎪⎩

min[fi(x), i = , , . . . ,M]
s.t. gj ≥ , j = , , . . . ,N ,

x ∈ X.
()

Then, by the convex combination method, we transfer the above problem into the follow-
ing form:⎧⎪⎨⎪⎩

min
∑M

i=wifi(x), where
∑M

i=wi = ,  < wi < 
s.t. gj ≥ , j = , , . . . ,N ,

x ∈ X.
()

Corresponding x and fi(x) is solution.
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5 Formulation of different models of STP
5.1 Model-1: multi-objective multi-item STP
Let p (p = , , . . . ,T ) items be transported fromM origins (or sources) ai (i = , , . . . ,M),N
destinations (i.e., demands) bj (j = , , . . . ,N ) andK conveyances ek (k = , , . . . ,K ).K con-
veyances, i.e., different modes of transport, may be trucks, cargo flights, goods trains,
ships, etc. Let a(p)i be the product available at ith origin for items p (p = , , . . . ,T ), b(p)j be
the demand at jth destination for items p (p = , , . . . ,T ), and let ek represent the amount
of product which can be carried by kth conveyance. The variable x(p)ijk represents the un-
known quantity to be transported from origin a(p)i to destination b(p)j by means of kth con-
veyance for item p = , , . . . ,T . Then we propose the mathematical model for the fuzzy
inequality constraint. Single-objective and p (= , , . . . ,T)-item problem is to minimize
the total transportation cost as follows:

f (p)t =
M∑
i=

N∑
j=

K∑
k=

c(tp)ijk x(p)ijk ∀p and ∀t. ()

From the discussion above, we develop mathematical formulations of the objectives as
follows:

min ft =
T∑
p=

M∑
i=

N∑
j=

K∑
k=

c(tp)ijk x(p)ijk ∀t. ()

As mentioned by Haley [], the constraints are divided into three types: source constraint,
destination constraint and conveyance capacity constraint. In the fuzzy environment, the
quantity from a source is essentially less than equal to the supply capacity of products for
different items, that is,

N∑
j=

K∑
k=

x(p)ijk � a(p)i , i = , , , . . . ,M ∀p. ()

In the fuzzy environment, the quantity of product transported to a destination is essen-
tially greater than equal to its demand for different items, that is,

M∑
i=

K∑
k=

x(p)ijk � b(p)j , j = , , , . . . ,N ∀p. ()

In the fuzzy environment, the transportation quantity of conveyance is essentially less
than equal to its capacity, that is,

T∑
p=

M∑
i=

N∑
j=

x(p)ijk � ek , k = , , , . . . ,K . ()

It is natural to require the nonnegativity of decision variable x(p)ijk , that is,

x(p)ijk ≥  ∀i, j,k and ∀p. ()

It is noted that the decision maker (DM) and the modeling analyst are often different in-
dividuals. In the transportation problem, the DM is the manager of transport enterprise,

http://www.journalofinequalitiesandapplications.com/content/2014/1/338
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while themodeling analyst may be an expert in transportation problems or a researcher in
the enterprise. With the complexity of feasible region, the DM may give an appropriately
large region so that all the feasible solutions are included in it. Hence, the above MMSTP
with fuzzy inequality constraint can be written as

min ft =min
T∑
p=

M∑
i=

N∑
j=

K∑
k=

c(tp)ijk x(p)ijk , t = , , . . . ,R

s.t.
N∑
j=

K∑
k=

x(p)ijk � a(p)i , i = , , , . . . ,M ∀p,

M∑
i=

K∑
k=

x(p)ijk � b(p)j , j = , , , . . . ,N ∀p, ()

T∑
p=

M∑
i=

N∑
j=

x(p)ijk � ek , k = , , , . . . ,K ,

x(p)ijk ≥  ∀i, j,k,

where � means ‘essentially smaller than equal to’ and � means ‘essentially greater than
equal to’.

5.2 Model-2: multi-objective single-item STP
We consider a multi-objective single-item solid transportation problem with fuzzy in-
equality constraint. Then the model may be written as

min ft =min
M∑
i=

N∑
j=

K∑
k=

ctpijkxijk

s.t.
N∑
j=

K∑
k=

xijk � ai, i = , , , . . . ,M,

M∑
i=

K∑
k=

xijk � bj, j = , , , . . . ,N , ()

M∑
i=

N∑
j=

xijk � ek , k = , , , . . . ,K ,

xijk ≥  ∀i, j,k.

5.3 Model-3: single-objective multi-item STP
We consider a single-objective multi-item solid transportation problem with fuzzy in-
equality constraint. Then the model may be written as

min f =min
T∑
p=

M∑
i=

N∑
j=

K∑
k=

c(p)ijk x
(p)
ijk

s.t.
N∑
j=

K∑
k=

x(p)ijk � a(p)i , i = , , , . . . ,M ∀p,

http://www.journalofinequalitiesandapplications.com/content/2014/1/338
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M∑
i=

K∑
k=

x(p)ijk � b(p)j , j = , , , . . . ,N ∀p, ()

T∑
p=

M∑
i=

N∑
j=

x(p)ijk � ek , k = , , , . . . ,K ,

x(p)ijk ≥  ∀i, j,k.

6 Solution of proposedmodels
6.1 Model-1
Let us consider that p different items are to be transported from ith origin to jth destina-
tion by means of kth conveyance. Here we have considered a two-objective function. Let
maxx∈X f = f U , minx∈X f = f L , maxx∈X f = f U and minx∈X f = f L . Then the membership
functions of f and f are given by

μ
(
f(x)

)
=

⎧⎪⎪⎨⎪⎪⎩
 for f(x) > f U ,
f U –f(x)
f U –f L

for f L < f(x) < f U ,

 for f(x) < f L ,

μ
(
f(x)

)
=

⎧⎪⎪⎨⎪⎪⎩
 for f(x) > f U ,
f U –f(x)
f U –f L

for f L < f(x) < f U ,

 for f(x) < f L .

Now, using FISM in Section ., we present the equivalent crisp linear programming of
() as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ≤ f U – (μ – λ)(f U – f L ),
f ≤ f U – (μ – λ)(f U – f L ),∑N

j=
∑K

k= x
(p)
ijk ≤ a(p)i + ( – α)d(p)

i , i = , , , . . . ,M,∑M
i=

∑K
k= x

(p)
ijk ≥ b(p)j + ( – α)v(p)j , j = , , , . . . ,N ,∑T

p=
∑M

i=
∑N

j= x
(p)
ijk ≤ ek + ( – α)uk , k = , , , . . . ,K ,

 ≤ α ≤ ,
x(p)ijk ≥  ∀i, j,k and ∀p.

6.2 Model-2
Letmaxx∈X f = f U ,minx∈X f = f L ,maxx∈X f = f U andminx∈X f = f L . Then themembership
functions of f and f are given by

μ
(
f(x)

)
=

⎧⎪⎪⎨⎪⎪⎩
 for f(x) > f U ,
f U –f(x)
f U –f L

for f L < f(x) < f U ,

 for f(x) < f L ,

μ
(
f(x)

)
=

⎧⎪⎪⎨⎪⎪⎩
 for f(x) > f U ,
f U –f(x)
f U –f L

for f L < f(x) < f U ,

 for f(x) < f L .

http://www.journalofinequalitiesandapplications.com/content/2014/1/338
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Now, using FISM in Section ., we present the equivalent crisp linear programming of
() as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ≤ f U – (μ – λ)(f U – f L ),
f ≤ f U – (μ – λ)(f U – f L ),∑N

j=
∑K

k= xijk ≤ ai + ( – α)di, i = , , , . . . ,M,∑M
i=

∑K
k= xijk ≥ bj + ( – α)vj, j = , , , . . . ,N∑M

i=
∑N

j= x
(p)
ijk ≤ ek + ( – α)uk , k = , , , . . . ,K ,

 ≤ α ≤ ,
x(p)ijk ≥  ∀i, j,k.

6.3 Model-3
Now corresponding parametric linear programming of equation () is presented as fol-
lows:

min
T∑
p=

M∑
i=

N∑
j=

K∑
k=

c(p)ijk x
(p)
ijk

s.t.
N∑
j=

K∑
k=

x(p)ijk ≤ a(p)i + ( – α)d(p)
i , i = , , , . . . ,M and ∀p,

M∑
i=

K∑
k=

x(p)ijk ≥ b(p)j + ( – α)v(p)j , j = , , , . . . ,N and ∀p, ()

T∑
p=

M∑
i=

N∑
j=

x(p)ijk ≤ ek + ( – α)uk , k = , , , . . . ,K ,

 ≤ α ≤ , xijk ≥  ∀i, j,k,

where d(p)
i for i = , , , . . . ,M, vpj for j = , , , . . . ,N and uk for k = , , , . . . ,K are flexible

index values ∀p.

7 Numerical experiment
7.1 Input data for Model-1 andModel-3
Let us consider a multi-objective multi-item solid transportation problem with two types
of items (i.e., T = ), three origins (i.e.,M = ), two destinations (i.e., N = ) and two types
of conveyances (i.e., K = ). The parameters are given as follows.

Transportation cost for st objective and st item [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .
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Transportation cost for st objective and nd item [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .

Transportation cost for nd objective and st item [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .

Transportation cost for nd objective and nd item [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .

Amount of items available at origin [api ][
a() a()

a() a()

]
=

[
 
 

]
.

The demand amount of items at destination [b(p)j ][
b() b() b()

b() b() b()

]
=

[
  
  

]
.

Amount of items transported by conveyances [ck]

[e e] = [ ].

Optimum result for Model-
With the above input data, f and f are calculated using GRG, and we get

f U = ., f L = ., f U = ,, f L = .

So, we can get the membership functions of f and f (Figure ) as follows:

μ
(
f(x)

)
=

⎧⎪⎨⎪⎩
 for f(x) > .,
.–f(x)
.–. for . < f(x) < .,
 for f(x) < .,

μ
(
f(x)

)
=

⎧⎪⎨⎪⎩
 for f(x) > ,,
,–f(x)
,– for , < f(x) < ,
 for f(x) < .
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Figure 1 Membership functions of f1 and f2.

Table 1 Employ the interactive fuzzy satisfiedmethod based on the fuzzy inequality
constraint of Model-1

μ1 μ2 f1 f2 μ1(f1) μ2(f2) Values of decision variables λ

1 1 634.3 826.09 0.641 0.641 x1111 = 9, x1121 = 2.04, x1131 = 8, x1222 = 4.95,
x2121 = 9.45, x2122 = 1.04, x2212 = 10.5, x2232 = 9.50

0.35

1 0.9 630.98 853.13 0.679 0.579 x1111 = 9, x1121 = 3.17, x1131 = 8, x1222 = 3.82,
x2121 = 8.32, x2122 = 2.17, x2212 = 10.5, x2232 = 9.5

0.32

0.9 1 637.76 799.15 0.603 0.703 x1111 = 9, x1121 = 0.91, x1131 = 8, x1222 = 6.08,
x2121 = 10.5, x2212 = 10.5, x2232 = 9.5

0.296

Then we compute the following model to get the interactive satisfied solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(. – f(x))≥ (μ – λ)(. – .),
(, – f(x))≥ (μ – λ)(, – ),
x + x + x + x + x + x ≤ ,
x + x + x + x + x + x ≤ ,
x + x + x + x ≥ ,
x + x + x + x ≥ ,
x + x + x + x ≥ ,
x + x + x + x + x + x ≤ ,
x + x + x + x + x + x ≤  + ( – a),
x + x + x + x ≥  + ( – α),
x + x + x + x ≥  + ( – α),
x + x + x + x ≥  + ( – α),
x + x + x + x + x + x + x

+ x + x + x + x + x ≤  + ( – α),
x + x + x + x + x + x + x

+ x + x + x + x + x ≤  + ( – α),
 ≤ α ≤ , xijk ≥  ∀i, j,k,

where α = . has been calculated in Example .. Here we solve Model-, to get the sat-
isfied solutions, which are listed in Table .
The first line of Table  lists each reference value of membership function μ(f), when

the initializedmembership function is , the value of objective function f(x), and its corre-
sponding solution x. If the decision maker hopes to improve f(x) on the basis of sacrifice

http://www.journalofinequalitiesandapplications.com/content/2014/1/338
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Table 2 Optimum results by using the convex combinationmethod of Model-1

w1 w2 f1 f2 Values of decision variables

0.5 0.5 691.5 670 x1111 = 9, x1131 = 6.5, x1222 = 7, x1232 = 1.5, x2212 = 10.5, x2222 = 10.5, x2231 = 9.5

0.6 0.4 688 673.5 x1111 = 9, x1131 = 8, x1222 = 7, x2212 = 10.5, x2221 = 2, x2222 = 8.5, x2231 = 9.5

0.7 0.3 651 748.5 x1111 = 9, x1131 = 8, x1222 = 7, x2212 = 10.5, x2221 = 10.5, x2232 = 9.5

Table 3 Comparison of optimum results of Model-1

Method f1 f2 Values of decision variables

FISM 630.98 799.15 x1111 = 9, x1121 = 0.91, x1131 = 8, x1222 = 6.08,
x2121 = 10.5, x2212 = 10.5, x2232 = 9.5

Convex combination 651 748.5 x1111 = 9, x1131 = 8, x1222 = 7, x2212 = 10.5,
x2221 = 10.5, x2232 = 9.5

Global criteria 669 711.2 x1111 = 9, x1131 = 6.75, x1222 = 7, x1232 = 1.24,
x2221 = 7.95, x2212 = 10, x2231 = 4.78,
x1222 = 2.54, x2232 = 4.71,GC = 0.1265

f(x), we may consider resetting the reference value of membership function (μ,μ), e.g.,
we set (μ,μ) = (., ) or (μ,μ) = (, .). The corresponding results are listed in the
second and third lines. Suppose that when the reference value of membership function is
(μ,μ) = (., ), the decision maker is satisfied, then the interactive process is stopped,
so we obtain that the satisfied solutions for different items are

⎡⎢⎢⎢⎣
x() x() x()

x() x() x()

x() x() x()

x() x() x()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  .
  
  

.  

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
x() x() x()

x() x() x()

x() x() x()

x() x() x()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  .
  
 . 
  .

⎤⎥⎥⎥⎦
and the corresponding optimal values for different items are

[
f () f ()

f () f ()

]
=

[
. .
. 

]
.

Applying the convex combinationmethod stated in Section ., we get Table  for different
weights on f and f. The comparison between the optimum results calculated by different
methods for Model- is given in Table .

7.2 Input data for Model-2
Let us consider a multi-objective single-item solid transportation problem with three ori-
gins (i.e., M = ), two destinations (i.e., N = ) and two types of conveyances (i.e., K = ).
The parameters are given as follows.
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Transportation cost for st objective [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .

Transportation cost for nd objective [c()ijk ]⎡⎢⎢⎢⎣
c() c() c()

c() c() c()

c() c() c()

c() c() c()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
  
  
  
  

⎤⎥⎥⎥⎦ .

Amount of items available at origin [ai]

[a a] = [ ].

The demand amount of items at destination [bj]

[b b b] = [  ].

Amount of items transported by conveyances [ck]

[e e] = [ ].

Optimum result for Model-
With the above input data, f and f are calculated using the GRG technique, and we get

f U = ., f L = ., f U = ., f L = ..

So we can get the membership functions of f and f (Figure ) as follows:

μ
(
f(x)

)
=

⎧⎪⎨⎪⎩
 for f(x) > .,
.–f(x)
.–. for . < f(x) < .,
 for f(x) < .,

Figure 2 Membership functions of f1 and f2.
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μ
(
f(x)

)
=

⎧⎪⎨⎪⎩
 for f(x) > .,
.–f(x)
.–. for . < f(x) < .,
 for f(x) < ..

Then we compute the following model to get the interactive satisfied solution:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(. – f(x))≥ (μ – λ)(. – .),
(. – f(x))≥ (μ – λ)(. – .),
x + x + x + x + x + x ≤ ,
x + x + x + x + x + x ≤ ,
x + x + x + x ≥  + ( – α),
x + x + x + x ≥  + ( – α),
x + x + x + x ≥  + ( – α),
x + x + x + x + x + x ≤  + ( – α),
x + x + x + x + x + x ≤  + ( – α),
xijk ≥  ∀i, j,k, ≤ α ≤ ,

where α = . has been already calculated in Example .. Here we solve Model- to
get the satisfied solutions, which are listed in Table .
The first line of Table  lists each reference value of membership function μ(f), when

the initializedmembership function is , the value of objective function f(x), and its corre-
sponding solution x. If the decision maker hopes to improve f(x) on the basis of sacrifice
f(x), we may consider resetting the reference value of membership function (μ,μ), e.g.,
we set (μ,μ) = (., ) or (μ,μ) = (, .). The corresponding results are listed in the
second and third lines. Suppose that when the reference value of membership function is
(μ,μ) = (, .), the decision maker is satisfied, then the interactive process is stopped,
so we obtain that the satisfied solutions are x = ., x = ., x = ., x = ..
The corresponding optimal values are

[f f] = [. .].

Applying the convex combinationmethod stated in Section ., we get Table  for different
weights on f and f. The comparison between optimum results calculated by different
methods for Model- is given in Table .

Table 4 Employ the interactive fuzzy satisfiedmethod based on fuzzy inequality constraint
for Model-2

μ1 μ2 f1 f2 μ1(f1) μ2(f2) Values of decision variables λ

1 1 276.55 328.68 0.73 0.73 x122 = 8.51, x131 = 5.47, x212 = 10.51, x232 = 0.045 0.261
0.9 1 283.03 328.03 0.66 0.76 x122 = 8.51, x131 = 4.82, x212 = 10.51, x232 = 0.69 0.2302
1 0.9 273.4 330.07 0.67 0.77 x121 = 1.34, x122 = 7.16, x131 = 5.51, x212 = 10.51 0.227

Table 5 Optimum results by using the convex combinationmethod for Model-2

w1 w2 f1 f2 Values of decision variables

0.5 0.5 259.06 337.24 x121 = 8.51, x131 = 5.51, x1212 = 10.51, x1121 = 8.51
0.3 0.7 276.1 328.72 x122 = 8.51, x131 = 5.51, x1212 = 10.51
0.6 0.4 252.1 344.20 x111 = 6.96, x121 = 8.51, x1131 = 5.51, x1212 = 3.55
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Table 6 Comparison of optimum results of Model-2

Method f1 f2 Values of decision variables

FISM 273.40 330.07 x121 = 1.34, x122 = 7.16, x131 = 5.51, x212 = 10.51
Convex combination 252.1 344.20 x111 = 6.96, x121 = 8.51, x131 = 5.51, x212 = 3.55
Global criteria 259.06 337.24 x121 = 8.51, x131 = 5.51, x212 = 10.51,GC = 0.0514

7.3 Optimum result for Model-3
To solve Model-, we will solve MSSTPα (Example .) and the optimum solution has
come for decision α∗ = ., and the optimal solutions for different items are

⎡⎢⎢⎢⎣
x() x() x()

x() x() x()

x() x() x()

x() x() x()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
 . 
  .

.  
 . 

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
x() x() x()

x() x() x()

x() x() x()

x() x() x()

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
 . .

.  
 . 
  .

⎤⎥⎥⎥⎦
and the corresponding optimal values for different items are[

f () f ()

f () f ()

]
=

[
 .

. .

]
.

8 Conclusion
The multi-objective multi-item solid transportation problem in fuzzy inequality con-
straints has been explored in this paper. Three different models have been derived. First,
a fuzzy inequality solid transportation problem has been converted to a parametric solid
transportation problem using flexible index, and then the fuzzy inequality solid trans-
portation problem has been solved by using the decision making technique. The fuzzy
interactive satisfied method, global criterion method and convex combination method
have been applied to calculate the optimal compromise solutions of multi-objective STP
problem, and then it was solved by using MatLab and Lingo-.. The models are illus-
trated with numerical examples and corresponding results are compared. This paper only
researches the problem under fuzzy inequality constraints, and the problem in othermore
complex environments or multi-objective uncertain transportation problemmay become
new topics in further research. The present formulation and solution procedures can be
applied to other fuzzy transportation models with different fuzzy numbers.

Appendix
Example . Consider the following FICP:

min x + x + x + x + x + x + x + x

+ x + x + x + x + x + x + x + x

+ x + x + x + x + x + x + x + x
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s.t. x + x + x + x + x + x � ,

x + x + x + x + x + x � ,

x + x + x + x � ,

x + x + x + x � ,

x + x + x + x � ,

x + x + x + x + x + x � ,

x + x + x + x + x + x � ,

x + x + x + x � ,

˜MMSTP x + x + x + x � ,

x + x + x + x � ,

x + x + x + x + x + x + x

+ x + x + x + x + x � ,

x + x + x + x + x + x + x

+ x + x + x + x + x � ,

xpijk ≥  ∀i, j,k and p = , , d = (, , , , , , , , , , , ).

The corresponding parametric linear programming problem of ˜MMSTP is presented as
follows:

min x + x + x + x + x + x

+ x + x + x + x + x + x

+ x + x + x + x + x + x

+ x + x + x + x + x + x

s.t. x + x + x + x + x + x ≤ ,

x + x + x + x + x + x ≤ ,

x + x + x + x ≥ ,

x + x + x + x ≥ ,

x + x + x + x ≥ ,

x + x + x + x + x + x ≤ , ()

x + x + x + x + x + x ≤  + ( – a),

x + x + x + x ≥  + ( – α),

MMSTPα x + x + x + x ≥  + ( – α),

x + x + x + x ≥  + ( – α),

x + x + x + x + x + x + x
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+ x + x + x + x + x ≤  + ( – α),

x + x + x + x + x + x + x

+ x + x + x + x + x ≤  + ( – α),

xpijk ≥  ∀i, j,k,p = ,  and  ≤ α ≤ .

Now, using the algorithm given in Section ., we obtain Z = , Z =  and d = 
by calculating (MMSTP) and (MMSTP) corresponding to (). Let the inverse of the
optimal matrix in (MMSTP) be

B–
 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       –  –  –
           
    –   –  –  –
   –        
           
           
           
       –    
        –   
         –  
           
  –         

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, calculating the equations [B–
 (, , , , , ,  + ( – α),  + ( – α),  + ( –

α),  + ( – α),  + ( – α),  + ( – α))]i =  (i = , , . . . , ), respectively, we obtain
α = . assume α =  and α = .
Now, solving (MMSTPα ), we get an optimal solution and an optimal value as Zα =

Z. = ..
Now,Z. = . < Z +.× = ., sowe stop here and calculate optimal

decision α∗. Now

α∗ =
Zα – Zα – Zαα + Zαα

Zα – Zα – αd + αd
= ..

Now, solving (MMSTP.), we obtain the optimal value Z∗
. = ..

Example . Consider the following FICP:

min x + x + x + x

+ x + x + x + x

+ x + x + x + x

s.t. x + x + x + x + x + x � ,

x + x + x + x + x + x � ,
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x + x + x + x � , ()

x + x + x + x � ,

˜MSSTP x + x + x + x � ,

x + x + x + x + x + x � ,

x + x + x + x + x + x � ,

xijk ≥  ∀i, j,k, d = (, , , , , , ).

The corresponding parametric linear programming problem of ˜MSSTP is presented as
follows:

min x + x + x + x

+ x + x + x + x

+ x + x + x + x

s.t. x + x + x + x + x + x ≤ ,

x + x + x + x + x + x ≤ ,

x + x + x + x ≥  + ( – α), ()

x + x + x + x + ( – α),

MSSTPα x + x + x + x ≥  + ( – α),

x + x + x + x + x + x ≤  + ( – α),

x + x + x + x + x + x ≤  + ( – α),

xijk ≥  ∀i, j,k,  ≤ α ≤ .

Now, using the algorithm given in Section ., we obtain Z = , Z =  and d = 
by calculating (MSSTP) and (MSSTP) corresponding to (). The inverse of the optimal
matrix in (MSSTP) is

B–
 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–  – – –  
      
      
   –   
    –  
–      
      

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, calculating the equations [B–
 (, ,  + ( – α),  + ( – α),  + ( – α),  + ( –

α),  + ( – α))]i =  (i = , , . . . , ), respectively, we obtain α = . assume α = 
and α = .
Now, solving (MSSTPα ), we get an optimal solution as x = , x =  and x =  and

an optimal value as Zα = Z. = ..
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Now Z. = . < Z + .×  = ., so we stop here and calculate opti-
mal decision α∗. Now

α∗ =
Zα – Zα – Zαα + Zαα

Zα – Zα – αd + αd
= ..

Now, solving (MSSTP.), we obtain an optimal value as Z∗
. = ..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Heritage Institute of Technology, Anandapur, Kolkata, West Bengal 700107, India.
2Department of Applied Science, Haldia Institute of Technology, Purba Midnapur, Haldia, West Bengal 721657, India.
3Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah, West Bengal 711103, India.

Acknowledgements
The authors sincerely thank the anonymous reviewers and editor-in-chief for their careful reading, constructive
comments and fruitful suggestions. The first two authors are also thankful to Ms. Priyanka Dey, Assistant Professor, Haldia
Institute of Technology for advices on grammatical errors and organization of the paper.

Received: 23 April 2014 Accepted: 19 August 2014 Published: 03 Sep 2014

References
1. Haley, K: The solid transportation problem. Oper. Res. 10, 448-463 (1962)
2. Ojha, A, Das, B, Mondal, S, Maiti, M: A solid transportation problem for an item with fixed charge, vehicle cost and

price discounted varying charge using genetic algorithm. Appl. Soft Comput. 10, 100-110 (2010)
3. Pramanik, S, Jana, DK, Maiti, K: A multi objective solid transportation problem in fuzzy, bi-fuzzy environment via

genetic algorithm. Int. J. Adv. Oper. Manag. 6(1), 4-26 (2014)
4. Bit, AK, Biswal, MP, Alam, SS: Fuzzy programming approach to multi-objective solid transportation problem. Fuzzy

Sets Syst. 57, 183-194 (1993)
5. Ida, K, Gen, M, Li, Y: Neural networks for solving multicriteria solid transportation problem. Comput. Ind. Eng. 31,

873-877 (1996)
6. Gao, SP, Liu, SY: Two-phase fuzzy algorithms for multi-objective transportation problem. J. Fuzzy Math. 12, 147-155

(2004)
7. Tao, Z, Xu, J: A class of rough multiple objective programming and its application to solid transportation problem. Inf.

Sci. 188, 215-235 (2012)
8. Kundu, P, Kar, S, Maiti, M: Multi-objective multi-item solid transportation problem in fuzzy environment. Appl. Math.

Model. 37, 2028-2038 (2013)
9. Pramanik, S, Jana, DK, Maiti, M: Multi-objective solid transportation problem in imprecise environment. J. Transp.

Secur. 6, 131-150 (2013)
10. Sancak, E, Salman, S: Multi-item dynamic lot-sizing with delayed transportation policy. Int. J. Prod. Econ. 131, 595-603

(2011)
11. Zimmermann, HJ: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1,

45-55 (1978)
12. Zimmermann, HJ: Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2, 209-215 (1976)
13. Cao, BY: Optimal Models and Methods with Fuzzy Quantities. Springer, Berlin (2010)
14. Sakawa, K: Fuzzy Sets and Interactive Multiobjective Optimization. Plenum, New York (1993)
15. Xu, J, Zhou, X: Fuzzy Like Multiple Objective Decision Making. Springer, Berlin (2011)

10.1186/1029-242X-2014-338
Cite this article as: Chakraborty et al.:Multi-objective multi-item solid transportation problem with fuzzy inequality
constraints. Journal of Inequalities and Applications 2014, 2014:338

http://www.journalofinequalitiesandapplications.com/content/2014/1/338

	Multi-objective multi-item solid transportation problem with fuzzy inequality constraints
	Abstract
	Keywords

	Introduction
	Preliminaries about fuzzy inequality constraint linear programming
	Algorithm for fuzzy inequality constraint linear programming

	Notations and assumptions
	Notations
	Assumptions

	Multi-objective multi-item LPP with fuzzy inequality constraint
	Fuzzy interactive satisﬁed method
	Global criteria method
	Convex combination method

	Formulation of different models of STP
	Model-1: multi-objective multi-item STP
	Model-2: multi-objective single-item STP
	Model-3: single-objective multi-item STP

	Solution of proposed models
	Model-1
	Model-2
	Model-3

	Numerical experiment
	Input data for Model-1 and Model-3
	Transportation cost for 1st objective and 1st item [c(11)ijk]
	Transportation cost for 1st objective and 2nd item [c(12)ijk]
	Transportation cost for 2nd objective and 1st item [c(11)ijk]
	Transportation cost for 2nd objective and 2nd item [c(12)ijk]
	Amount of items available at origin [api]
	The demand amount of items at destination [b(p)j]
	Amount of items transported by conveyances [ck]
	Optimum result for Model-1

	Input data for Model-2
	Transportation cost for 1st objective [c(1)ijk]
	Transportation cost for 2nd objective [c(2)ijk]
	Amount of items available at origin [ai]
	The demand amount of items at destination [bj]
	Amount of items transported by conveyances [ck]
	Optimum result for Model-2

	Optimum result for Model-3

	Conclusion
	Appendix
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


